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ABSTRACT

This paper describes the formulation of optimization techniques based on control theory for aero-
dynamic shape design in viscous compressible flow, modelled by the Navier-Stokes equations. It
extends previous work on optimization for inviscid flow. The theory is applied to a system defined
by the partial differential equations of the flow, with the boundary shape acting as the control. The
Frechet derivative of the cost function is determined via the solution of an adjoint partial differential
equation, and the boundary shape is then modified in a direction of descent. This process is repeated
until an optimum solution is approached. Each design cycle requires the numerical solution of both
the flow and the adjoint equations, leading to a computational cost roughly equal to the cost of two
flow solutions. The cost is kept low by using multigrid techniques, in conjunction with precondi-
tioning to accelerate the convergence of the solutions. The power of the method is illustrated by
designs of wings and wing-body combinations for long range transport aircraft. Satisfactory designs
are usually obtained with 20-40 design cycles.

1 INTRODUCTION

This paper, which is dedicated to Sir James Lighthill, is focused on the problem of aerodynamic
design. Here, as in so many other branches of fluid mechanics and applied mathematics, Lighthill
has made a seminal contribution through his early demonstration of a solution of the inverse problem
for airfoil design in potential flow 1.

The evolution of computational fluid dynamics during the last three decades has made possible
the rapid evaluation of alternative designs by computational simulation, eliminating the need to
build numerous models for wind tunnel testing, which is used primarily to confirm the performance
of the final design, and to provide a complete database for the full flight envelope. The designer
still needs some guiding principle to distinguish a good design out of an infinite number of possible
variations, since it is not at all likely that a truly optimum design can be found by a trial and
error process. This motivates the use of numerical optimization procedures in conjunction with
computational flow simulations.

Early investigations into aerodynamic optimization relied on direct evaluation of the influence of
each design variable. This dependence was estimated by separately varying each design parameter
and recalculating the flow. The computational cost of this method is proportional to the number
of design variables and consequently becomes prohibitive as the number of design parameters is
increased.

An alternative approach to design relies on the fact that experienced designers generally have
an intuitive feel for the kind of pressure distribution that will provide the desired aerodynamic
performance. This motivates the introduction of inverse problems in which the shape corresponding
to a specified pressure distribution is to be determined. A complete analysis of the inverse problem
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for airfoils in two dimensional potential flow was given by Lighthill 1, who obtained a solution by
conformally mapping the profile to a unit circle. The speed over the profile is

q =
1

h
|∇φ|

where φ is the potential, which is known for the circle, while h is the modulus of the mapping
function. The surface value of h can be obtained by setting q = qd, where qd is the desired speed,
and since the mapping function is analytic, it is uniquely determined by the value of h on the
boundary. Lighthill’s analysis highlights the fact that a physically realizable shape may not exist
unless the prescribed pressure distribution satisfies certain constraints. In fact a solution exists for
a given speed q∞ at infinity only if

1

2π

∮

qddθ = q∞

where θ is the polar angle around the circle, and there are additional constraints on qd if the profile
is to be closed.

In the more general case of three-dimensional viscous compressible flow, the constraints which
must be satisfied by a realizable target pressure distribution are not known, and attempts to enforce
an unrealizable pressure distribution as a boundary condition can lead to an ill-posed problem. The
problems of optimal and inverse design can both be systematically treated within the mathematical
theory for the control of systems governed by partial differential equations 2 by regarding the design
problem as a control problem in which the control is the shape of the boundary. The inverse problem
then becomes a special case of the optimal design problem in which the shape changes are driven
by the discrepancy between the current and target pressure distributions.

The control theory approach to optimal aerodynamic design, in which shape changes are based
on gradient information obtained by solution of an adjoint problem, was first applied to transonic
flow by Jameson 3,4. He formulated the method for inviscid compressible flows with shocks governed
by both the potential equation and the Euler equations 3,5,6. With this approach, the cost of a design
cycle is independent of the number of design variables. When applied to the design of the airfoils
in compressible potential flow using conformal mapping to transform the computational domain to
a unit disk, it leads to a natural generalization of Lighthill’s method. The effects of compressibility
are represented by an additional term in the modification of the mapping function which tends to
zero as the Mach number tends to zero 3,5. More recently, the method has been employed for wing
design in the context of complex aircraft configurations 7,8, using a grid perturbation technique to
accommodate the geometry modifications.

Pironneau had earlier initiated studies of the use of control theory for optimum shape design of
systems governed by elliptic equations 9,10. Ta’asan, Kuruvila and Salas have proposed a one shot
approach in which the constraint represented by the flow equations need only be satisfied by the
final converged design solution 11. Adjoint methods have also been used by Baysal and Eleshaky 12,
by Cabuk and Modi 13,14, and by Desai and Ito 15.

The objective of the present work is the extension of adjoint methods for optimal aerodynamic
design to flows governed by the compressible Navier–Stokes equations. While inviscid formulations
have proven useful for the design of transonic wings at cruise conditions, the inclusion of boundary
layer displacement effects with viscous design provides increased realism and alleviates shocks that
would otherwise form in the viscous solution over the final inviscid design. Accurate resolution of
viscous effects such as separation and shock/boundary layer interaction is also essential for optimal
design encompassing off-design conditions and high-lift configurations.

The computational costs of viscous design are at least an order of magnitude greater than for
design using the Euler equations for several reasons. First, the number of mesh points must be
increased by a factor of two or more to resolve the boundary layer. Second, there is the additional
cost of computing the viscous terms and a turbulence model. Finally, Navier–Stokes calculations
generally converge much more slowly than Euler solutions due to discrete stiffness and directional
decoupling arising from the highly stretched boundary layer cells. The computational feasibility of
viscous design therefore hinges on the development of a rapidly convergent Navier–Stokes flow solver.
Pierce and Giles have developed a preconditioned multigrid method that dramatically improves
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convergence of viscous calculations by ensuring that all error modes inside the stretched boundary
layer cells are damped efficiently 16,17. The same acceleration techniques are applicable to the
adjoint calculation, so that the potential payoffs toward reducing the cost of the design process are
substantial.

The ultimate success of an aircraft design depends on the resolution of complex multi-disciplinary
trade-offs between factors such as aerodynamic efficiency, structural weight, stability and control,
and the volume required to contain fuel and payload. A design is finalized only after numerous
iterations, cycling between the disciplines. The development of accurate and efficient methods for
aerodynamic shape optimization represents a worthwhile intermediate step towards the eventual
goal of full multi-disciplinary optimal design.

2 GENERAL FORMULATION OF THE ADJOINT APPROACH TO OPTIMAL

DESIGN

Before embarking on a detailed derivation of the adjoint formulation for optimal design using the
Navier–Stokes equations, it is helpful to summarize the general abstract description of the adjoint
approach which has been thoroughly documented in references 3,4.

