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Abstract

These Lecture Notes review the formulation and application of optimization techniques based on control
theory for aerodynamic shape design in both inviscid and viscous compressible flow. The theory is applied
to a system defined by the partial differential equations of the flow, with the boundary shape acting as
the control. The Frechet derivative of the cost function is determined via the solution of an adjoint partial
differential equation, and the boundary shape is then modified in a direction of descent. This process is
repeated until an optimum solution is approached. Each design cycle requires the numerical solution of both
the flow and the adjoint equations, leading to a computational cost roughly equal to the cost of two flow
solutions. Representative results are presented for viscous optimization of transonic wing-body combinations.

1 Introduction: Aerodynamic Design

The definition of the aerodynamic shapes of modern aircraft relies heavily on computational simulation
to enable the rapid evaluation of many alternative designs. Wind tunnel testing is then used to confirm
the performance of designs that have been identified by simulation as promising to meet the performance
goals. In the case of wing design and propulsion system integration, several complete cycles of computational
analysis followed by testing of a preferred design may be used in the evolution of the final configuration.
Wind tunnel testing also plays a crucial role in the development of the detailed loads needed to complete
the structural design, and in gathering data throughout the flight envelope for the design and verification
of the stability and control system. The use of computational simulation to scan many alternative designs
has proved extremely valuable in practice, but it still suffers the limitation that it does not guarantee the
identification of the best possible design. Generally one has to accept the best so far by a given cutoff date in
the program schedule. To ensure the realization of the true best design, the ultimate goal of computational
simulation methods should not just be the analysis of prescribed shapes, but the automatic determination
of the true optimum shape for the intended application.

This is the underlying motivation for the combination of computational fluid dynamics with numerical
optimization methods. Some of the earliest studies of such an approach were made by Hicks and Henne [1,2].
The principal obstacle was the large computational cost of determining the sensitivity of the cost function
to variations of the design parameters by repeated calculation of the flow. Another way to approach the
problem is to formulate aerodynamic shape design within the framework of the mathematical theory for the
control of systems governed by partial differential equations [3]. In this view the wing is regarded as a device
to produce lift by controlling the flow, and its design is regarded as a problem in the optimal control of the
flow equations by changing the shape of the boundary. If the boundary shape is regarded as arbitrary within
some requirements of smoothness, then the full generality of shapes cannot be defined with a finite number
of parameters, and one must use the concept of the Frechet derivative of the cost with respect to a function.
Clearly such a derivative cannot be determined directly by separate variation of each design parameter,
because there are now an infinite number of these.

Using techniques of control theory, however, the gradient can be determined indirectly by solving an
adjoint equation which has coefficients determined by the solution of the flow equations. This directly cor-
responds to the gradient technique for trajectory optimization pioneered by Bryson [4]. The cost of solving



the adjoint equation is comparable to the cost of solving the flow equations, with the consequence that the
gradient with respect to an arbitrarily large number of parameters can be calculated with roughly the same
computational cost as two flow solutions. Once the gradient has been calculated, a descent method can be
used to determine a shape change which will make an improvement in the design. The gradient can then
be recalculated, and the whole process can be repeated until the design converges to an optimum solution,
usually within 10 - 50 cycles. The fast calculation of the gradients makes optimization computationally fea-
sible even for designs in three-dimensional viscous flow. There is a possibility that the descent method could
converge to a local minimum rather than the global optimum solution. In practice this has not proved a diffi-
culty, provided care is taken in the choice of a cost function which properly reflects the design requirements.
Conceptually, with this approach the problem is viewed as infinitely dimensional, with the control being the
shape of the bounding surface. Eventually the equations must be discretized for a numerical implementation
of the method. For this purpose the flow and adjoint equations may either be separately discretized from
their representations as differential equations, or, alternatively, the flow equations may be discretized first,
and the discrete adjoint equations then derived directly from the discrete flow equations.

The effectiveness of optimization as a tool for aerodynamic design also depends crucially on the proper
choice of cost functions and constraints. One popular approach is to define a target pressure distribution,
and then solve the inverse problem of finding the shape that will produce that pressure distribution. Since
such a shape does not necessarily exist, direct inverse methods may be ill-posed. The problem of designing a
two-dimensional profile to attain a desired pressure distribution was studied by Lighthill, who solved it for
the case of incompressible flow with a conformal mapping of the profile to a unit circle [5]. The speed over
the profile is

q =
1

h
|∇φ| ,

where φ is the potential which is known for incompressible flow and h is the modulus of the mapping function.
The surface value of h can be obtained by setting q = qd, where qd is the desired speed, and since the mapping
function is analytic, it is uniquely determined by the value of h on the boundary. A solution exists for a
given speed q∞ at infinity only if

1

2π

∮

q dθ = q∞,

and there are additional constraints on q if the profile is required to be closed.
The difficulty that the target pressure may be unattainable may be circumvented by treating the inverse

problem as a special case of the optimization problem, with a cost function which measures the error in the
solution of the inverse problem. For example, if pd is the desired surface pressure, one may take the cost
function to be an integral over the the body surface of the square of the pressure error,

I =
1

2

∫

B

(p− pd)
2dB,

or possibly a more general Sobolev norm of the pressure error. This has the advantage of converting a
possibly ill posed problem into a well posed one. It has the disadvantage that it incurs the computational
costs associated with optimization procedures.

The inverse problem still leaves the definition of an appropriate pressure architecture to the designer.
One may prefer to directly improve suitable performance parameters, for example, to minimize the drag at a
given lift and Mach number. In this case it is important to introduce appropriate constraints. For example,
if the span is not fixed the vortex drag can be made arbitrarily small by sufficiently increasing the span. In
practice, a useful approach is to fix the planform, and optimize the wing sections subject to constraints on
minimum thickness.

