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Abstract

Results are presented of calculations
of the three dimensional steady transonic
flow over a finite yawed wing. The full
potential flow equation is solved in a
transformed coordinate system which per-
mits the boundary conditions to be satis-
fied exactly. The correct directional
properties are enforced by rotating the
difference scheme to conform with the flow
direction, and fast convergence is assured
by simulating a time dependent equation
designed to settle quickly to a steady
state. Computed lift drag ratios are
consistent with the results of wind tunnel
tests of a yawed wing conducted by
R. T. Jones.

1. Introduction

The development of successful numerical
methods for calculating two dimensional
transonic flows encourages the belief that
theoretical methods will eventually be
able to play a much more prominent role in
the design process than they have in the
past, allowing alternative designs to be
screened without the need to rely on the
wind tunnel. If we are to progress fur-
ther along the road towards this goal,
an essential step must be the development
of accurate and reliable methods for cal-
culating three dimensional flows over
wings and wing body combinations in the
transonic range. This paper reports
results of an investigation into the pro-
blem of calculating the flow over an
isolated yawed wing. This problem was
selected for study because its solution
appears to be feasible within the capacity
of current computers such as the CDC 6600,
and may even be brought within the bounds
of routine calculation with newer machines
such as the CDC 7600. At the same time
the model has engineering relevance in
support of studies of R. T, Jones' concept
of a yawed wing aircraft. The experi-
ence gained with this problem should pro-
vide a solid platform for an attack on the
problem of calculating the more complex
flow over a swept wing body combination.
An isolated arrow wing appears to be a
less favorable model for preliminary study
because the singularity at the center line
would present a complication which is
guite unrealistic, since it would normally
be relieved by the presence of the
fuselage. By tracking the streamlines
near the center section, the results of
the present calculation might, on the
other hand, be used to obtain an idea of
the appropriate body contouring to mini-
mize wing body interference.

The requirements of a good mathematical
model are that it should lead to equations
which are simple enough to be solved,
while continuing to give an accurate
representation of the important features
of the real flow. For the purposes of
this study these requirements seem best
met by the use of the potential equation
for irrotational flow. Pending the intro-
duction of more powerful computers, it
hardly seems possible to treat the full
equations in three dimensions, even ignor-
ing viscosity, without exceeding accept-
able limits of computer time and cost. A
satisfactory aerodynamic design should
lead to the presence only of fairly weak
shock waves, so that the error in ignoring
entropy variations and using an irrotation
-al model should be quite small. The
proper treatment of strong shock waves
would in any case require a model allowing
for the presence of separated flow behind
the shock waves, and this is beyond the
scope of the present study. Quite exten-
sive trials were made using small distur-
bance theory. The particular advantage
of this theory is that the consistent
treatment of the boundary conditions
allows the translation of the boundaries
to lines parallel with the undisturbed
stream, eliminating the difficulty of
satisfying a Neumann boundary condition on
a curved surface. The small disturbance
equations certainly simulate the charac-
teristic features of transonic flow.(Z/
They do not appear, however, to offer the
prospect of achieving the desired accuracy
in resolving the effects of subtle changes
in the wing section, which may be required
to achieve shockfree flow. (4 It was
therefore decided to use the full
potential equation.

The potential equation is invariant
under a reversal of the direction of flow,
and in the absence of a directional condi-
tion corresponding to the condition that
entropy can only increase, its solution is
not unigque. To ensure uniqueness, and to
prevent the appearance of expansion shocks,
a directional property must be restored in
the numerical treatment of the problemn.
Murman and Cole first devised an effective
scheme foiztreating the small disturbance
equation. ') They showed that the
required directional property can be
obtained by using retarded difference
formulas in the supersonic region, supply-
ing the effect of an artificial viscosity.
Variations of the Murman scheme have been
successfully used with the full potential
equation. 5,6, These schemes rely on
the identification of one coordinate with
the direction of flow, so that a simple




switch to retarded difference formulas in
this coordinate is all that is required to
treat the supersonic zone.

The calculations in this paper employ a
coordinate invariant difference scheme in
which the proper directional property is
obtained by rotating the retarded differ-
ence formulas to conform with the local
direction of flow. This allows great
flexibility in the choice of a coordinate
system, so that curvilinear coordinates may
be used to improve the accuracy of the
treatment of the boundary condition, and
mesh points of the computational lattice
can be concentrated in the sensitive
regions of the flow.