The progress of the design procedure is measured in terms of a cost function I , which could
be, for example the drag coefficient or the lift to drag ratio. For flow about an airfoil or wing, the
aerodynamic properties which define the cost function are functions of the flow-field variables (w)
and the physical location of the boundary, which may be represented by the function F , say. Then

I = I (w,F) ,

and a change in F results in a change

δI =

[

∂IT

∂w

]

I

δw +

[

∂IT

∂F

]

II

δF , (1)

in the cost function. Here, the subscripts I and II are used to distinguish the contributions due to
the variation δw in the flow solution from the change associated directly with the modification δF
in the shape. This notation is introduced to assist in grouping the numerous terms that arise during
the derivation of the full Navier–Stokes adjoint operator, so that it remains feasible to recognize the
basic structure of the approach as it is sketched in the present section.

Using control theory, the governing equations of the flow field are introduced as a constraint in
such a way that the final expression for the gradient does not require multiple flow solutions. This
corresponds to eliminating δw from (1).

Suppose that the governing equation R which expresses the dependence of w and F within the
flow-field domain D can be written as

R (w,F) = 0. (2)

Then δw is determined from the equation

δR =

[

∂R

∂w

]

I

δw +

[

∂R

∂F

]

II

δF = 0. (3)

Next, introducing a Lagrange Multiplier ψ, we have

δI =
∂IT

∂w
δw +

∂IT

∂F
δF − ψ

T
([

∂R

∂w

]

δw +
[

∂R

∂F

]

δF

)

=

{

∂IT

∂w
− ψ

T
[

∂R

∂w

]

}

I

δw +

{

∂IT

∂F
− ψ

T
[

∂R

∂F

]

}

II

δF . (4)

Choosing ψ to satisfy the adjoint equation

[

∂R

∂w

]T

ψ =
∂I

∂w
(5)
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the first term is eliminated, and we find that

δI = GδF , (6)

where

G =
∂IT

∂F
− ψT

[

∂R

∂F

]

.

The advantage is that (6) is independent of δw, with the result that the gradient of I with respect to
an arbitrary number of design variables can be determined without the need for additional flow-field
evaluations. In the case that (2) is a partial differential equation, the adjoint equation (5) is also
a partial differential equation and determination of the appropriate boundary conditions requires
careful mathematical treatment.

The computational cost of a single design cycle is roughly equivalent to the cost of two flow
solutions since the the adjoint problem has similar complexity. When the number of design variables
becomes large, the computational efficiency of the control theory approach over traditional approach,
which requires direct evaluation of the gradients by individually varying each design variable and
recomputing the flow field, becomes compelling.

Once equation (3) is established, an improvement can be made with a shape change

δF = −λG

where λ is positive, and small enough that the first variation is an accurate estimate of δI . The
variation in the cost function then becomes

δI = −λGTG < 0.

After making such a modification, the gradient can be recalculated and the process repeated to
follow a path of steepest descent until a minimum is reached. In order to avoid violating constraints,
such as a minimum acceptable wing thickness, the gradient may be projected into an allowable
subspace within which the constraints are satisfied. In this way, procedures can be devised which
must necessarily converge at least to a local minimum.

3 THE NAVIER-STOKES EQUATIONS

For the derivations that follow, it is convenient to use Cartesian coordinates (x1,x2,x3) and to adopt
the convention of indicial notation where a repeated index “i” implies summation over i = 1 to 3.
The three-dimensional Navier-Stokes equations then take the form

∂w

∂t
+
∂fi

∂xi

=
∂fvi

∂xi

in D, (7)

where the state vector w, inviscid flux vector f and viscous flux vector fv are described respectively
by

w =























ρ

ρu1

ρu2

ρu3

ρE























, (8)

fi =























ρui

ρuiu1 + pδi1
ρuiu2 + pδi2
ρuiu3 + pδi3

ρuiH























, (9)
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fvi =























0
σijδj1
σijδj2
σijδj3

ujσij + k ∂T
∂xi























. (10)

In these definitions, ρ is the density, u1, u2, u3 are the Cartesian velocity components, E is the total
energy and δij is the Kronecker delta function. The pressure is determined by the equation of state

p = (γ − 1) ρ

{

E −
1

2
(uiui)

}

,

and the stagnation enthalpy is given by

H = E +
p

ρ
,

where γ is the ratio of the specific heats. The viscous stresses may be written as

σij = µ

(

∂ui

∂xj

+
∂uj

∂xi

)

+ λδij
∂uk

∂xk

, (11)

where µ and λ are the first and second coefficients of viscosity. The coefficient of thermal conductivity
and the temperature are computed as

k =
cpµ

Pr
, T =

p

Rρ
, (12)

where Pr is the Prandtl number, cp is the specific heat at constant pressure, and R is the gas
constant.

For discussion of real applications using a discretization on a body conforming structured mesh,
it is also useful to consider a transformation to the computational coordinates (ξ1,ξ2,ξ3) defined by
the metrics

Kij =

[

∂xi

∂ξj

]

, J = det (K) , K−1
ij =

[

∂ξi

∂xj

]

.

The Navier-Stokes equations can then be written in computational space as

∂ (Jw)

∂t
+
∂ (Fi − Fvi)

∂ξi
= 0 in D, (13)

where the inviscid and viscous flux contributions are now defined with respect to the computational
cell faces by Fi = Sijfj and Fvi = Sijfvj , and the quantity Sij = JK−1

ij is used to represent the
projection of the ξi cell face along the xj axis. In obtaining equation (13) we have made use of the
property that

∂Sij

∂ξi
= 0 (14)

which represents the fact that the sum of the face areas over a closed volume is zero, as can be
readily verified by a direct examination of the metric terms.

4 GENERAL FORMULATION OF THE OPTIMAL DESIGN PROBLEM FOR THE

NAVIER-STOKES EQUATIONS

Aerodynamic optimization is based on the determination of the effect of shape modifications on some
performance measure which depends on the flow. For convenience, the coordinates ξi describing the
fixed computational domain are chosen so that each boundary conforms to a constant value of one
of these coordinates. Variations in the shape then result in corresponding variations in the mapping
derivatives defined by Kij .
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Suppose that the performance is measured by a cost function

I =

∫

B

M (w, S) dBξ +

∫

D

P (w, S) dDξ ,

containing both boundary and field contributions where dBξ and dDξ are the surface and volume
elements in the computational domain. In general, M and P will depend on both the flow variables
w and the metrics S defining the computational space.

The design problem is now treated as a control problem where the boundary shape represents
the control function, which is chosen to minimize I subject to the constraints defined by the flow
equations (13). A shape change produces a variation in the flow solution δw and the metrics δS
which in turn produce a variation in the cost function

δI =

∫

B

δM(w, S) dBξ +

∫

D

δP(w, S) dDξ, (15)

with

δM = [Mw]I δw + δMII ,

δP = [Pw]I δw + δPII , (16)

where we continue to use the subscripts I and II to distinguish between the contributions associated
with the variation of the flow solution δw and those associated with the metric variations δS. Thus
[Mw]I and [Pw]I represent ∂M

∂w
and ∂P

∂w
with the metrics fixed, while δMII and δPII represent the

contribution of the metric variations δS to δM and δP .
In the steady state, the constraint equation (13) specifies the variation of the state vector δw by

∂

∂ξi
δ (Fi − Fvi) = 0. (17)

Here δFi and δFvi can also be split into contributions associated with δw and δS using the notation

δFi = [Fiw]I δw + δFiII

δFvi = [Fviw]I δw + δFviII . (18)

The inviscid contributions are easily evaluated as

[Fiw]I = Sij

∂fj

∂w
, δFviII = δSijfj .

