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I am going to tell you about some of the transonic aerofoil calculations I have been doing recently based on
the Euler equations. During the past year I have been collaborating with Wolfgang Schmidt of Dornier in an
effort to find a reasonably fast method for solving these equations for engineering applications. The calculations
I shall describe have mostly been performed on an ’O’-grid, for a non-lifting case. They use a potential flow as
a starting solution, although a direct solution starting with uniform flow is also possible.

I have actually been trying to do the Euler equations on and off for several years, but only extensively in the
last year. The history of the particular scheme I am going to tell you about began last summer with a visit to
Dornier where I spent several weeks. There was an Euler code there developed by Schmidt and Rizzi, and results
from that code were presented at the Stockholm workshop a couple of years ago (Rizzi and Viviand, 1981).
It was a finite-volume code based on a time-split version of the MacCormack scheme, so that it took separate
account of the gradients in each coordinate direction. I took that code as a starting point, and converted it to
a scheme which uses central differencing in space and a three-stage time-stepping process which is stable for
Courant numbers up to 2.0. It seemed to work quite well. Dornier have gone on to produce an engineering
version of it which handles lifting cases and incorporates boundary layers. Rizzi has now implemented the new
differencing scheme in his three-dimensional wing calculations. I have also been cooperating with Eli Turkel in
Tel Aviv, and have followed his advice on how to treat the outer boundaries.

For the past nine months I have been trying to get the scheme to work to my satisfaction. The problem
with both the earlier Rizzi-Schmidt code and the first version that I developed from it was that they converged
quite quickly down to residuals of about 10~2 and then tended to oscillate. After a very painful nine months
I seem to have made it converge right down to 10-8 in about 2000 time steps. For engineering purposes you
could probably stop after 200-300 steps but I do feel that to be really useful an Euler code should have the
ability to converge as far as possible, in fact down to the kind of residual we are accustomed to in potential
flow calculations. For example, imagine we are trying to study the behaviour of a supposedly shock-free design,
like a Korn aerofoil, around its design conditions. We want to see that shock-free solution at the design Mach
number, and when we go up or down 0.001 in Mach number we want to see if a shockwave forms, and if so how
much drag it produces. I don’t think you can resolve those questions with a code in which the far-field Mach
number wanders around between 0.74 and 0.76.

I have already said that the code I am working with uses the finite volume formulation. The other general
point I want to make is that I work with a four-equation model. That is to say, I solve the four conservation
laws for mass, momentum and energy. I could discard the energy equation and replace it by a condition of
constant enthalpy, because I know that condition must hold in the steady state, but I prefer to let the enthalpy
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vary, because I believe that I can add a useful damping term proportional to the difference between the local
value of enthalpy and its free stream value. However, I will say more about that later.

The Euler equations we want to solve are, in conservation form
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in which E= total energy, H = total enthalpy, and pressure p is given by
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We can transform these to an arbitrary set of coordinates (X,Y) for which the transformation derivatives
are contained in the matrix
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We shall identify the lines X,Y = constant with the boundaries of our finite volumes. Note that h = det(H)
is the volume in (x,y) space of a cell having unit volume in (X,Y) space. If we define the contravariant velocities
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(which are simply the velocity components normal to the cell sides) we can write
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The discretisation scheme which I have made out of this uses a finite volume form with cell-centered quantities
(Fig. 1), so that (p, u, v, E) are supposed to represent values at some central point in each cell. You calculate
a "flux velocity” across each cell face, according to

Qr = Aygur — Azpvy (9)

where k=1,2,3/4, and us, for example, is the average velocity for the two cells (¢, §) and (i + 1, ).
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Figure 1: A typical finite-volume cell

The equation which gives me, let us say, the local rate of change of x-momentum is
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where, as before, (pu) and py are the appropriate average values.

So that is how I do the flux balancing. If you follow it through you will see that it amounts to carrying out
a central differencing operation on the quantities F and G. As a digression I might say that in the fifty or so
Euler codes I have written by now a lot of alternatives have been tried, and some of them may yet be made to
work. I still haven’t found out whether it is really better to store things at the centers of cells or at the corners,
but the present scheme uses the cell centers, and in effect does central differencing on them. However, it is well
known that central differencing is unstable unless you add some dissipation terms, so what I actually solve is

g(puh) +Qw—Dw=0 (11)

where Q is my flux balancing operator (not to be confused with the @) defined in equation (9)) and D is some
dissipative operator. A point that I want to emphasize is that I have kept the time-stepping scheme quite
independent from the spatial differencing, so that my final steady state should be one in which Qw — Dw = 0.
With other differencing schemes this does not always happen; for example with a MacCormack scheme the
‘steady state’ may depend on At.