Studies of the use of control theory for optimum shape design of systems governed by elliptic equations
were initiated by Pironneau [6]. The control theory approach to optimal aerodynamic design was first applied
to transonic flow by Jameson [7–12]. He formulated the method for inviscid compressible flows with shock
waves governed by both the potential flow and the Euler equations [8]. Numerical results showing the method
to be extremely effective for the design of airfoils in transonic potential flow were presented in [13,14], and
for three-dimensional wing design using the Euler equations in [15]. More recently the method has been
employed for the shape design of complex aircraft configurations [16,17], using a grid perturbation approach
to accommodate the geometry modifications. The method has been used to support the aerodynamic design



studies of several industrial projects, including the Beech Premier and the McDonnell Douglas MDXX and
Blended Wing-Body projects. The application to the MDXX is described in [10]. The experience gained in
these industrial applications made it clear that the viscous effects cannot be ignored in transonic wing design,
and the method has therefore been extended to treat the Reynolds Averaged Navier-Stokes equations [12].
Adjoint methods have also been the subject of studies by a number of other authors, including Baysal and
Eleshaky [18], Huan and Modi [19], Desai and Ito [20], Anderson and Venkatakrishnan [21], and Peraire
and Elliot [22]. Ta’asan, Kuruvila and Salas [23], who have implemented a one shot approach in which
the constraint represented by the flow equations is only required to be satisfied by the final converged
solution. In their work, computational costs are also reduced by applying multigrid techniques to the geometry
modifications as well as the solution of the flow and adjoint equations.

2 Formulation of the Design Problem as a Control Problem

The simplest approach to optimization is to define the geometry through a set of design parameters, which
may, for example, be the weights αi applied to a set of shape functions bi(x) so that the shape is represented
as

f(x) =
∑

αibi(x).

Then a cost function I is selected which might, for example, be the drag coefficient or the lift to drag ratio,
and I is regarded as a function of the parameters αi. The sensitivities ∂I

∂αi
may now be estimated by making

a small variation δαi in each design parameter in turn and recalculating the flow to obtain the change in I .
Then

∂I

∂αi
≈
I(αi + δαi) − I(αi)

δαi
.

The gradient vector ∂I
∂α may now be used to determine a direction of improvement. The simplest procedure

is to make a step in the negative gradient direction by setting

αn+1 = αn − λδα,

so that to first order

I + δI = I −
∂IT

∂α
δα = I − λ

∂IT

∂α

∂I

∂α
.

More sophisticated search procedures may be used such as quasi-Newton methods, which attempt to estimate

the second derivative ∂2I
∂αi∂αj

of the cost function from changes in the gradient ∂I
∂α in successive optimization

steps. These methods also generally introduce line searches to find the minimum in the search direction which
is defined at each step. The main disadvantage of this approach is the need for a number of flow calculations
proportional to the number of design variables to estimate the gradient. The computational costs can thus
become prohibitive as the number of design variables is increased.

Using techniques of control theory, however, the gradient can be determined indirectly by solving an
adjoint equation which has coefficients defined by the solution of the flow equations. The cost of solving the
adjoint equation is comparable to that of solving the flow equations. Thus the gradient can be determined
with roughly the computational costs of two flow solutions, independently of the number of design variables,
which may be infinite if the boundary is regarded as a free surface. The underlying concepts are clarified by
the following abstract description of the adjoint method.

For flow about an airfoil or wing, the aerodynamic properties which define the cost function are functions
of the flow-field variables (w) and the physical location of the boundary, which may be represented by the
function F , say. Then

I = I (w,F) ,

and a change in F results in a change

δI =

[

∂IT

∂w

]

I

δw +

[

∂IT

∂F

]

II

δF (1)

in the cost function. Here, the subscripts I and II are used to distinguish the contributions due to the
variation δw in the flow solution from the change associated directly with the modification δF in the shape.



This notation assists in grouping the numerous terms that arise during the derivation of the full Navier–
Stokes adjoint operator, outlined later, so that the basic structure of the approach as it is sketched in the
present section can easily be recognized.

Suppose that the governing equation R which expresses the dependence of w and F within the flowfield
domain D can be written as

R (w,F) = 0. (2)

Then δw is determined from the equation

δR =

[

∂R

∂w

]

I

δw +

[

∂R

∂F

]

II

δF = 0. (3)

Since the variation δR is zero, it can be multiplied by a Lagrange Multiplier ψ and subtracted from the
variation δI without changing the result. Thus equation (1) can be replaced by

δI =
∂IT

∂w
δw +

∂IT

∂F
δF − ψ

T

([

∂R

∂w

]

δw +
[

∂R

∂F

]

δF

)

=

{

∂IT

∂w
− ψ

T

[

∂R

∂w

]

}

I

δw +

{

∂IT

∂F
− ψ

T

[

∂R

∂F

]

}

II

δF . (4)

Choosing ψ to satisfy the adjoint equation

[

∂R

∂w

]T

ψ =
∂I

∂w
(5)

the first term is eliminated, and we find that

δI = GδF , (6)

where

G =
∂IT

∂F
− ψT

[

∂R

∂F

]

.

The advantage is that (6) is independent of δw, with the result that the gradient of I with respect to an
arbitrary number of design variables can be determined without the need for additional flow-field evaluations.
In the case that (2) is a partial differential equation, the adjoint equation (5) is also a partial differential
equation and determination of the appropriate boundary conditions requires careful mathematical treatment.

In reference [8] Jameson derived the adjoint equations for transonic flows modeled by both the potential
flow equation and the Euler equations. The theory was developed in terms of partial differential equations,
leading to an adjoint partial differential equation. In order to obtain numerical solutions both the flow and the
adjoint equations must be discretized. Control theory might be applied directly to the discrete flow equations
which result from the numerical approximation of the flow equations by finite element, finite volume or finite
difference procedures. This leads directly to a set of discrete adjoint equations with a matrix which is the
transpose of the Jacobian matrix of the full set of discrete nonlinear flow equations. On a three-dimensional
mesh with indices i, j, k the individual adjoint equations may be derived by collecting together all the terms
multiplied by the variation δwi,j,k of the discrete flow variable wi,j,k . The resulting discrete adjoint equations
represent a possible discretization of the adjoint partial differential equation. If these equations are solved
exactly they can provide an exact gradient of the inexact cost function which results from the discretization
of the flow equations. The discrete adjoint equations derived directly from the discrete flow equations become
very complicated when the flow equations are discretized with higher order upwind biased schemes using flux
limiters. On the other hand any consistent discretization of the adjoint partial differential equation will yield
the exact gradient in the limit as the mesh is refined. The trade-off between the complexity of the adjoint
discretization, the accuracy of the resulting estimate of the gradient, and its impact on the computational
cost to approach an optimum solution is a subject of ongoing research.