The details of the viscous contributions are complicated by the additional level of derivatives in the
stress and heat flux terms and will be derived in Section 6. Multiplying by a co-state vector ψ, which
will play an analogous role to the Lagrange multiplier introduced in equation (4), and integrating
over the domain produces

∫

D

ψT ∂

∂ξi
δ (Fi − Fvi) = 0. (19)

If ψ is differentiable this may be integrated by parts to give

∫

B

niψ
T δ (Fi − Fvi) dBξ −

∫

D

∂ψT

∂ξi
δ (Fi − Fvi) dDξ = 0. (20)

Since the left hand expression equals zero, it may be subtracted from the variation in the cost
function (15) to give

δI =

∫

B

[

δM− niψ
T δ (Fi − Fvi)

]

dBξ

+

∫

D

[

δP +
∂ψT

∂ξi
δ (Fi − Fvi)

]

dDξ. (21)
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Now, since ψ is an arbitrary differentiable function, it may be chosen in such a way that δI no longer
depends explicitly on the variation of the state vector δw. The gradient of the cost function can
then be evaluated directly from the metric variations without having to recompute the variation δw
resulting from the perturbation of each design variable.

Comparing equations (16) and (18), the variation δw may be eliminated from (21) by equating
all field terms with subscript “I” to produce a differential adjoint system governing ψ

∂ψT

∂ξi
[Fiw − Fviw]I + Pw = 0 in D. (22)

The corresponding adjoint boundary condition is produced by equating the subscript “I” boundary
terms in equation (21) to produce

niψ
T [Fiw − Fviw]I = Mw on B. (23)

The remaining terms from equation (21) then yield a simplified expression for the variation of the
cost function which defines the gradient

δI =

∫

B

{

δMII − niψ
T [δFi − δFvi] II

}

dBξ

+

∫

D

{

δPII +
∂ψT

∂ξi
[δFi − δFvi] II

}

dDξ . (24)

The details of the formula for the gradient depend on the way in which the boundary shape is
parameterized as a function of the design variables, and the way in which the mesh is deformed as
the boundary is modified. Using the relationship between the mesh deformation and the surface
modification, the field integral is reduced to a surface integral by integrating along the coordinate
lines emanating from the surface. Thus the expression for δI is finally reduced to the form of
equation (6)

δI =

∫

B

GδF dBξ

where F represents the design variables, and G is the gradient, which is a function defined over the
boundary surface.

The boundary conditions satisfied by the flow equations restrict the form of the left hand side of
the adjoint boundary condition (23). Consequently, the boundary contribution to the cost function
M cannot be specified arbitrarily. Instead, it must be chosen from the class of functions which allow
cancellation of all terms containing δw in the boundary integral of equation (21). On the other
hand, there is no such restriction on the specification of the field contribution to the cost function
P , since these terms may always be absorbed into the adjoint field equation (22) as source terms.

It is convenient to develop the inviscid and viscous contributions to the adjoint equations sep-
arately. Also, for simplicity, it will be assumed that the portion of the boundary that undergoes
shape modifications is restricted to the coordinate surface ξ2 = 0. Then equations (21) and (23)
may be simplified by incorporating the conditions

n1 = n3 = 0, n2 = 1, dBξ = dξ1dξ3,

so that only the variations δF2 and δFv2 need to be considered at the wall boundary.

5 DERIVATION OF THE INVISCID ADJOINT TERMS

The inviscid contributions have been previously derived in5,18 but are included here for completeness.
Taking the transpose of equation (22), the inviscid adjoint equation may be written as

CT
i

∂ψ

∂ξi
= 0 in D, (25)
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where the inviscid Jacobian matrices in the transformed space are given by

Ci = Sij

∂fj

∂w
.

The transformed velocity components have the form

Ui = Sijuj ,

and the condition that there is no flow through the wall boundary at ξ2 = 0 is equivalent to

U2 = 0,

so that
δU2 = 0

when the boundary shape is modified. Consequently the variation of the inviscid flux at the boundary
reduces to

δF2 = δp











































0

S21

S22

S23

0











































+ p











































0

δS21

δS22

δS23

0











































. (26)

Since δF2 depends only on the pressure, it is now clear that the performance measure on the
boundary M(w, S) may only be a function of the pressure and metric terms. Otherwise, complete
cancellation of the terms containing δw in the boundary integral would be impossible. One may, for
example, include arbitrary measures of the forces and moments in the cost function, since these are
functions of the surface pressure.

In order to design a shape which will lead to a desired pressure distribution, a natural choice is
to set

I =
1

2

∫

B

(p− pd)
2
dS

where pd is the desired surface pressure, and the integral is evaluated over the actual surface area.
In the computational domain this is transformed to

I =
1

2

∫ ∫

Bw

(p− pd)
2 |S2| dξ1dξ3,

where the quantity
|S2| =

√

S2jS2j

denotes the face area corresponding to a unit element of face area in the computational domain.
Now, to cancel the dependence of the boundary integral on δp, the adjoint boundary condition
reduces to

ψjnj = p− pd (27)

where nj are the components of the surface normal

nj =
S2j

|S2|
.

This amounts to a transpiration boundary condition on the co-state variables corresponding to the
momentum components. Note that it imposes no restriction on the tangential component of ψ at
the boundary.

In the presence of shock waves, neither p nor pd are necessarily continuous at the surface. The
boundary condition is then in conflict with the assumption that ψ is differentiable. This difficulty
can be circumvented by the use of a smoothed boundary condition 18.
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6 DERIVATION OF THE VISCOUS ADJOINT TERMS

In computational coordinates, the viscous terms in the Navier–Stokes equations have the form

∂Fvi

∂ξi
=

∂

∂ξi

(

Sijfvj

)

.

Computing the variation δw resulting from a shape modification of the boundary, introducing a
co-state vector ψ and integrating by parts following the steps outlined by equations (17) to (20)
produces

∫

B

ψT
(

δS2jfvj + S2jδfvj

)

dBξ

−

∫

D

∂ψT

∂ξi

(

δSijfvj + Sijδfvj

)

dDξ,

where the shape modification is restricted to the coordinate surface ξ2 = 0 so that n1 = n3 = 0, and
n2 = 1. Furthermore, it is assumed that the boundary contributions at the far field may either be
neglected or else eliminated by a proper choice of boundary conditions as previously shown for the
inviscid case 5,18.

The viscous terms will be derived under the assumption that the viscosity and heat conduction
coefficients µ and k are essentially independent of the flow, and that their variations may be ne-
glected. In the case of turbulent flow, if the flow variations are found to result in significant changes
in the turbulent viscosity, it may eventually be necessary to include its variation in the calculations.