The rotated difference scheme has
proved to be consistently stable and con-
vergent both in the case when the flow is
subsonic at infinity and in the case of a
supersonic free stream. Thus it is possible
to provide a uniform treatment of a yawed
wing up to flight Mach numbers around 1.2
and yaw angles as great as 60°. This
covers the most likely operating range of
a yawed wing transport. The accuracy of
the calculations, however, decreases at the
upper end of the range because the differ-
ence scheme is first order accurate in the
supersonic zone, which then comprises the
bulk of the flow, and because oblique
shock waves may be spread over as many as
four or five mesh widths.

2. Formulation of the Equations:
Curvilinear Coordinates

In line with the considerations set
forward in the introduction the governing
equation is taken to be the transonic
potential flow equation,
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in which ¢ is the velocity potential,

u, v, and w are the velocity components
u—¢xl V=¢)yr w=¢Z (2)
and a 1is the local speed of sound. This

is determined from the stagnation speed of
sound ay by the energy equation

a2 = ag -1 (u2+v2+w2) (3)

2
where Y is the ratio of the specific
heats. Equation (1) is elliptic at sub-
sonic points and hyperbolic at supersonic
points. When a supersonic zone is present
it is necessary to allow a weak solution,
in which shock waves are simulated by jumps
across which the normal component of mass
flow is conserved.

The boundary condition at the body is

av

where Vv denotes the direction normal to

the surface. In addition the Kutta condi-
tion requires that the circulation at each
span station should be such that there is
no flow around the sharp trailing edge,
leading to the presence of a vortex sheet
behind the wing. Using a linearized model
in which convection and roll up of the
sheet are ignored, the jump I in potential
should be constant along lines parallel to
the free stream behind the trailing edge,
and also, in the case of a yawed wing, v
behind the side edge of the downstream tip.
At all points of the sheet the normal
component of velocity should also be
continuous through the sheet. At infinity,
the flow should approach the velocity of
the undisturbed stream except in the
Trefftz plane far behind the wing, where
there will be a two dimensional flow
induced by the vortex sheet.

Flows over complicated shapes are most
easily treated with the aid of curvilinear
coordinates. Then by making the body coin-
cide with a coordinate surface,one can
avoid the need for complicated interpola-
tion formulas and prevent a loss of smooth-
ness in the numerical statement of the
boundary condition.. In two dimensional
calculations an effective way of doing this
is to map the airfoil to a regular shape,
such as a circle by a conformal transforma-
tion. In the three dimensional case no
simple method of this type is available. To
prevent an excessive growth of computer
time it is also important to limit the
increase in the number of terms in the
equations due to the use of coordinate
transformations. A convenient coordinate
system for treating wings with straight
leading edges can be obtained in two stages.
Let x , y and z be Cartesian coordinates
with the x-y planes containing the wing
sections and the z axis parallel to the
leading edge. Then, following a suggestion
of Garabedian, the wing is first unwrapped'
by a square root transformation of the x-y

planes, independent of z,
X + iy = % (xl+in)2 , Z = Z1 (5)
X, and Y, represent parabolic coordinates

in the xly planes, which become half planes

in X; and ¥y . while the wing surface is
Spll% open to form a bump on the boundary
. In terms of the transformed coordi-

nates the surface can be represented as

Y., = S(Xl,Z (6)

1 l) .
In the second stage of the transformation
the bump is removed by a shearing transfor-
mation in which the coordinate surfaces are
displaced until they become parzllel to the
wing surface:
(7)

X=X , ¥ = Yl—S(Xl,Zl), 2 =12

1 1

The final coordinates X, Y, and Z are
slightly non-orthogonal. While the leading
edge is restricted to be straight, the wing
section can be varied or twisted and the
trailing edge can be curved or tapered in
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any desired manner. To treat a yawed wing
the coordinate system is fixed to the wing,
and the yaw angle is introduced by rotat-
ing the flow at infinity.

Since the potential approaches infinity
in the far field, it is necessary to work
with a reduced potential G from which the
singularity at infinity has been removed.
If 8 is the yaw angle, and o the angle of
attack in the cross plane normal to the
leading edge, a suitable dependent
variable is

G = ¢+{%[X2—(Y+S)2]cos o+ X(Y+S)sin olcos®
+ Z sin 6 . (8)

Orthogonal velocity components in the X,

Y, and Z; directions are then

U= % {Gy~54Gy + [X cos o+ (Y+S) sin olcos 6}

vV = % {Gy+ [X sin a- (Y+8)cos a]éégbe} (9)

W= G- 5,G, + sin 6 ,

where h is the mapping modulus satisfying
n? = x2 + (Y+s)2 (10)

The local speed of sound is now given by
2

a? = a2 - 71 (vt W) (11)
The governing equation becomes
AGXX+ BGYY+ CGZZ+ DGXY+ EGYZ+ FGXz
=H (12a)
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The boundary condition on the body takes

the form 2
(s cos oa-X sin a)cos 6+U,S +h"W,S
B 1°X 1°z
Gy = - 2 3.2
1l + SX + h SZ
(13a)
where

(12¢)

U Gy + (X cos o + S sin o) cos ©

1
\Nl = GZ + sin © .