The true optimum shape belongs to an infinitely dimensional space of design parameters. One motivation
for developing the theory for the partial differential equations of the flow is to provide an indication in



principle of how such a solution could be approached if sufficient computational resources were available. It
displays the character of the adjoint equation as a hyperbolic system with waves travelling in the reverse
direction to those of the flow equations, and the need for correct wall and far-field boundary conditions. It also
highlights the possibility of generating ill posed formulations of the problem. For example, if one attempts to
calculate the sensitivity of the pressure at a particular location to changes in the boundary shape, there is the
possibility that a shape modification could cause a shock wave to pass over that location. Then the sensitivity
could become unbounded. The movement of the shock, however, is continuous as the shape changes. Therefore
a quantity such as the drag coefficient, which is determined by integrating the pressure over the surface, also
depends continuously on the shape. The adjoint equation allows the sensitivity of the drag coefficient to
be determined without the explicit evaluation of pressure sensitivities which would be ill posed. Another
benefit of the continuous adjoint formulation is that it allows grid sensitivity terms to be eliminated from
the gradient, which can finally be expressed purely in terms of the boundary displacement, as will be shown
in Section 4. This greatly simplifies the implementation of the method for overset or unstructured grids.

The discrete adjoint equations, whether they are derived directly or by discretization of the adjoint
partial differential equation, are linear. Therefore they could be solved by direct numerical inversion. In
three-dimensional problems on a mesh with, say, n intervals in each coordinate direction, the number of
unknowns is proportional to n3 and the bandwidth to n2. The complexity of direct inversion is proportional
to the number of unknowns multiplied by the square of the bandwidth, resulting in a complexity proportional
to n7. The cost of direct inversion can thus become prohibitive as the mesh is refined, and it becomes more
efficient to use iterative solution methods. Moreover, because of the similarity of the adjoint equations to
the flow equations, the same iterative methods which have been proved to be efficient for the solution of the
flow equations are efficient for the solution of the adjoint equations.

3 Design using the Euler Equations

The application of control theory to aerodynamic design problems is illustrated in this section for the case
of three-dimensional wing design using the compressible Euler equations as the mathematical model. It
proves convenient to denote the Cartesian coordinates and velocity components by x1, x2, x3 and u1, u2,
u3, and to use the convention that summation over i = 1 to 3 is implied by a repeated index i. Then, the
three-dimensional Euler equations may be written as

∂w

∂t
+
∂fi

∂xi
= 0 in D, (7)

where

w =























ρ

ρu1

ρu2

ρu3

ρE























, fi =























ρui

ρuiu1 + pδi1
ρuiu2 + pδi2
ρuiu3 + pδi3

ρuiH























(8)

and δij is the Kronecker delta function. Also,

p = (γ − 1) ρ

{

E −
1

2

(

u2
i

)

}

, (9)

and
ρH = ρE + p (10)

where γ is the ratio of the specific heats.
In order to simplify the derivation of the adjoint equations, we map the solution to a fixed computational

domain with coordinates ξ1, ξ2, ξ3 where

Kij =

[

∂xi

∂ξj

]

, J = det (K) , K−1
ij =

[

∂ξi

∂xj

]

,



and
S = JK−1.

The elements of S are the cofactors of K, and in a finite volume discretization they are just the face areas
of the computational cells projected in the x1, x2, and x3 directions. Using the permutation tensor εijk we
can express the elements of S as

Sij =
1

2
εjpqεirs

∂xp

∂ξr

∂xq

∂ξs
. (11)

Then

∂

∂ξi
Sij =

1

2
εjpqεirs

(

∂2xp

∂ξr∂ξi

∂xq

∂ξs
+
∂xp

∂ξr

∂2xq

∂ξs∂ξi

)

= 0. (12)

Also in the subsequent analysis of the effect of a shape variation it is useful to note that

S1j = εjpq
∂xp

∂ξ2

∂xq

∂ξ3
,

S2j = εjpq
∂xp

∂ξ3

∂xq

∂ξ1
,

S3j = εjpq
∂xp

∂ξ1

∂xq

∂ξ2
. (13)

Now, multiplying equation(7) by J and applying the chain rule,

J
∂w

∂t
+R (w) = 0 (14)

where

R (w) = Sij
∂fj

∂ξi
=

∂

∂ξi
(Sijfj) , (15)

using (12). We can write the transformed fluxes in terms of the scaled contravariant velocity components

Ui = Sijuj

as

Fi = Sijfj =













ρUi

ρUiu1 + Si1p

ρUiu2 + Si2p

ρUiu3 + Si3p

ρUiH













.

For convenience, the coordinates ξi describing the fixed computational domain are chosen so that each
boundary conforms to a constant value of one of these coordinates. Variations in the shape then result
in corresponding variations in the mapping derivatives defined by Kij . Suppose that the performance is
measured by a cost function

I =

∫

B

M (w, S) dBξ +

∫

D

P (w, S) dDξ ,

containing both boundary and field contributions where dBξ and dDξ are the surface and volume elements
in the computational domain. In general, M and P will depend on both the flow variables w and the metrics
S defining the computational space. The design problem is now treated as a control problem where the
boundary shape represents the control function, which is chosen to minimize I subject to the constraints
defined by the flow equations (14). A shape change produces a variation in the flow solution δw and the
metrics δS which in turn produce a variation in the cost function

δI =

∫

B

δM(w, S) dBξ +

∫

D

δP(w, S) dDξ. (16)



This can be split as
δI = δII + δIII , (17)

with

δM = [Mw]I δw + δMII ,

δP = [Pw]I δw + δPII , (18)

where we continue to use the subscripts I and II to distinguish between the contributions associated with
the variation of the flow solution δw and those associated with the metric variations δS. Thus [Mw]I and
[Pw]I represent ∂M

∂w and ∂P
∂w with the metrics fixed, while δMII and δPII represent the contribution of the

metric variations δS to δM and δP .
In the steady state, the constraint equation (14) specifies the variation of the state vector δw by

δR =
∂

∂ξi
δFi = 0. (19)

Here also, δR and δFi can be split into contributions associated with δw and δS using the notation

δR = δRI + δRII

δFi = [Fiw]I δw + δFiII . (20)

where

[Fiw]I = Sij
∂fi

∂w
.