The dissipation operator which I have found to work is actually a combination of second and fourth differences.
These are done separately in the X and Y directions so we will just consider the one-dimensional case and show
how it applies to the density equation. I smooth the density according to

Dp=Dxp+ Dyp

where
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where At* is the time step which would bring about a local Courant number of unity. It varies from cell to
cell, and I have computed its average value on the interface between cells (7,7), (i +1,7). Likewise h;, 1008
an average of two cell volumes. Dimensionally, eqn (13) is a rate of change of mass (since the E are numerical
constants) which is as it should be for use in eqn (11). The factor outside the square brackets in eqn (13) is
of order (Az), and the terms inside would be respectively of order (Az), (Axz)? if €®) ) were each of order
unity. In fact I am going to make €(®) of order (Ax)?, so the whole expression will be of order (Az)*, it adds
to the spatial differencing operator Q a relative error which is merely third order. You can easily see that the
added terms are actually a mixture of second and fourth differences.

The way that these € coefficients are chosen is to adapt them to the local flow gradients. For the second-order
coefficient I take
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In eqn (15), K (?) is a constant, and I am not sure whether the normalisation factor in the denominator is
needed. However, the outcome is that € is positive, of order (Ax)?, and proportional to the second difference
of pressure. It does seem to do a nice job suppressing the oscillations around shocks.

However, what I found was that the second-order dissipation was not enough by itself; the solution would still
go down to moderately small residuals and then oscillate. The oscillations were most noticeable in the small
cells near the trailing edge, presumably because a given increment in mass looks like a big increment in density
if you have a small cell, and it was density that I was monitoring. The total excursion in density. would be
about +1% and there might be a limit cycle of around 130 time steps. It turned out that those fluctuations
could be eliminated by adding the fourth difference term, but then overshoots returned near the shockwave; the
obvious answer was to switch off that term near the shock, which was quite easy because that was where €(?)
was being turned on. In fact, I set

W, = max {0, (KW — e? )} (16)
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where K is a second constant, and that does the trick. What it comes down to is that the second difference
is usually multiplied by a factor of order (Axz)?, rising to order unity near a shock; the fourth difference is
multiplied by a factor which is usually of order unity, but which falls to zero through a shock.

Now we go on to how the time-stepping is done. I began by devising a three-step scheme which can be written
as follows. We call the complete space operator, flux balance and dissipation, P, so that

Pw=Qw — Dw (17)

and then we go from time level n to time level (n+1) by means of
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That was the scheme I used at Dornier last summer, and at the time I thought it was rather neat, although it
turned out not to be new, having been proposed by Gary in 1964. If you do the usual stability analysis you find
that it is stable for Courant numbers less than 2.0, and you get that rate of advance for the price of evaluating
the spatial operator three times. For comparison, the MacCormack scheme gives you a Courant number of 1.0
for two evaluations.

Then I realised that (18) belongs to the class of Runge-Kutta methods, and that a lot is known about the
properties of such methods, especially in the context of ordinary differential equations, such as
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The most useful concept seems to be that of the stability region. If we apply some specified algorithm to
eqn (19) it turns out that there are values of AA¢, with A in the complex plane, for which the algorithm will be
stable, and that region of the complex plane is the stability region. There is a book by Stetter (1973), in which
plots of these regions are given for a variety of schemes.

The way that we can apply this concept to partial differential equations such as
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is just to take the Fourier transform of w, say (w) and to realize that the central difference operator multiplies

(w) by a factor which is purely imaginary, but that the dissipative terms add a purely real component to that
factor.