Transformation to Primitive Variables

The derivation of the viscous adjoint terms is simplified by transforming to the primitive variables

w̃T = (ρ, u1, u2, u3, p)
T ,

because the viscous stresses depend on the velocity derivatives ∂ui

∂xj
, while the heat flux can be

expressed as

κ
∂

∂xi

(

p

ρ

)

.

where κ = k
R

= γµ
Pr(γ−1) . The relationship between the conservative and primitive variations is

defined by the expressions
δw = Mδw̃, δw̃ = M−1δw

which make use of the transformation matrices M = ∂w
∂w̃

and M−1 = ∂w̃
∂w

. These matrices are
provided in transposed form for future convenience

MT =













1 u1 u2 u3
uiui

2
0 ρ 0 0 ρu1

0 0 ρ 0 ρu2

0 0 0 ρ ρu3

0 0 0 0 1
γ−1













M−1T
=















1 −u1

ρ
−u2

ρ
−u3

ρ

(γ−1)uiui

2

0 1
ρ

0 0 −(γ − 1)u1

0 0 1
ρ

0 −(γ − 1)u2

0 0 0 1
ρ

−(γ − 1)u3

0 0 0 0 γ − 1















.

The conservative and primitive adjoint operators L and L̃ corresponding to the variations δw and
δw̃ are then related by

∫

D

δwTLψ dDξ =

∫

D

δw̃T L̃ψ dDξ ,
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with
L̃ = MTL,

so that after determining the primitive adjoint operator by direct evaluation of the viscous portion

of (22), the conservative operator may be obtained by the transformation L = M−1T
L̃. Since

the continuity equation contains no viscous terms, it makes no contribution to the viscous adjoint
system. Therefore, the derivation proceeds by first examining the adjoint operators arising from the
momentum equations.

Contributions from the Momentum Equations

In order to make use of the summation convention, it is convenient to set ψj+1 = φj for j = 1, 2, 3.
Then the contribution from the momentum equations is

∫

B

φk (δS2jσkj + S2jδσkj) dBξ

−

∫

D

∂φk

∂ξi
(δSijσkj + Sijδσkj) dDξ. (28)

The velocity derivatives in the viscous stresses can be expressed as

∂ui

∂xj

=
∂ui

∂ξl

∂ξl

∂xj

=
Slj

J

∂ui

∂ξl

with corresponding variations

δ
∂ui

∂xj

=

[

Slj

J

]

I

∂

∂ξl
δui +

[

∂ui

∂ξl

]

II

δ

(

Slj

J

)

.

The variations in the stresses are then

δσkj =
{

µ
[

Slj

J
∂

∂ξl
δuk + Slk

J
∂

∂ξl
δuj

]

+ λ
[

δjk
Slm

J
∂

∂ξl
δum

]}

I

+
{

µ
[

δ
(

Slj

J

)

∂uk

∂ξl
+ δ

(

Slk

J

) ∂uj

∂ξl

]

+ λ
[

δjkδ
(

Slm

J

)

∂um

∂ξl

]}

II
.

As before, only those terms with subscript I , which contain variations of the flow variables, need
be considered further in deriving the adjoint operator. The field contributions that contain δui in
equation (28) appear as

−

∫

D

∂φk

∂ξi
Sij

{

µ

(

Slj

J

∂

∂ξl
δuk +

Slk

J

∂

∂ξl
δuj

)

+λδjk

Slm

J

∂

∂ξl
δum

}

dDξ .

This may be integrated by parts to yield

∫

D

δuk

∂

∂ξl

(

SljSij

µ

J

∂φk

∂ξi

)

dDξ

+

∫

D

δuj

∂

∂ξl

(

SlkSij

µ

J

∂φk

∂ξi

)

dDξ

+

∫

D

δum

∂

∂ξl

(

SlmSij

λδjk

J

∂φk

∂ξi

)

dDξ,
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where the boundary integral has been eliminated by noting that δui = 0 on the solid boundary. By
exchanging indices, the field integrals may be combined to produce

∫

D

δuk

∂

∂ξl
Slj

{

µ

(

Sij

J

∂φk

∂ξi
+
Sik

J

∂φj

∂ξi

)

+ λδjk

Sim

J

∂φm

∂ξi

}

dDξ ,

which is further simplified by transforming the inner derivatives back to Cartesian coordinates
∫

D

δuk

∂

∂ξl
Slj

{

µ

(

∂φk

∂xj

+
∂φj

∂xk

)

+ λδjk

∂φm

∂xm

}

dDξ . (29)

The boundary contributions that contain δui in equation (28) may be simplified using the fact
that

∂

∂ξl
δui = 0 if l = 1, 3

on the boundary B so that they become
∫

B

φkS2j

{

µ

(

S2j

J

∂

∂ξ2
δuk +

S2k

J

∂

∂ξ2
δuj

)

+ λδjk

S2m

J

∂

∂ξ2
δum

}

dSx. (30)

Together, (29) and (30) comprise the field and boundary contributions of the momentum equations
to the viscous adjoint operator in primitive variables.

Contributions from the Energy Equation

In order to derive the contribution of the energy equation to the viscous adjoint terms it is convenient
to set

ψ5 = θ, Qj = uiσij + κ
∂

∂xj

(

p

ρ

)

,

where the temperature has been written in terms of pressure and density using (12). The contribution
from the energy equation can then be written as

∫

B

θ (δS2jQj + S2jδQj) dBξ

−

∫

D

∂θ

∂ξi
(δSijQj + SijδQj) dDξ . (31)

The field contributions that contain δui,δp, and δρ in equation (31) appear as

−

∫

D

∂θ

∂ξi
SijδQjdDξ =

−

∫

D

∂θ

∂ξi
Sij

{

δukσkj + ukδσkj

+κ
Slj

J

∂

∂ξl

(

δp

ρ
−
p

ρ

δρ

ρ

)}

dDξ. (32)

The term involving δσkj may be integrated by parts to produce

∫

D

δuk

∂

∂ξl
Slj

{

µ

(

uk

∂θ

∂xj

+ uj

∂θ

∂xk

)

+λδjkum

∂θ

∂xm

}

dDξ , (33)
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where the conditions ui = δui = 0 are used to eliminate the boundary integral on B. Notice that
the other term in (32) that involves δuk need not be integrated by parts and is merely carried on as

−

∫

D

δukσkjSij

∂θ

∂ξi
dDξ (34)

The terms in expression (32) that involve δp and δρ may also be integrated by parts to produce
both a field and a boundary integral. The field integral becomes

∫

D

(

δp

ρ
−
p

ρ

δρ

ρ

)

∂

∂ξl

(

SljSij

κ

J

∂θ

∂ξi

)

dDξ

which may be simplified by transforming the inner derivative to Cartesian coordinates

∫

D

(

δp

ρ
−
p

ρ

δρ

ρ

)

∂

∂ξl

(

Sljκ
∂θ

∂xj

)

dDξ . (35)

The boundary integral becomes

∫

B

κ

(

δp

ρ
−
p

ρ

δρ

ρ

)

S2jSij

J

∂θ

∂ξi
dBξ. (36)

This can be simplified by transforming the inner derivative to Cartesian coordinates

∫

B

κ

(

δp

ρ
−
p

ρ

δρ

ρ

)

S2j

J

∂θ

∂xj

dBξ, (37)

and identifying the normal derivative at the wall

∂

∂n
= S2j

∂

∂xj

, (38)

and the variation in temperature

δT =
1

R

(

δp

ρ
−
p

ρ

δρ

ρ

)

,

to produce the boundary contribution
∫

B

kδT
∂θ

∂n
dBξ. (39)

This term vanishes if T is constant on the wall but persists if the wall is adiabatic.
There is also a boundary contribution left over from the first integration by parts (31) which

has the form
∫

B

θδ (S2jQj) dBξ, (40)

where

Qj = k
∂T

∂xj

,

since ui = 0. Notice that for future convenience in discussing the adjoint boundary conditions
resulting from the energy equation, both the δw and δS terms corresponding to subscript classes I
and II are considered simultaneously. If the wall is adiabatic

∂T

∂n
= 0,

so that using (38),
δ (S2jQj) = 0,

and both the δw and δS boundary contributions vanish.