Multiplying by a co-state vector ψ, which will play an analogous role to the Lagrange multiplier introduced
in equation (4), and integrating over the domain produces

∫

D

ψT ∂

∂ξi
δFidDξ = 0. (21)

Assuming that ψ is differentiable, the terms with subscript I may be integrated by parts to give

∫

B

niψ
T δFiI

dBξ −

∫

D

∂ψT

∂ξi
δFiI

dDξ +

∫

D

ψT δRIIdDξ = 0. (22)

This equation results directly from taking the variation of the weak form of the flow equations, where ψ is
taken to be an arbitrary differentiable test function. Since the left hand expression equals zero, it may be
subtracted from the variation in the cost function (16) to give

δI = δIII −

∫

D

ψT δRIIdDξ −

∫

B

[

δMI − niψ
T δFiI

]

dBξ

+

∫

D

[

δPI +
∂ψT

∂ξi
δFiI

]

dDξ . (23)

Now, since ψ is an arbitrary differentiable function, it may be chosen in such a way that δI no longer
depends explicitly on the variation of the state vector δw. The gradient of the cost function can then be
evaluated directly from the metric variations without having to recompute the variation δw resulting from
the perturbation of each design variable.

Comparing equations (18) and (20), the variation δw may be eliminated from (23) by equating all field
terms with subscript “I” to produce a differential adjoint system governing ψ

∂ψT

∂ξi
[Fiw]I + [Pw]I = 0 in D. (24)

Taking the transpose of equation (24), in the case that there is no field integral in the cost function, the
inviscid adjoint equation may be written as

CT
i

∂ψ

∂ξi
= 0 in D, (25)



where the inviscid Jacobian matrices in the transformed space are given by

Ci = Sij
∂fj

∂w
.

The corresponding adjoint boundary condition is produced by equating the subscript “I” boundary terms
in equation (23) to produce

niψ
T [Fiw]I = [Mw]I on B. (26)

The remaining terms from equation (23) then yield a simplified expression for the variation of the cost
function which defines the gradient

δI = δIII +

∫

D

ψT δRIIdDξ , (27)

which consists purely of the terms containing variations in the metrics, with the flow solution fixed. Hence
an explicit formula for the gradient can be derived once the relationship between mesh perturbations and
shape variations is defined.

The details of the formula for the gradient depend on the way in which the boundary shape is parame-
terized as a function of the design variables, and the way in which the mesh is deformed as the boundary
is modified. Using the relationship between the mesh deformation and the surface modification, the field
integral is reduced to a surface integral by integrating along the coordinate lines emanating from the surface.
Thus the expression for δI is finally reduced to the form of equation (6)

δI =

∫

B

GδF dBξ

where F represents the design variables, and G is the gradient, which is a function defined over the boundary
surface.

The boundary conditions satisfied by the flow equations restrict the form of the left hand side of the
adjoint boundary condition (26). Consequently, the boundary contribution to the cost function M cannot
be specified arbitrarily. Instead, it must be chosen from the class of functions which allow cancellation of
all terms containing δw in the boundary integral of equation (23). On the other hand, there is no such
restriction on the specification of the field contribution to the cost function P , since these terms may always
be absorbed into the adjoint field equation (24) as source terms.

For simplicity, it will be assumed that the portion of the boundary that undergoes shape modifications is
restricted to the coordinate surface ξ2 = 0. Then equations (23) and (26) may be simplified by incorporating
the conditions

n1 = n3 = 0, n2 = 1, dBξ = dξ1dξ3,

so that only the variation δF2 needs to be considered at the wall boundary. The condition that there is no
flow through the wall boundary at ξ2 = 0 is equivalent to

U2 = 0,

so that

δU2 = 0

when the boundary shape is modified. Consequently the variation of the inviscid flux at the boundary reduces
to

δF2 = δp











































0

S21

S22

S23

0











































+ p











































0

δS21

δS22

δS23

0











































. (28)



Since δF2 depends only on the pressure, it is now clear that the performance measure on the boundary
M(w, S) may only be a function of the pressure and metric terms. Otherwise, complete cancellation of the
terms containing δw in the boundary integral would be impossible. One may, for example, include arbitrary
measures of the forces and moments in the cost function, since these are functions of the surface pressure.

In order to design a shape which will lead to a desired pressure distribution, a natural choice is to set

I =
1

2

∫

B

(p− pd)
2
dS

where pd is the desired surface pressure, and the integral is evaluated over the actual surface area. In the
computational domain this is transformed to

I =
1

2

∫ ∫

Bw

(p− pd)
2 |S2| dξ1dξ3,

where the quantity
|S2| =

√

S2jS2j

denotes the face area corresponding to a unit element of face area in the computational domain. Now, to
cancel the dependence of the boundary integral on δp, the adjoint boundary condition reduces to

ψjnj = p− pd (29)

where nj are the components of the surface normal

nj =
S2j

|S2|
.

This amounts to a transpiration boundary condition on the co-state variables corresponding to the momen-
tum components. Note that it imposes no restriction on the tangential component of ψ at the boundary.

We find finally that

δI = −

∫

D

∂ψT

∂ξi
δSijfjdD

−

∫ ∫

BW

(δS21ψ2 + δS22ψ3 + δS23ψ4) p dξ1dξ3. (30)

Here the expression for the cost variation depends on the mesh variations throughout the domain which
appear in the field integral. However, the true gradient for a shape variation should not depend on the way
in which the mesh is deformed, but only on the true flow solution. In the next section we show how the
field integral can be eliminated to produce a reduced gradient formula which depends only on the boundary
movement.

4 The Reduced Gradient Formulation

Consider the case of a mesh variation with a fixed boundary. Then,

δI = 0

but there is a variation in the transformed flux,

δFi = Ciδw + δSijfj .