In the plotted stability regions that I am going to show you (Fig. 2) the imaginary part is merely what we
call Courant number, and the real part is a measure of the added dissipation. You can now see that the first
order scheme is not stable anywhere on the real axis but if we add enough dissipation (for example by using
one sided differences) we can get ourselves inside the circle. In fact the second-order two-step scheme is also
unstable everywhere on the imaginary axis, but the thirdorder, three-step scheme does include a segment of the
imaginary axis. The three step scheme which I showed you just now (eqn(18)) goes up to a Courant number of
2.0, and that is more efficient than MacCormack or Lax-Wendroff, in terms of time advanced for each evaluation
of the spatial operator P. In fact we can do even better by going to the standard fourth-order scheme thus
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and this gives us a Courant number of 2\/(2) = 2.8 for four evaluations of the operator. Also I have got quite
a lot of room to add dissipative terms if I need to, near the shocks. That is shown by the shaded region to the
left of the axis.
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Figure 2: Stability regions for various Runge-Kutta time-stepping schemes: (a) standard schemes or order
1,2,3,4 (Stetter, 1973), (b) non-standard schemes of order 4,5,6 (Lawson, 1966)

A very interesting possibility is that when you add extra stages to a Runge-Kutta scheme you can do so either
with the intention of gaining more speed or of gaining more accuracy. And although the standard four-step
method is fourth-order accurate in time there is not very much point in that when you are only second-order
accurate in space. So perhaps by backing off in accuracy you could gain even more speed. Lawson (1966) has
done some work on these lines, and he has a six-stage scheme which is stable out to Courant numbers of 3.50,
with a huge amount of room in the real direction, and I think there is scope for a lot of investigation here, to
find the most efficient possibilities.

Something else that I have been thinking about a lot recently is the point I mentioned earlier about how to
make use of the fact that we expect to have constant enthalpy in the steady state. That is obvious when you
look at the equations (2) and notice that when the time derivatives vanish the fourth equation is just H times
the first equation. We can try to exploit that in two different ways. We could assert that H will always be H and
then solve the non-physical system given by the first three equations (see the chapter by Lerat, for example).
The alternative is something for which I do not yet have a real mathematical justification, but for which I can
offer analogies based on experience in potential flow calculations.

Suppose we set out to solve the potential equation by means of line relaxation. Then it turns out that the
relaxation operator effectively adds something like a (Pt term, turning the unsteady potential equation into a
kind of telegraph equation which has damped waves as its fundamental solutions. On the other hand, the true
linear wave equation

is undamped, as you can see if you multiply by ¢; and integrate
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If you integrate by parts and neglect the boundary terms, or consider an infinite domain, then
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so the quantity P, which is a kind of energy, does not decay. The equation which mimics the relaxation process
is

Ot + P + P + Pyy (26)

and then the same piece of algebra gives
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Therefore, if a is positive, the positive quantity P must decay, until we reach a steady state with ¢, = 0
everywhere. The coefficient « is actually proportional to (2/w — 1) where w is the relaxation factor, and since
we all know that you have w < 2 for stability, that makes the whole argument fairly believable.

Now I would like to get that sort of damping into the Euler equations if I possibly can, but unfortunately
I no longer have a potential. However, you may recall that the unsteady Bernoulli equation you get from the
potential equation tells you that ¢; + H = const, so maybe adding some terms proportional to (H — Hs,) will
put some damping into the Euler equations. I feel that will be the case if you do it right, but I am not yet sure
of the details. What I am sure of is that you had better be certain that H = constant really is a solution, not
merely of the differential equations, but of the difference equations you use to solve them. And that is not easy
to ensure in something like a MacCormack scheme, with mixtures of backward and forward differences. But it
is quite easy to ensure in the kind of central difference scheme I have told you about, with this proviso, that
the dissipation operator in the energy equation is applied to pH rather than to pFE.

What I tried was to add a term proportional to (H — Hs) in the continuity equation, thus
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and then I found that I needed to add corresponding terms to all other three equations, so as to retain con-
servation. In the first place I tried the extra terms out in a code which only had the second-order dissipation
and really was not converging very well and I found that the enthalpy damping would make it converge. Sub-
sequently I added the fourth-order dissipation, and then the scheme would converge whether or not I included
the enthalpy damping. The enthalpy damping does produce quicker convergence but I still have to find the best
combination, and to decide whether the extra improvement is worthwhile.



For non-lifting flow past the NACA 0012 at M = 0.08 I can get an adequate engineering solution within 600
time steps if I start by creating the aerofoil impulsively in a uniform stream, or I can bring that down to 300
if T start from the potential solution. At higher Mach numbers with a stronger shock the potential solution is
less useful. It is interesting that the method appears to give very respectable shockwaves without the need to
switch differences, or to get involved with any complicated logic depending on the signs of eigenvalues. I have
not attempted any kind of multigrid solution yet because until now the basic code was not coverging to my
satisfaction. But now it does, and so maybe this is the time to try and implement a multigrid version. What
needs to be observed, though, is that multigrid depends on having some element of smoothing, and does not fit
readily with problems where the basic mechanism is wave propagation.