12



On the other hand, if T is constant ∂T
∂ξl

= 0 for l = 1, 3, so that

Qj = k
∂T

∂xj

= k

(

Slj

J

∂T

∂ξl

)

= k

(

S2j

J

∂T

∂ξ2

)

.

Thus, the boundary integral (40) becomes

∫

B

kθ

{

S2j
2

J

∂

∂ξ2
δT + δ

(

S2j
2

J

)

∂T

∂ξ2

}

dBξ . (41)

Therefore, for constant T , the first term corresponding to variations in the flow field contributes
to the adjoint boundary operator and the second set of terms corresponding to metric variations
contribute to the cost function gradient.

All together, the contributions from the energy equation to the viscous adjoint operator are
the three field terms (33), (34) and (35), and either of two boundary contributions ( 39) or ( 41),
depending on whether the wall is adiabatic or has constant temperature.

7 THE VISCOUS ADJOINT FIELD OPERATOR

Collecting together the contributions from the momentum and energy equations, the viscous adjoint
operator in primitive variables can be expressed as

(L̃ψ)1 = −
p

ρ2

∂

∂ξl

(

Sljκ
∂θ

∂xj

)

(L̃ψ)i+1 =
∂

∂ξl

{

Slj

[

µ

(

∂φi

∂xj

+
∂φj

∂xi

)

+ λδij
∂φk

∂xk

]}

i = 1, 2, 3

+
∂

∂ξl

{

Slj

[

µ

(

ui

∂θ

∂xj

+ uj

∂θ

∂xi

)

+ λδijuk

∂θ

∂xk

]}

− σijSlj

∂θ

∂ξl

(L̃ψ)5 = ρ
∂

∂ξl

(

Sljκ
∂θ

∂xj

)

.

The conservative viscous adjoint operator may now be obtained by the transformation

L = M−1T
L̃.

8 VISCOUS ADJOINT BOUNDARY CONDITIONS

It was recognized in Section 4 that the boundary conditions satisfied by the flow equations restrict
the form of the performance measure that may be chosen for the cost function. There must be
a direct correspondence between the flow variables for which variations appear in the variation of
the cost function, and those variables for which variations appear in the boundary terms arising
during the derivation of the adjoint field equations. Otherwise it would be impossible to eliminate
the dependence of δI on δw through proper specification of the adjoint boundary condition. As
in the derivation of the field equations, it proves convenient to consider the contributions from the
momentum equations and the energy equation separately.

Boundary Conditions Arising from the Momentum Equations

The boundary term that arises from the momentum equations including both the δw and δS com-
ponents (28) takes the form

∫

B

φkδ (S2jσkj) dBξ .
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Replacing the metric term with the corresponding local face area S2 and unit normal nj defined by

|S2| =
√

S2jS2j , nj =
S2j

|S2|

then leads to
∫

B

φkδ (|S2|njσkj) dBξ.

Defining the components of the surface stress as

τk = njσkj

and the physical surface element
dS = |S2| dBξ,

the integral may then be split into two components

∫

B

φkτk |δS2| dBξ +

∫

B

φk |S2| δτkdS, (42)

where only the second term contains variations in the flow variables and must consequently cancel
the δw terms arising in the cost function. The first term will appear in the expression for the
gradient.

A general expression for the cost function that allows cancellation with terms containing δτk

has the form

I =

∫

B

N (τ)dS, (43)

corresponding to a variation

δI =

∫

B

∂N

∂τk
δτkdS,

for which cancellation is achieved by the adjoint boundary condition

φk =
∂N

∂τk
.

Natural choices for N arise from force optimization and as measures of the deviation of the surface
stresses from desired target values.

For viscous force optimization, the cost function should measure friction drag. The friction force
in the xi direction is

CDfi =

∫

B

σijdSj =

∫

B

S2jσijdBξ

so that the force in a direction with cosines ni has the form

Cnf =

∫

B

niS2jσijdBξ.

Expressed in terms of the surface stress τi, this corresponds to

Cnf =

∫

B

niτidS,

so that basing the cost function (43) on this quantity gives

N = niτi.

Cancellation with the flow variation terms in equation (42) therefore mandates the adjoint boundary
condition

φk = nk.
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Note that this choice of boundary condition also eliminates the first term in equation (42) so that
it need not be included in the gradient calculation.

In the inverse design case, where the cost function is intended to measure the deviation of the
surface stresses from some desired target values, a suitable definition is

N (τ) =
1

2
alk (τl − τdl) (τk − τdk) ,

where τd is the desired surface stress, including the contribution of the pressure, and the coefficients
alk define a weighting matrix. For cancellation

φkδτk = alk (τl − τdl) δτk.

This is satisfied by the boundary condition

φk = alk (τl − τdl) . (44)

Assuming arbitrary variations in δτk, this condition is also necessary.
In order to control the surface pressure and normal stress one can measure the difference

nj {σkj + δkj (p− pd)} ,

where pd is the desired pressure. The normal component is then

τn = nknjσkj + p− pd,

so that the measure becomes

N (τ) =
1

2
τ2
n

=
1

2
nlnmnknj {σlm + δlm (p− pd)}

· {σkj + δkj (p− pd)} .

This corresponds to setting
alk = nlnk

in equation (44). Defining the viscous normal stress as

τvn = nknjσkj ,

the measure can be expanded as

N (τ) =
1

2
nlnmnknjσlmσkj +

1

2
(nknjσkj + nlnmσlm) (p− pd) +

1

2
(p− pd)

2

=
1

2
τ2
vn + τvn (p− pd) +

1

2
(p− pd)

2
.

For cancellation of the boundary terms

φk (njδσkj + nkδp) =
{

nlnmσlm + n2
l (p− pd)

}

nk (njδσkj + nkδp)

leading to the boundary condition

φk = nk (τvn + p− pd) .

In the case of high Reynolds number, this is well approximated by the equations

φk = nk (p− pd) , (45)

which should be compared with the single scalar equation derived for the inviscid boundary condition
(27). In the case of an inviscid flow, choosing

N (τ) =
1

2
(p− pd)

2

requires
φknkδp = (p− pd)n

2
kδp = (p− pd) δp

which is satisfied by equation (45), but which represents an overspecification of the boundary con-
dition since only the single condition (27) need be specified to ensure cancellation.
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Boundary Conditions Arising from the Energy Equation

The form of the boundary terms arising from the energy equation depends on the choice of temper-
ature boundary condition at the wall. For the adiabatic case, the boundary contribution is (39)

∫

B

kδT
∂θ

∂n
dBξ,

while for the constant temperature case the boundary term is (41). One possibility is to introduce a
contribution into the cost function which is dependent T or ∂T

∂n
so that the appropriate cancellation

would occur. Since there is little physical intuition to guide the choice of such a cost function for
aerodynamic design, a more natural solution is to set

θ = 0

in the constant temperature case or
∂θ

∂n
= 0

in the adiabatic case. Note that in the constant temperature case, this choice of θ on the boundary
would also eliminate the boundary metric variation terms in (40).