Here the true solution is unchanged. Thus, the variation δw is due to the mesh movement δx at each mesh
point. Therefore

δw = ∇w · δx =
∂w

∂xj
δxj (= δw∗)



and since
∂

∂ξi
δFi = 0,

it follows that
∂

∂ξi
(δSijfj) = −

∂

∂ξi
(Ciδw

∗) . (31)

It is verified below that this relation holds in the general case with boundary movement. Now

∫

D

φT δRdD =

∫

D

φT ∂

∂ξi
Ci (δw − δw∗) dD

=

∫

B

φTCi (δw − δw∗) dB

−

∫

D

∂φT

∂ξi
Ci (δw − δw∗) dD. (32)

Here on the wall boundary

C2δw = δF2 − δS2jfj . (33)

Thus, by choosing φ to satisfy the adjoint equation (25) and the adjoint boundary condition (26), we reduce
the cost variation to a boundary integral which depends only on the surface displacement:

δI =

∫

BW

ψT (δS2jfj + C2δw
∗) dξ1dξ3

−

∫ ∫

BW

(δS21ψ2 + δS22ψ3 + δS23ψ4) p dξ1dξ3. (34)

For completeness the general derivation of equation(31) is presented here. Using the formula(11), and the
property (12)

∂
∂ξi

(δSijfj)

=
1

2

∂

∂ξi

{

εjpqεirs

(

∂δxp

∂ξr

∂xq

∂ξs
+
∂xp

∂ξr

∂δxq

∂ξs

)

fj

}

=
1

2
εjpqεirs

(

∂δxp

∂ξr

∂xq

∂ξs
+
∂xp

∂ξr

∂δxq

∂ξs

)

∂fj

∂ξi

=
1

2
εjpqεirs

{

∂

∂ξr

(

δxp
∂xq

∂ξs

∂fj

∂ξi

)}

+
1

2
εjpqεirs

{

∂

∂ξs

(

δxq
∂xp

∂ξr

∂fj

∂ξi

)}

=
∂

∂ξr

(

δxpεpqjεrsi
∂xq

∂ξs

∂fj

∂ξi

)

. (35)

Now express δxp in terms of a shift in the original computational coordinates

δxp =
∂xp

∂ξk
δξk .

Then we obtain
∂

∂ξi
(δSijfj) =

∂

∂ξr

(

εpqjεrsi
∂xp

∂ξk

∂xq

∂ξs

∂fj

∂ξi
δξk

)

. (36)

The term in ∂
∂ξ1

is

ε123εpqj
∂xp

∂ξk

(

∂xq

∂ξ2

∂fj

∂ξ3
−
∂xq

∂ξ3

∂fj

∂ξ2

)

δξk.



Here the term multiplying δξ1 is

εjpq

(

∂xp

∂ξ1

∂xq

∂ξ2

∂fj

∂ξ3
−
∂xp

∂ξ1

∂xq

∂ξ3

∂fj

∂ξ2

)

.

According to the formulas(13) this may be recognized as

S2j
∂f1

∂ξ2
+ S3j

∂f1

∂ξ3

or, using the quasi-linear form(15) of the equation for steady flow, as

−S1j
∂f1

∂ξ1
.

The terms multiplying δξ2 and δξ3 are

εjpq

(

∂xp

∂ξ2

∂xq

∂ξ2

∂fj

∂ξ3
−
∂xp

∂ξ2

∂xq

∂ξ3

∂fj

∂ξ2

)

= −S1j
∂f1

∂ξ2

and

εjpq

(

∂xp

∂ξ3

∂xq

∂ξ2

∂fj

∂ξ3
−
∂xp

∂ξ3

∂xq

∂ξ3

∂fj

∂ξ2

)

= −S1j
∂f1

∂ξ3
.

Thus the term in ∂
∂ξ1

is reduced to

−
∂

∂ξ1

(

S1j
∂f1

∂ξk
δξk

)

.

Finally, with similar reductions of the terms in ∂
∂ξ2

and ∂
∂ξ3

, we obtain

∂

∂ξi
(δSijfj) = −

∂

∂ξi

(

Sij
∂fj

∂ξk
δξk

)

= −
∂

∂ξi
(Ciδw

∗)

as was to be proved.

5 Optimization Procedure

5.1 The need for a Sobolev inner product in the definition of the gradient

Another key issue for successful implementation of the continuous adjoint method is the choice of an appro-
priate inner product for the definition of the gradient. It turns out that there is an enormous benefit from
the use of a modified Sobolev gradient, which enables the generation of a sequence of smooth shapes. This
can be illustrated by considering the simplest case of a problem in the calculus of variations.

Suppose that we wish to find the path y(x) which minimizes

I =

b
∫

a

F (y, y
′

)dx

with fixed end points y(a) and y(b). Under a variation δy(x),

δI =

b
∫

a

(

∂F

∂y
δy +

∂F

∂y
′
δy

′

)

dx

=

b
∫

a

(

∂F

∂y
−

d

dx

∂F

∂y
′

)

δydx



Thus defining the gradient as

g =
∂F

∂y
−

d

dx

∂F

∂y
′

and the inner product as

(u, v) =

b
∫

a

uvdx

we find that

δI = (g, δy).

If we now set

δy = −λg, λ > 0

we obtain a improvement

δI = −λ(g, g) ≤ 0

unless g = 0, the necessary condition for a minimum.
Note that g is a function of y, y

′

, y
′′

,
g = g(y, y

′

, y
′′

)

In the well known case of the Brachistrone problem, for example, which calls for the determination of the
path of quickest descent between two laterally separated points when a particle falls under gravity,

F (y, y
′

) =

√

1 + y
′2

y

and

g = −
1 + y

′2 + 2yy
′′

2 (y(1 + y
′2))

3/2

It can be seen that each step
yn+1 = yn − λngn

reduces the smoothness of y by two classes. Thus the computed trajectory becomes less and less smooth,
leading to instability.

In order to prevent this we can introduce a weighted Sobolev inner product [24]

〈u, v〉 =

∫

(uv + εu
′

v
′

)dx

where ε is a parameter that controls the weight of the derivatives. We now define a gradient g such that

δI = 〈g, δy〉

Then we have

δI =

∫

(gδy + εg
′

δy
′

)dx

=

∫

(g −
∂

∂x
ε
∂g

∂x
)δydx

= (g, δy)



where

g −
∂

∂x
ε
∂g

∂x
= g

and g = 0 at the end points. Thus g can be obtained from g by a smoothing equation. Now the step

yn+1 = yn − λngn

gives an improvement
δI = −λn〈gn, gn〉

but yn+1 has the same smoothness as yn, resulting in a stable process.