(13b)

Finally the parabolic transformation has
the advantage that it collapses the height
of the disturbance due to the vortex sheet
tq zero in the Trefftz plane far down-
stream, so that the far field condition is
simply

(14)

3. Numerical Scheme

The success of the Murman difference
scheme for the small disturbance equations
is attributable to the fact that the
retarded difference formulas used for the
streamwise derivatives in the supersonic
zone lead to the correct region of depen-
dence and also introduce a trunecdtion
error which acts like viscosity.. Let x be
the coordinate in the stream direction.
Then the dominant truncation error of the
retarded difference formula for ¢x is
-Ax¢xxx , and since the coefficien§ of ¢xx

is negative in the supersonic zone, this

term represents a positive artificial
viscosity, which ensures that only the
proper type of jump can occur. The term
is added smoothly because the coefficient
of ¢, is zero at the sonic line where the
switcé in the difference scheme takes
place.

The difference scheme used in the calcu-
lations for this paper is designed to
introduce correctly oriented retarded
difference formulas in a similar smooth
manner when the flow direction is
arbitrary. The underlying idea is to
rearrange the equation as if it were local-
ly expressed in a coordinate system aligned
with the flow. Considering first the case
of Cartesian coordinates, let s denote the
stream direction. Then equation (1) can
be written in the canonical form

(a2-g%)o  + a®(b4-0 ) =0 (15)

where g is the stream speed determined
from the formula

2 2 2 2

gt =u + v +w (1l6)
and A¢ denotes the Laplacian
3
= E
By = by + by F by, 2T D)

Since the direction cosines of the stream
direction are u/q, v/q, and w/z,ithe
streamwise second derivative can be expres-
sed as B

1

_ 2 2 2
bgg = “;7 (¢  * Vv ¢yy+ Wi,

+ 2uv ¢xy + 2vw ¢yz + 2uw ¢xz) (18)



On substituting the expressions for ¢ and
A, the equation is seen to reduce to~ ~the
usual form. To carry out this rearrange-
ment the velocity components are first
evaluated using central difference formulas
to represent the first derivatives, and the
local type ofzthezflow is determined from
the sign of a” -g®“ . Then at subsonic
points all derivatives are approximated by
central difference formulas in the conven-
tional manner for treating an elliptic
equation. At supersonic points all second
derivatives contributing to ¢gg in the
first term are approximated by retarded
difference formulas, while all contribu-
tions to the remaining terms are approxi-
mated by central difference formulas. The
retarded formulas are constructed using one-
sided difference operators biased in the
upstream sense in all three coordinate
directions. It is evident that the scheme
reduces to the Murman scheme whenever the
velocity coincides with one of the three
coordinate directions.

When the equation is written in curvi-
linear coordinates, only the principal part,
consisting of the terms containing the
second derivatives on the left side of (l2a)
need be rearranged and split in this way,
since the characteristic cone and region of
dependence are determined by the coeffici-
ents of the second derivatives. Also in
the limit of zero mesh spacing the expres-
sions for the second derivatives dominate
the finite difference equations. All terms
contributing to H on the right side of (12a)
are calculated using central difference
formulas at both supersonic and subsonic
points.

It remains to devise a suitable scheme
for solving the difference equations. The
original Murman scheme is not easily
carried over to the three dimensional case:
in order to obtain the correct region of de-
pendence it would call for the simultaneous
solution of all the points of a cross plane
normal to the flow. The rotated difference
scheme in any case forces the use of an
iterative method, because it includes down-

stream points in the central difference

formulas contributing to A¢ - ¢ss , for

which 'old' values of the potential
generated during the previous cycle have to
be used. To avoid programming difficul-
ties we need a method which calls for the
solution of at most a line at a time.

Point relaxation, on the other hand, tends
to spread the corrections too slowly. Thus
line relaxation is the preferred approach.
If the iterations are identified as succes-
sive levels in an artificial time coordi-
nate, the solution procedure may be
regarded as a time dependent process. A
detailed theory based on §§is concept has
been advanced elsewhere. ( The most
important features of this theory are that
the region of dependence of the time depen-
dent equation simulated by the iterative
scheme ought to be compatible with the
region of dependence of the time invariant
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equation, and that the coefficient of b
ought to be zero at points in the super-
sonic zone.