9 IMPLEMENTATION OF NAVIER-STOKES DESIGN

The design procedures can be summarized as follows:

1. Solve the flow equations for ρ, u1, u2,u3, p.

2. Smooth the cost function, if necessary.

3. Solve the adjoint equations for ψ subject to appropriate boundary conditions.

4. Evaluate G .

5. Project G into an allowable subspace that satisfies any geometric constraints.

6. Update the shape based on the direction of steepest descent.

7. Return to 1.

Practical implementation of the viscous design method relies heavily upon fast and accurate solvers
for both the state (w) and co-state (ψ) systems. This work employs a well-validated Navier–Stokes
solver developed by two of the authors 19.

Discretization

Both the flow and the adjoint equations are discretized using a semi-discrete cell-centered finite
volume scheme. The convective fluxes across cell interfaces are represented by simple arithmetic
averages of the fluxes computed using values from the cells on either side of the face, augmented by
artificial diffusive terms to prevent numerical oscillations in the vicinity of shock waves. Continuing
to use the summation convention for repeated indices, the numerical convective flux across the
interface between cells A and B in a three dimensional mesh has the form

hAB =
1

2
SABj

(

fAj
+ fBj

)

− dAB ,

where SABj
is the component of the face area in the jth Cartesian coordinate direction,

(

fAj

)

and
(

fBj

)

denote the flux fj as defined by equation (12) and dAB is the diffusive term. Variations of the
computer program provide options for alternate constructions of the diffusive flux.

16



The simplest option implements the Jameson-Schmidt-Turkel scheme 20,21, using scalar diffusive
terms of the form

dAB = ε(2)∆w − ε(4)
(

∆w+ − 2∆w + ∆w−
)

,

where

∆w = wB − wA

and ∆w+ and ∆w− are the same differences across the adjacent cell interfaces behind cell A and
beyond cell B in the AB direction. By making the coefficient ε(2) depend on a switch proportional
to the undivided second difference of a flow quantity such as the pressure or entropy, the diffusive
flux becomes a third order quantity, proportional to the cube of the mesh width in regions where
the solution is smooth. Oscillations are suppressed near a shock wave because ε(2) becomes of order
unity, while ε(4) is reduced to zero by the same switch. For a scalar conservation law, it is shown
in reference 21 that ε(2) and ε(4) can be constructed to make the scheme satisfy the local extremum
diminishing (LED) principle that local maxima cannot increase while local minima cannot decrease.

The second option applies the same construction to local characteristic variables. There are
derived from the eigenvectors of the Jacobian matrix AAB which exactly satisfies the relation

AAB (wB − wA) = SABj

(

fBj
− fAj

)

.

This corresponds to the definition of Roe 22. The resulting scheme is LED in the characteristic
variables. The third option implements the H-CUSP scheme proposed by Jameson23 which combines
differences fB − fA and wB − wA in a manner such that stationary shock waves can be captured
with a single interior point in the discrete solution. This scheme minimizes the numerical diffusion
as the velocity approaches zero in the boundary layer, and has therefore been preferred for viscous
calculations in this work.

Similar artificial diffusive terms are introduced in the discretization of the adjoint equation, but
with the opposite sign because the wave directions are reversed in the adjoint equation. Satisfactory
results have been obtained using scalar diffusion in the adjoint equation while characteristic or
H-CUSP constructions are used in the flow solution.

i jσ

dual cell

Figure 1: Cell-centered scheme. σij evaluated at vertices of the primary mesh

The discretization of the viscous terms of the Navier Stokes equations requires the evaluation

of the velocity derivatives
∂ui

∂xj

in order to calculate the viscous stress tensor σij defined in equation

(11). These are most conveniently evaluated at the cell vertices of the primary mesh by introducing a
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dual mesh which connects the cell centers of the primary mesh, as depicted in Figure (1). According
to the Gauss formula for a control volume V with boundary S

∫

V

∂vi

∂xj

dv =

∫

S

uinjdS

where nj is the outward normal. Applied to the dual cells this yields the estimate

∂vi

∂xj

=
1

vol

∑

faces

ūinjS

where S is the area of a face, and ūi is an estimate of the average of ui over that face. In order to
determine the viscous flux balance of each primary cell, the viscous flux across each of its faces is
then calculated from the average of the viscous stress tensor at the four vertices connected by that
face. This leads to a compact scheme with a stencil connecting each cell to its 26 nearest neighbors.

The semi-discrete schemes for both the flow and the adjoint equations are both advanced to
steady state by a multi-stage time stepping scheme. This is a generalized Runge-Kutta scheme in
which the convective and diffusive terms are treated differently to enlarge the stability region 21,24.
Convergence to a steady state is accelerated by residual averaging and a multi-grid procedure 25.
Convergence is further accelerated by the use of locally varying time steps (which may be regarded
as a scalar preconditioner) or the matrix preconditioner method developed by Pierce and Giles 16,17.

Optimization

For inverse design the lift is fixed by the target pressure. In drag minimization it is also appropriate
to fix the lift coefficient, because the induced drag is a major fraction of the total drag, and this
could be reduced simply by reducing the lift. Therefore the angle of attack is adjusted during the
flow solution to force a specified lift coefficient to be attained.

The search procedure used in this work is a simple descent method in which small steps are
taken in the negative gradient direction. Let F represent the design variable, and G the gradient.
Then the iteration

δF = −λG

can be regarded as simulating the time dependent process

dF

dt
= −G

where λ is the time step ∆t. Let A be the Hessian matrix with element

Aij =
∂Gi

∂Fj

=
∂2I

∂Fi∂Fj

.

Suppose that a locally minimum value of the cost function I∗ = I(F∗) is attained when F = F∗.
Then the gradient G∗ = G(F∗) must be zero, while the Hessian matrix A∗ = A(F∗) must be positive
definite. Since G∗ is zero, the cost function can be expanded as a Taylor series in the neighborhood
of F∗ with the form

I(F) = I∗ +
1

2
(F −F∗)A (F −F∗) + . . .

Correspondingly,

G(F) = A (F −F∗) + . . .

As F approaches F∗, the leading terms become dominant. Then, setting F̂ = (F −F∗), the search
process approximates

dF̂

dt
= −A∗F̂ .
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Also, since A∗ is positive definite it can be expanded as

A∗ = RMRT ,

where M is a diagonal matrix containing the eigenvalues of A∗, and

RRT = RTR = I.

Setting
v = RT F̂ ,

the search process can be represented as

dv

dt
= −Mv.

The stability region for the simple forward Euler stepping scheme is a unit circle centered at −1 on
the negative real axis. Thus for stability we must choose

µmax∆t = µmaxλ < 2,

while the asymptotic decay rate, given by the smallest eigenvalue, is proportional to

e−µmint.