5.2 Sobolev gradient for shape optimization

In applying control theory to aerodynamic shape optimization, the use of a Sobolev gradient is equally
important for the preservation of the smoothness class of the redesigned surface. Accordingly, using the
weighted Sobolev inner product defined above, we define a modified gradient Ḡ such that

δI =< Ḡ, δF > .

In the one dimensional case Ḡ is obtained by solving the smoothing equation

Ḡ −
∂

∂ξ1
ε
∂

∂ξ1
Ḡ = G. (37)

In the multi-dimensional case the smoothing is applied in product form. Finally we set

δF = −λḠ (38)

with the result that
δI = −λ < Ḡ, Ḡ > < 0,

unless Ḡ = 0, and correspondingly G = 0.
When second-order central differencing is applied to (37), the equation at a given node, i, can be expressed

as
Ḡi − ε

(

Ḡi+1 − 2Ḡi + Ḡi−1

)

= Gi, 1 ≤ i ≤ n,

where Gi and Ḡi are the point gradients at node i before and after the smoothing respectively, and n is the
number of design variables equal to the number of mesh points in this case. Then,

Ḡ = AG,

where A is the n× n tri-diagonal matrix such that

A−1 =













1 + 2ε −ε 0 . 0
ε . .

0 . . .

. . . −ε
0 ε 1 + 2ε













.

Using the steepest descent method in each design iteration, a step, δF , is taken such that

δF = −λAG. (39)

As can be seen from the form of this expression, implicit smoothing may be regarded as a preconditioner
which allows the use of much larger steps for the search procedure and leads to a large reduction in the number
of design iterations needed for convergence. Our software also includes an option for Krylov acceleration [25].
We have found this to be particularly useful for inverse problems.



5.3 Outline of the design procedure

The design procedure can finally be summarized as follows:

1. Solve the flow equations for ρ, u1, u2, u3, p.

2. Solve the adjoint equations for ψ subject to appropriate boundary conditions.

3. Evaluate G and calculate the corresponding Sobolev gradient Ḡ.

4. Project Ḡ into an allowable subspace that satisfies any geometric constraints.

5. Update the shape based on the direction of steepest descent.

6. Return to 1 until convergence is reached.

Sobolev Gradient

Gradient Calculation

Flow Solution

Adjoint Solution

Shape & Grid

Repeat the Design Cycle
until Convergence

Modification

Fig. 1. Design cycle

Practical implementation of the design method relies heavily upon fast and accurate solvers for both
the state (w) and co-state (ψ) systems. The result obtained in Section 8 have been obtained using well-
validated software for the solution of the Euler and Navier-Stokes equations developed over the course of
many years [26–28]. For inverse design the lift is fixed by the target pressure. In drag minimization it is
also appropriate to fix the lift coefficient, because the induced drag is a major fraction of the total drag,
and this could be reduced simply by reducing the lift. Therefore the angle of attack is adjusted during each
flow solution to force a specified lift coefficient to be attained, and the influence of variations of the angle
of attack is included in the calculation of the gradient. The vortex drag also depends on the span loading,
which may be constrained by other considerations such as structural loading or buffet onset. Consequently,
the option is provided to force the span loading by adjusting the twist distribution as well as the angle of
attack during the flow solution.



6 Design using the Navier-Stokes Equations

6.1 The Navier-Stokes equations in the computational domain

The next sections present the extension of the adjoint method to the Navier-Stokes equations. These take
the form

∂w

∂t
+
∂fi

∂xi
=
∂fvi

∂xi
in D, (40)

where the state vector w, inviscid flux vector f and viscous flux vector fv are described respectively by

w =























ρ

ρu1

ρu2

ρu3

ρE























, fi =























ρui

ρuiu1 + pδi1
ρuiu2 + pδi2
ρuiu3 + pδi3

ρuiH























, fvi =























0
σijδj1
σijδj2
σijδj3

ujσij + k ∂T
∂xi























. (41)

The viscous stresses may be written as

σij = µ

(

∂ui

∂xj
+
∂uj

∂xi

)

+ λδij
∂uk

∂xk
, (42)

where µ and λ are the first and second coefficients of viscosity. The coefficient of thermal conductivity and
the temperature are computed as

k =
cpµ

Pr
, T =

p

Rρ
, (43)

where Pr is the Prandtl number, cp is the specific heat at constant pressure, and R is the gas constant.
Using a transformation to a fixed computational domain as before, the Navier-Stokes equations can be

written in the transformed coordinates as

∂ (Jw)

∂t
+
∂ (Fi − Fvi)

∂ξi
= 0 in D, (44)

where the viscous terms have the form

∂Fvi

∂ξi
=

∂

∂ξi

(

Sijfvj

)

.

Computing the variation δw resulting from a shape modification of the boundary, introducing a co-state
vector ψ and integrating by parts, following the steps outlined by equations (19) to (22), we obtain

∫

B

ψT
(

δS2jfvj + S2jδfvj

)

dBξ −

∫

D

∂ψT

∂ξi

(

δSijfvj + Sijδfvj

)

dDξ ,

where the shape modification is restricted to the coordinate surface ξ2 = 0 so that n1 = n3 = 0, and n2 = 1.
Furthermore, it is assumed that the boundary contributions at the far field may either be neglected or else
eliminated by a proper choice of boundary conditions as previously shown for the inviscid case [14,29].

The viscous terms will be derived under the assumption that the viscosity and heat conduction coefficients
µ and k are essentially independent of the flow, and that their variations may be neglected. This simplification
has been successfully used for may aerodynamic problems of interest. However, if the flow variations could
result in significant changes in the turbulent viscosity, it may be necessary to account for its variation in the
calculation.

6.2 Transformation to Primitive Variables

The derivation of the viscous adjoint terms can be simplified by transforming to the primitive variables

w̃T = (ρ, u1, u2, u3, p)
T ,



because the viscous stresses depend on the velocity derivatives ∂ui

∂xj
, while the heat flux can be expressed as

κ
∂

∂xi

(

p

ρ

)

.

where κ = k
R = γµ

Pr(γ−1) . The relationship between the conservative and primitive variations is defined by

the expressions
δw = Mδw̃, δw̃ = M−1δw

which make use of the transformation matrices M = ∂w
∂w̃ and M−1 = ∂w̃

∂w . These matrices are provided in
transposed form for future convenience

MT =













1 u1 u2 u3
uiui

2
0 ρ 0 0 ρu1

0 0 ρ 0 ρu2

0 0 0 ρ ρu3

0 0 0 0 1
γ−1













M−1T
=















1 −u1

ρ −u2

ρ −u3

ρ
(γ−1)uiui

2

0 1
ρ 0 0 −(γ − 1)u1

0 0 1
ρ 0 −(γ − 1)u2

0 0 0 1
ρ −(γ − 1)u3

0 0 0 0 γ − 1















.