Denoting updated values by the super-
script +, the typical form of a central
difference formula for a second derivative
is

+

+
= L . . .= (1l-rA .
GXX {Gi-l,j,k (l+rAx)Gl 5,k (1-xrAX)G

i,j.k

r

2
+ Gi+l’j,k} / AX (19)

where the old value of potential is used on
one side because the new value is not yet
available, and a linear combination of new
and old values is used at the center point.
If At is the time step this formula may be
interpreted as representing

- At
xx T AX 'Uxt

Thus the presence cannot be avoided of
mixed space-time derivatives in the equiva-
lent time dependent equation. This equation
can therefore be written in the form

2
&

2
a

G (G + r Gt) .

t+2a3Gmt

(20)

-1)G__.~- G

- + 20
ss mm Gnn

let+ 20L2Gm

= H

where m and n are suitably scaled coordi-
nates in the plane normal to the local
stream direction s, and H contains all
terms except the principal part. The
coefficients a, , o, and o, depend on the
split between %ew and old Values in the

difference equations. Setting
-a;s
T =1t - ;5———— + o m - ogn (21)
.1
a?
equation (20) becomes 2
93 1|6, - G _- G =~ ——gl—— - az-az G
2 ss  “mm nn 2 2 T3f7TT
a < -1
2
a
= H (22)

To avoid producing an ultra hyperbolic
equation for which the initial data cannot
in general be arbitrarily prescribed,
the difference formulas at supersonic
points should be organized so that

o > V(g?/a -1) (ad+a’ (23)

1 3)
Then the hyperbolic character is retained
with s as the timelike direction. The
region of dependence of (20) lies entirely
behind the current time level except for
the single characteristic direction
o, o3
&—S, n=E--s

1 1




The difference equations will have the
correct region of dependence provided that
the points are ordered so that the upstream
part of this line is contained in an updat-
ed region. The rate of convergence in the
supersonic zone depends on the time which
elapses before the most retarded character-
istic

2 o o
[97 - l]t = 2als , m= - 2 s , n=—-—-é s
a

ceases to intersect the initial data, and
is maximized by minimizing o, subject to
condition (23).

These considerations indicate the need
to augment the retarded difference formulas
for G in the supersonic zone with expres-
sions”“contributing to the term in G_,.

For this purpose, and also to ensure

the diagonal dominance of the equations for
the new values on each line, G is calcu-
lated at supersonic points using formulas
of the form

- 2¢t

+
267 11,57

G = l,j,k—

XX

i,9.k i-2,3,k

2
AX (24)
The mixed derivatives contributing to GSS
are represented by formulas of the form

+ + +
Gxy™ {Gi,j,k Gi-1,5,x Ci,3-1,k
+
+ Gi—l,j—l,k} / AX AY (25)
To meet condition (23) near the sonic line
the coefficient of G can be further

augmented by adding term
At 2
€ 73 (U Gyet V Gyt h*w G,.) (26)

where the mixed derivatives are represent-
ed by formulas of the form

+ + +
ot o - Giguk” Gk Gi-1,9,k* Ci-1,5,k
AX "Xt AXZ
(27)
and € is a parameter proportional to
/qz/a2 -1 . Usually, however, this term

proves unnecessary.

The remaining terms of the principal
part at supersonic points are approximated
by formulas of the form (19), as are all
second derivatives at subsonic points,
except on the line which is being updated
where new values are used at all three
points in the difference formula. In the
supersonic zone r is set equal to zero
to give a zero coefficient for ¢ At sub-
sonic points the rate of convergerice is
controlled by the value of r.f If w is
the over relaxation factor one takes

2

r Ax = = -1

o (28)

At both subsonic and supersonic points the
velocities and all terms containing the
first derivatives are evaluated by formulas
of the form
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Gi41,4,x = %i-1,3,k

X - 20X (29)

G

using values frozen from the previous
cycle. The boundary condition at the body
is satisfied by giving appropriate values
to G at dummy points behind the boundary,
and the standard difference equations are
then used at the surface points.

The complete difference scheme leads to
a line relaxation algorithm which has
proved reliable in practice. The lines to
be updated can be in any coordinate direc-
tion. The only constraint is the need to
march in a direction which is not opposed
to the flow in order to obtain a positive
coefficient for ¢s . It has been found
best to divide eacﬁ X-Y plane into 3
strips. Then one marches towards the
surface in the central strip, and outwards
with the flow in the lefthand and right-
hand strips.