In order to improve the rate of convergence, one can set

δF = −λPG,

where P is a preconditioner for the search. An ideal choice is P = A∗−1, so that the corresponding
time dependent process reduces to

dF̂

dt
= −F̂ ,

for which all the eigenvalues are equal to unity, and F̂ is reduced to zero in one time step by the
choice ∆t = 1. Quasi-Newton methods estimate A∗ from the change in the gradient during the
search process. This requires accurate estimates of the gradient at each time step. In order to
obtain these, both the flow solution and the adjoint equation must be fully converged. Most quasi-
Newton methods also require a line search in each search direction, for which the flow equations
and cost function must be accurately evaluated several times. They have proven quite robust for
aerodynamic optimization 7.

An alternative approach which has also proved successful in our previous work 18, and is used
here, is to smooth the gradient and to replace G by its smoothed value Ḡ in the descent process.
This both acts as a preconditioner, and ensures that each new shape in the optimization sequence
remains smooth. To apply smoothing in the ξ1 direction, for example, the smoothed gradient Ḡ ma
be calculated from a discrete approximation to

Ḡ −
∂

∂ξ1
ε
∂

∂ξ1
Ḡ = G

where ε is the smoothing parameter. If one sets δF = −λḠ, then, assuming the modification is
applied on the surface ξ2 = constant, the first order change in the cost function is

δI = −

∫ ∫

GδF dξ1dξ3

= −λ

∫ ∫
(

Ḡ −
∂

∂ξ1
ε
∂Ḡ

∂ξ1

)

Ḡ dξ1dξ3

= −λ

∫ ∫

(

Ḡ2 + ε

(

∂Ḡ

∂ξ1

)2
)

dξ1dξ3

< 0,
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assuring an improvement if λ is sufficiently small and positive, unless the process has already reached
a stationary point at which G = 0.

It turns out that this approach is tolerant to the use of approximate values of the gradient, so
that neither the flow solution nor the adjoint solution need be fully converged before making a shape
change. This results in very large savings in the computational cost. For inviscid optimization it is
necessary to use only 15 multigrid cycles for the flow solution and the adjoint solution in each design
iteration. For viscous optimization, about 100 multigrid cycles are needed. This is partly because
convergence of the lift coefficient is much slower, so about 20 iterations must be made before each
adjustment of the angle of attack to force the target lift coefficient. The new preconditioner for the
flow and adjoint calculations allows the number of iterations to be substantially reduced in both the
flow and the adjoint simulation.

The numerical tests so far have focused on the viscous design of wings for optimum cruise, for
which the flow remains attached, and the main viscous effect is due to the displacement thickness
of the boundary layer. While some tests have been made with the viscous adjoint terms included,
it has been found that the optimization process converges when the viscous terms are omitted from
the adjoint system. This may reflect the tolerance of the search process to inexact gradients.

10 RESULTS

Preconditioned Inverse Design

The first demonstration is an application of the preconditioning technique for inverse design with
the Euler equations. The ONERA M6 (Figure 2b) wing is recovered for a lifting case starting from
a wing with a NACA0012 section (Figure 2a) and using the ONERA M6 pressure distributions
computed at α = 3.0 and M = 0.84 as the target (Fig. 3). Thus, a symmetric wing section is
to be recovered from an asymmetric pressure distribution. The calculations were performed on a
192×32×48 mesh with 294,912 cells. The mesh had a C-H topology with the C-lines wrapping
around the wing leading edge. Each design cycle required 3 multigrid cycles for the flow solver
using characteristic-based matrix dissipation with a matrix preconditioner and 12 multigrid cycles
for the adjoint solver using scalar dissipation and a variable local time step (scalar preconditioner).
Compared to a test in which the 3 multigrid cycles using the matrix preconditioner were replaced
by 15 multigrid cycles using a standard scalar preconditioner, and 15 cycles were used in the adjoint
solution, each design cycle required about 3/8 as much computer time, while the number of design
cycles required to reach the same level of error also fell from 100 to about 50. Use of the matrix
preconditioner therefore reduced the total CPU time on an IBM 590 workstation from 97,683 sec
(∼27 hours) to 18,222 sec (∼5 hours) for roughly equivalent accuracy.

Viscous Design

Due to the high computational cost of viscous design, a two-stage design strategy is adopted. In
the first stage, a design calculation is performed with the Euler equations to minimize the drag at
a given lift coefficient by modifying the wing sections with a fixed planform. In the second stage,
the pressure distribution of the Euler solution is used as the target pressure distribution for inverse
design with the Navier-Stokes equations. Comparatively small modifications are required in the
second stage, so that it can be accomplished with a small number of design cycles.

In order to test this strategy it was used for the re-design of a wing representative of wide-body
transport aircraft. The results are shown in Figures 4 and 5. The design point was taken as a
lift coefficient of .55 at a Mach number of .83. Figure 4 illustrates the Euler re-design, which was
performed on a mesh with 192×32×48 cells, displaying both the geometry and the upper surface
pressure distribution, with negative Cp upwards. The initial wing shows a moderately strong shock
wave across most of the top surface, as can be seen in Figure 4a. Sixty design cycles were needed
to produce the shock free wing shown in Figure 4b, with an indicated drag reduction of 15 counts
from .0196 to .0181. Figure 5 shows the viscous re-design at a Reynolds number of 12 million. This
was performed on a mesh with 192×64×48 cells, with 32 intervals normal to the wing concentrated
inside the boundary layer region. In Figure 5a it can be seen that the Euler design produces a
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weak shock due to the displacement effects of the boundary layer. Ten design cycles were needed to
recover the shock free wing shown in Figure 5b. It is interesting that the wing section modifications
between the initial wing of Figure 4a and the final wing of Figure 5b are remarkably small.

These results were sufficiently promising that it was decided by McDonnell Douglas to evaluate
the method for industrial use, and it was used to support design studies for the MDXX project. The
results of this experience are discussed in reference 26. It rapidly became apparent that the fuselage
effects are too large to be ignored. In viscous design it was also found that there were discrepancies
between the results of the design calculations, which were initially performed on a relatively coarse
grid with 192×64×48 cells, and the results of subsequent analysis calculations performed on finer
meshes to verify the design.

In order to allow the use of finer meshes with overnight turnaround, the code was therefore
modified for parallel computation. Using the parallel implementation, viscous design calculations
have been performed on meshes with 1.8 million mesh points. Starting from a preliminary inviscid
design, 20 design cycles are usually sufficient for a viscous re-design in inverse mode, with the
smoothed inviscid results providing the target pressure. Such a calculation can be completed in
about 7 1

2 hours using 48 processors of an IBM SP2.
As an illustration of the results that could be obtained, Figures 6 - 10 show a wing-body design

with sweep back of about 38 degrees at the 1/4 chord. Starting from the result of an Euler design,
the viscous optimization produced an essentially shock free wing at a cruise design point of Mach
.86, with a lift coefficient of .6 for the wing body combination at a Reynolds number of 101 million
based on the root chord. Figure 6 shows the design point, while the evolution of the design is shown
in Figure 7, using Vassberg’s COMPPLOT software. In this case the pressure contours are for the
final design. This wing is quite thick, with a thickness to chord ratio of more than 14 percent at the
root and 9 percent at the tip. The design offers excellent performance at the nominal cruise point.
Figures 8 and 9 show the results of a Mach number sweep to determine the drag rise. It can be seen
that a double shock pattern forms below the design point, while there is actually a slight increase in
the drag coefficient of about 1 1

2 counts at Mach .85. Finally, Figure 10 shows a comparison of the
pressure distribution at the design point with those at alternate cruise points with lower and higher
lift. The tendency to produce double shocks below the design point is typical of supercritical wings.
This wing has a low drag coefficient, however, over a wide range of conditions.