The conservative and primitive adjoint operators L and L̃ corresponding to the variations δw and δw̃ are
then related by

∫

D

δwTLψ dDξ =

∫

D

δw̃T L̃ψ dDξ ,

with
L̃ = MTL,

so that after determining the primitive adjoint operator by direct evaluation of the viscous portion of (24),

the conservative operator may be obtained by the transformation L = M−1T
L̃. Since the continuity equation

contains no viscous terms, it makes no contribution to the viscous adjoint system. Therefore, the derivation
proceeds by first examining the adjoint operators arising from the momentum equations.

6.3 Contributions from the Momentum Equations

In order to make use of the summation convention, it is convenient to set ψj+1 = φj for j = 1, 2, 3. Then
the contribution from the momentum equations is

∫

B

φk (δS2jσkj + S2jδσkj) dBξ −

∫

D

∂φk

∂ξi
(δSijσkj + Sijδσkj) dDξ . (45)

The velocity derivatives can be expressed as

∂ui

∂xj
=
∂ui

∂ξl

∂ξl

∂xj
=
Slj

J

∂ui

∂ξl

with corresponding variations

δ
∂ui

∂xj
=

[

Slj

J

]

I

∂

∂ξl
δui +

[

∂ui

∂ξl

]

II

δ

(

Slj

J

)

.

The variations in the stresses are then

δσkj =
{

µ
[

Slj

J
∂

∂ξl
δuk + Slk

J
∂

∂ξl
δuj

]

+ λ
[

δjk
Slm

J
∂

∂ξl
δum

]}

I

+
{

µ
[

δ
(

Slj

J

)

∂uk

∂ξl
+ δ

(

Slk

J

) ∂uj

∂ξl

]

+ λ
[

δjkδ
(

Slm

J

)

∂um

∂ξl

]}

II
.



As before, only those terms with subscript I , which contain variations of the flow variables, need be considered
further in deriving the adjoint operator. The field contributions that contain δui in equation (45) appear as

−

∫

D

∂φk

∂ξi
Sij

{

µ

(

Slj

J

∂

∂ξl
δuk +

Slk

J

∂

∂ξl
δuj

)

+λδjk
Slm

J

∂

∂ξl
δum

}

dDξ.

This may be integrated by parts to yield

∫

D

δuk
∂

∂ξl

(

SljSij
µ

J

∂φk

∂ξi

)

dDξ

+

∫

D

δuj
∂

∂ξl

(

SlkSij
µ

J

∂φk

∂ξi

)

dDξ

+

∫

D

δum
∂

∂ξl

(

SlmSij
λδjk

J

∂φk

∂ξi

)

dDξ,

where the boundary integral has been eliminated by noting that δui = 0 on the solid boundary. By exchanging
indices, the field integrals may be combined to produce

∫

D

δuk
∂

∂ξl
Slj

{

µ

(

Sij

J

∂φk

∂ξi
+
Sik

J

∂φj

∂ξi

)

+ λδjk
Sim

J

∂φm

∂ξi

}

dDξ ,

which is further simplified by transforming the inner derivatives back to Cartesian coordinates

∫

D

δuk
∂

∂ξl
Slj

{

µ

(

∂φk

∂xj
+
∂φj

∂xk

)

+ λδjk
∂φm

∂xm

}

dDξ . (46)

The boundary contributions that contain δui in equation (45) may be simplified using the fact that

∂

∂ξl
δui = 0 if l = 1, 3

on the boundary B so that they become

∫

B

φkS2j

{

µ

(

S2j

J

∂

∂ξ2
δuk +

S2k

J

∂

∂ξ2
δuj

)

+ λδjk
S2m

J

∂

∂ξ2
δum

}

dBξ. (47)

Together, (46) and (47) comprise the field and boundary contributions of the momentum equations to the
viscous adjoint operator in primitive variables.

6.4 Contributions from the Energy Equation

In order to derive the contribution of the energy equation to the viscous adjoint terms it is convenient to set

ψ5 = θ, Qj = uiσij + κ
∂

∂xj

(

p

ρ

)

,

where the temperature has been written in terms of pressure and density using (43). The contribution from
the energy equation can then be written as

∫

B

θ (δS2jQj + S2jδQj) dBξ −

∫

D

∂θ

∂ξi
(δSijQj + SijδQj) dDξ . (48)

The field contributions that contain δui,δp, and δρ in equation (48) appear as

−

∫

D

∂θ

∂ξi
SijδQjdDξ = −

∫

D

∂θ

∂ξi
Sij

{

δukσkj + ukδσkj +κ
Slj

J

∂

∂ξl

(

δp

ρ
−
p

ρ

δρ

ρ

)}

dDξ. (49)



The term involving δσkj may be integrated by parts to produce

∫

D

δuk
∂

∂ξl
Slj

{

µ

(

uk
∂θ

∂xj
+ uj

∂θ

∂xk

)

+λδjkum
∂θ

∂xm

}

dDξ , (50)

where the conditions ui = δui = 0 are used to eliminate the boundary integral on B. Notice that the other
term in (49) that involves δuk need not be integrated by parts and is merely carried on as

−

∫

D

δukσkjSij
∂θ

∂ξi
dDξ (51)

The terms in expression (49) that involve δp and δρ may also be integrated by parts to produce both a
field and a boundary integral. The field integral becomes

∫

D

(

δp

ρ
−
p

ρ

δρ

ρ

)

∂

∂ξl

(

SljSij
κ

J

∂θ

∂ξi

)

dDξ

which may be simplified by transforming the inner derivative to Cartesian coordinates

∫

D

(

δp

ρ
−
p

ρ

δρ

ρ

)

∂

∂ξl

(

Sljκ
∂θ

∂xj

)

dDξ . (52)

The boundary integral becomes

∫

B

κ

(

δp

ρ
−
p

ρ

δρ

ρ

)