4. Results

A Fortran computer program has been used
to make numerical tests of these ideas. All
the runs have been made on the CDC 6600
computer belonging to the AEC Computing
and Applied Mathematics Center at New York
University, using the FTN compiler. To save
computer time, calculations are performed
on a sequence of meshes. The solution is
first obtained on a coarse mesh. This is
then interpolated to provide the starting
point for a calculation in which the mesh
size is halved in each coordinate direc-
tion, leading to 8 times as many mesh
cells. Using this procedure the circula-
tion can be roughly determined on the
coarse mesh at very low cost. Typically
the lattice for the initial calculation
contains 64 divisions in the chordwise
direction around the transformed surface,
each divisionis normal to the surface, and
16 divisions in the spanwise direction,
giving 8192 cells. The refined mesh then
has 128x16x32 = 65,536 cells. Generally,
200 cycles on the coarse mesh followed by
100 cycles on the refined mesh are suffici-
ent to_reduce the residual to the order
of 1072. Such a calculation takes about
30 minutes on the CDC 6600, and would
require about 7 minutes on a CDC 7600.

In order to check the convergence of the
method as the mesh size is reduced, a small
number of calculations have been made on a
sequence of 3 meshes, with 48%8%16 = 6144
cells, 96x16x32 = 49,152 cells, and
192x32x64 = 393,216 cells. Such a large
array cannot be contained in the high
speed memory, so it is necessary to use
the disk for storage. Three disk files
are used in rotation: at each cycle the
potential is read from one file, updated
in the central processor, and written on
the next file. Thus a spare copy is
always preserved, providing protection of
the intermediate results in case of a
parity error in reading or writing the
disk. To avoid wasted time while the
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central processor waits for completion of
a disk operation, the disk operations are
performed in parallel with computation on

the central processor, using storage

buffers. Calculations with the fine mesh
are expensive, requiring about 90 seconds

a cycle. With 100 fine mesh cycles a
complete calculation takes about 4 hours

Thus for normal purposes, it is necessary
to rely on the results of calculations on
the mesh with 65,536 cells. The accuracy
of these calculations generally appears to

be sufficient, and quite realistic 1lift-

drag ratios have been obtained by integra-

ting the surface pressure.

As an example of a fine mesh calcula-
tion, Figure 1 shows the result for a
partially tapered wing of aspect ratio 8
with an NACA 0012 section at 3° angle of
attack and Mach .75. The upper surface
pressure at successive span stations are
plotted above each other at equal vertic
intervals. The shock wave is clearly
exhibited, and can be seen to curve
forward near the tips. The computed 1lif
drag ratio of 17.7 includes an allowance
for a skin friction coefficient equal to
.008. The lift-drag ratio calculated on
the coarse mesh was 27.6, and on the
medium mesh 198.1. Thus the drag is clea
ly under-estimated on the coarse mesh, b
reasonably well indicated on the medium
mesh. Figure 2 shows an example for a
wing at an appreciable yaw angle and a
higher Mach number. In this case the
section was one used by R. T. Jones in
tests on a yawed wing model. To allow f
additional parasite drag the skin fricti
coefficient was taken to be .0l1. The ang
of attack is the angle in the cross-plan
normal to the leading edge. Some twist
was introduced, but not enough to equali
the load completely. The shock waves ar
still quite well captured, as can be see

With a supersonic free stream and a
large yaw angle, the flow is generally
supersonic behind the oblique shock wave
which appear on the wing surface. In the
calculations the shock waves are then
usually less well defined, being spread
over 4 or 5 mesh widths. It still appea
to be profitable, however, to obtain a
useful estimate of the lift-drag ratio.
Figure 3 shows some curves of the 1lift-
drag ratio calculated for a partially
tapered wing with Jones' section and an
aspect ratio of 11.1. The contribution
the spanwise force component has been
ignored to avoid difficulties in the
region of the tips: better values might
be obtained by integrating the momentum
and pressure over a suitable control sur
face. Also the amount of twist was not
correctly chosen to egualize the load.
Nevertheless the curves show the same
trend as the results of tests by R. T.
Jones of a yawed wing with an elliptic
plan form of aspect ratio 12.7.

The results are encouraging, and
demonstrate the feasibility of performin
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useful 3~dimensional calculations with
current computers. There remains the
potential for substantial improvement if a
second order accurate difference scheme can
be devised for the supersonic zone, obviat-
ing the need for a very fine mesh to obtain
high accuracy. A more accurate treatment
of the shock waves is also desirable, if it
can be achieved without excessive cost in
computer time. The other main line of
development is the treatment of more
complicated geometries such as wing-body
combinations. This may require the patch-
ing of different coordinate systems for
different regions.
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Fig. la. View of Wing.

NACA 0012 section AR 8.9 TWIST 0 DEG
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Fig. 1lb.
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