The last thing I want to tell you about is boundary conditions. At the outer boundary what I do is to
calculate the characteristic variables, on the basis of a local linearisation. These turn out to be (p — ¢?p),
(p+cup), (p—cup) and v, where v is the tangential velocity component, and u is the normal velocity component
relative to the outer boundary. The first and last of these are carried along the streamline, with velocity u, and
the second and third are carried along Mach waves with velocities (u + ¢), (u - ¢). Now the theory says that
if you are at a subsonic outflow boundary, the third quantity may be imposed, but the other three have to be
determined from the interior, whereas if you are at a subsonic inflow boundary the second must be determined
from the interior, but the other three may be imposed. And basically that is what I do, but I convert all these
conditions so that they relate to the conservation variables I am actually using. Some people say that you can
get away with over-specifying the conditions at the outer boundary, simply fixing everything at its free-stream
value, but when I have tried that it has sometimes gone badly wrong. With a more dissipative difference scheme
it seems less critical what you do.

To apply a boundary condition on the body is very easy for steady flows if you look back to eqn (10). All
you have to do is to set QQx = 0 on the interface concerned, or to give it whatever value you want it to have.
And you specify a surface pressure by extrapolating from the interior according to dp/0n = pq?/ R, where n is
the surface normal, and R is the surface curvature.

Finally, T would like to show you a few of the results, beginning with the non-lifting flow past a NACA 0012
aerofoil at Mach number 0.8. The inner part of my computing mesh for this problem is shown in Fig. 3. The
development of the flow from impulsive starting conditions is shown in Fig. 4, where I have not used enthalpy
damping, and in Fig. 5 where I have. You can see that in each case the plotted pressure distributions develop
smoothly. However, if we measure the error as the r.m.s. value of Ap/At within cells, then this quantity
converges quite a lot faster using enthalpy damping. In Fig. 6 we have the corresponding information, for the
rather harder case M, = 0.85, with the enthalpy damping.
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EDITOR’S NOTE
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Figure 3: Part of the computing grid for a NACA 0012 Aerofoil. The total grid has 64 cells from front to rear
and 32 cells radially

Since Professor Jameson gave the above lecture, he has gone on to develop his scheme into a three-dimensional
method. Essentially no new mathematical problems arise. The analysis of the flux balance is done exactly
as above, with each cell receiving increments of mass, momentum and energy due to fluxes across six faces,
computed from average values of pressure, normal velocities etc., on those faces. A smoothing operation is
carried out consisting of three one-dimensional operations, each identical to that given in the lecture, and then
the solution can be advanced in time by the same four-stage Runge-Kutta scheme. The problems which do
arise are concerned with programming. Many details of the coding have been altered to remove the pressure on
storage.

Professor Jameson has very kindly made available some results which this method has produced. They relate
to the ONERA M6 wing under test conditions M, = 0.84, o = 3.06°. The computational mesh consists of 128
cells around each aerofoil section, 32 cells along each spanwise line, and 16 cells going outward from the wing.
The results of the Euler code are shown as solid lines and results from a potential method on the same grid as
dashed lines. Fig. E1 (a)-(d) shows pressure distributions along those chordwise lines which lie at 12.5, 37.5,
62.5 and 87.5 per cent of the semi-span. Fig. E2 shows the Euler results only, at 20 chordwise sections. Fig. E2
(a) shows results for the upper surface of the wing, and Fig. E2 (b) shows results for the lower surface.
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Figure 4: Solutions of the flow past NACA 0012 aerofoil section at Mo = 0.80, = 0°; (a)-(e) Show pressure
distributions after 200, 400, 600, 800 and 1000 cycles of Runge-Kutta process; (f) shows the logarithm of the
r.m.s. error. This calculation does not use enthalpy damping
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Figure 5: Solutions of the flow past NACA 0012 aerofoil section at Mo = 0.80,« = 0°; (a)-(e) Show pressure
distributions after 200, 400, 600, 800 and 1000 cycles of Runge-Kutta process; (f) shows the logarithm of the
r.m.s. error. This calculation does use enthalpy damping
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Figure 6: Solutions of the flow past NACA 0012 aerofoil section at Mo = 0.85, = 0°; (a)-(e) Show pressure
distributions after 200, 400, 600, 800 and 1000 cycles of Runge-Kutta process; (f) shows the logarithm of the
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