CONCLUSIONS

We have developed a three-dimensional control theory based design method for the Navier Stokes
equations and applied it successfully to the design of wings in transonic flow. The method represents
an extension of our previous work on design with the potential flow and Euler equations. The new
method combines the versatility of numerical optimization methods with the efficiency of inverse
design. The geometry is modified by a grid perturbation technique which is applicable to arbitrary
configurations. The combination of computational efficiency with geometric flexibility provides a
powerful tool, with the final goal being to create practical aerodynamic shape design methods for
complete aircraft configurations. Such an accomplishment would represent the culmination of the
line of research initiated by Lighthill with his original work on the inverse problem 1.
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VIEW OF WING

NACA 0012 WING TO ONERA M6 TARGET                                               

MACH    .840    ALPHA  2.935

CL     .2999    CD     .0205    CM    -.2395

GRID  192X32X48 NCYC       0    RES .516E+00

Initial Wing.
UPPER SURFACE PRESSURE  LOWER SURFACE PRESSURE  

NACA 0012 WING TO ONERA M6 TARGET                                               

MACH    .840    ALPHA  2.935

CL     .2999    CD     .0205    CM    -.2395

GRID  192X32X48 NCYC       0    RES .516E+00

Cp on Upper Surface.

Figure 2a: M = .84, Cl = .3000, Cd = .0205, α = 2.935◦.

VIEW OF WING

NACA 0012 WING TO ONERA M6 TARGET                                               

MACH    .840    ALPHA  2.935

CL     .2967    CD     .0141    CM    -.2284

GRID  192X32X48 NCYC     100    RES .199E-02

Re-designed wing.
UPPER SURFACE PRESSURE  LOWER SURFACE PRESSURE  

NACA 0012 WING TO ONERA M6 TARGET                                               

MACH    .840    ALPHA  2.935

CL     .2967    CD     .0141    CM    -.2284

GRID  192X32X48 NCYC     100    RES .199E-02

Cp on Upper Surface.

Figure 2b: M = .84, Cl = .2967, Cd = .0141, α = 2.935◦

Figure 2: Re-design of the Onera M6 Wing. 100 design cycles in inverse mode.
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NACA 0012 WING TO ONERA M6 TARGET                                               
MACH    .840    ALPHA  2.935      Z     .297

CL     .3086    CD     .0175    CM    -.0910

GRID  192X32    NCYC     100    RES .199E-02
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3a: span station z = 0.297
NACA 0012 WING TO ONERA M6 TARGET                                               
MACH    .840    ALPHA  2.935      Z     .484

CL     .3173    CD     .0100    CM    -.0774

GRID  192X32    NCYC     100    RES .199E-02
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3b: span station z = 0.484

NACA 0012 WING TO ONERA M6 TARGET                                               
MACH    .840    ALPHA  2.935      Z     .672

CL     .3101    CD     .0038    CM    -.0603

GRID  192X32    NCYC     100    RES .199E-02
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3c: span station z = 0.672
NACA 0012 WING TO ONERA M6 TARGET                                               
MACH    .840    ALPHA  2.935      Z     .859

CL     .2628    CD    -.0027    CM    -.0352

GRID  192X32    NCYC     100    RES .199E-02
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3d: span station z = 0.859

Figure 3: Target (o) and Computed (+) Pressure Distributions of Re-designed Onera M6 Wing.
M = 0.84, CL = 0.2967, CD = 0.0141, α = 2.935◦.
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view of wing

MD11 WING TO MD11J WING (DRAG REDUCTION)                                        

mach   0.830    alpha  2.410

cl    0.5498    cd    0.0196    cm   -0.7817

grid  192x32x48 ncyc       0    res0.617E-02

Initial Wing.
upper surface pressure  lower surface pressure  

MD11 WING TO MD11J WING (DRAG REDUCTION)                                        

mach   0.830    alpha  2.410

cl    0.5498    cd    0.0196    cm   -0.7817

grid  192x32x48 ncyc       0    res0.617E-02

Cp on Upper Surface.

Figure 4a: M = .83, Cl = .5498, Cd = .0196, α = 2.410◦.

view of wing

MD11 WING TO MD11J WING (DRAG REDUCTION)                                        

mach   0.830    alpha  1.959

cl    0.5500    cd    0.0181    cm   -0.8002

grid  192x32x48 ncyc      60    res0.135E-03

Redisigned wing.
upper surface pressure  lower surface pressure  

MD11 WING TO MD11J WING (DRAG REDUCTION)                                        

mach   0.830    alpha  1.959

cl    0.5500    cd    0.0181    cm   -0.8002

grid  192x32x48 ncyc      60    res0.135E-03

Cp on Upper Surface.

Figure 4b: M = .83, Cl = .5500, Cd = .0181, α = 1.959◦.

Figure 4: Re-design of the wing of a wide transport aircraft. Stage 1 Inviscid design : 60 design cycles in drag
reduction mode with forced lift.
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VIEW OF WING

MD11J WING                                                                      

MACH    .830    ALPHA  2.317

CL     .5506    CD     .0199    CM    -.7821

GRID  192X64X48 NCYC       0    RES .904E+00

Initial Wing.
UPPER SURFACE PRESSURE  LOWER SURFACE PRESSURE  

MD11J WING                                                                      

MACH    .830    ALPHA  2.317

CL     .5506    CD     .0199    CM    -.7821

GRID  192X64X48 NCYC       0    RES .904E+00

Cp on Upper Surface.

Figure 5a: M = 0.83, Cl = .5506, Cd = .0199, α = 2.317◦

VIEW OF WING

MD11J WING                                                                      

MACH    .830    ALPHA  2.355

CL     .5508    CD     .0194    CM    -.7868

GRID  192X64X48 NCYC      10    RES .986E+01

Redisigned wing.
UPPER SURFACE PRESSURE  LOWER SURFACE PRESSURE  

MD11J WING                                                                      

MACH    .830    ALPHA  2.355

CL     .5508    CD     .0194    CM    -.7868

GRID  192X64X48 NCYC      10    RES .986E+01

Cp on Upper Surface.

Figure 5b: M = 0.83, Cl = .5508, Cd = .0194, α = 2.355◦

Figure 5: Re-design of the wing of a wide transport aircraft. Stage 2: Viscous re-design. 10 design cycles in inverse
mode.
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Figure 6: Pressure distribution of the MPX5X at its design point.
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Figure 7: Optimization Sequence in the design of the MPX5X.
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Figure 8: Off design performance of the MPX5X below the design point.
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Figure 9: Off design performance of the MPX5X above the design point.
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Figure 10: Comparison of the MPX5X at its design point and at lower and higher lift.
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