S2jSij

J

∂θ

∂ξi
dBξ. (53)

This can be simplified by transforming the inner derivative to Cartesian coordinates

∫

B

κ

(

δp

ρ
−
p

ρ

δρ

ρ

)

S2j

J

∂θ

∂xj
dBξ, (54)

and identifying the normal derivative at the wall

∂

∂n
= S2j

∂

∂xj
, (55)

and the variation in temperature

δT =
1

R

(

δp

ρ
−
p

ρ

δρ

ρ

)

,

to produce the boundary contribution
∫

B

kδT
∂θ

∂n
dBξ. (56)

This term vanishes if T is constant on the wall but persists if the wall is adiabatic.
There is also a boundary contribution left over from the first integration by parts (48) which has the

form
∫

B

θδ (S2jQj) dBξ, (57)

where

Qj = k
∂T

∂xj
,

since ui = 0. If the wall is adiabatic
∂T

∂n
= 0,

so that using (55),
δ (S2jQj) = 0,



and both the δw and δS boundary contributions vanish.
On the other hand, if T is constant ∂T

∂ξl
= 0 for l = 1, 3, so that

Qj = k
∂T

∂xj
= k

(

Slj

J

∂T

∂ξl

)

= k

(

S2j

J

∂T

∂ξ2

)

.

Thus, the boundary integral (57) becomes

∫

B

kθ

{

S2j
2

J

∂

∂ξ2
δT + δ

(

S2j
2

J

)

∂T

∂ξ2

}

dBξ . (58)

Therefore, for constant T , the first term corresponding to variations in the flow field contributes to the
adjoint boundary operator, and the second set of terms corresponding to metric variations contribute to the
cost function gradient.

Finally the contributions from the energy equation to the viscous adjoint operator are the three field
terms (50), (51) and (52), and either of two boundary contributions ( 56) or ( 58), depending on whether
the wall is adiabatic or has constant temperature.

6.5 The Viscous Adjoint Field Operator

Collecting together the contributions from the momentum and energy equations, the viscous adjoint operator
in primitive variables can be expressed as

(L̃ψ)1 = − p
ρ2

∂
∂ξl

(

Sljκ
∂θ
∂xj

)

(L̃ψ)i+1 = ∂
∂ξl

{

Slj

[

µ
(

∂φi

∂xj
+

∂φj

∂xi

)

+ λδij
∂φk

∂xk

]}

+ ∂
∂ξl

{

Slj

[

µ
(

ui
∂θ
∂xj

+ uj
∂θ
∂xi

)

+ λδijuk
∂θ

∂xk

]}

for i = 1, 2, 3

− σijSlj
∂θ
∂ξl

(L̃ψ)5 = 1
ρ

∂
∂ξl

(

Sljκ
∂θ
∂xj

)

.

The conservative viscous adjoint operator may now be obtained by the transformation

L = M−1T
L̃.

7 Viscous Adjoint Boundary Conditions

It was recognized in Section 3 that the boundary conditions satisfied by the flow equations restrict the form
of the performance measure that may be chosen for the cost function. There must be a direct correspondence
between the flow variables for which variations appear in the variation of the cost function, and those variables
for which variations appear in the boundary terms arising during the derivation of the adjoint field equations.
Otherwise it would be impossible to eliminate the dependence of δI on δw through proper specification of
the adjoint boundary condition. Consequently the contributions of the pressure and viscous stresses need
to be merged. As in the derivation of the field equations, it proves convenient to consider the contributions
from the momentum equations and the energy equation separately.

7.1 Boundary Conditions Arising from the Momentum Equations

The boundary term that arises from the momentum equations including both the δw and δS components
(45) takes the form

∫

B

φkδ (S2j (δkjp+ σkj)) dBξ.



Replacing the metric term with the corresponding local face area S2 and unit normal nj defined by

|S2| =
√

S2jS2j , nj =
S2j

|S2|

then leads to
∫

B

φkδ (|S2|nj (δkjp+ σkj)) dBξ.

Defining the components of the total surface stress as

τk = nj (δkjp+ σkj)

and the physical surface element
dS = |S2| dBξ,

the integral may then be split into two components
∫

B

φkτk |δS2| dBξ +

∫

B

φkδτkdS, (59)

where only the second term contains variations in the flow variables and must consequently cancel the δw
terms arising in the cost function. The first term will appear in the expression for the gradient.

A general expression for the cost function that allows cancellation with terms containing δτk has the form

I =

∫

B

N (τ)dS, (60)

corresponding to a variation

δI =

∫

B

∂N

∂τk
δτkdS,

for which cancellation is achieved by the adjoint boundary condition

φk =
∂N

∂τk
.

Natural choices for N arise from force optimization and as measures of the deviation of the surface stresses
from desired target values.

The force in a direction with cosines qi has the form

Cq =

∫

B

qiτidS.

If we take this as the cost function (60), this quantity gives

N = qiτi.

Cancellation with the flow variation terms in equation (59) therefore mandates the adjoint boundary condi-
tion

φk = qk.

Note that this choice of boundary condition also eliminates the first term in equation (59) so that it need
not be included in the gradient calculation.

In the inverse design case, where the cost function is intended to measure the deviation of the surface
stresses from some desired target values, a suitable definition is

N (τ) =
1

2
alk (τl − τdl) (τk − τdk) ,

where τd is the desired surface stress, including the contribution of the pressure, and the coefficients alk

define a weighting matrix. For cancellation

φkδτk = alk (τl − τdl) δτk.



This is satisfied by the boundary condition

φk = alk (τl − τdl) . (61)

Assuming arbitrary variations in δτk, this condition is also necessary.

In order to control the surface pressure and normal stress one can measure the difference

nj {σkj + δkj (p− pd)} ,

where pd is the desired pressure. The normal component is then

τn = nknjσkj + p− pd,

so that the measure becomes

N (τ) =
1

2
τ2
n

=
1

2
nlnmnknj {σlm + δlm (p− pd)} {σkj + δkj (p− pd)} .

This corresponds to setting

alk = nlnk

in equation (61). Defining the viscous normal stress as

τvn = nknjσkj ,

the measure can be expanded as

N (τ) =
1

2
nlnmnknjσlmσkj +

1

2
(nknjσkj + nlnmσlm) (p− pd) +

1

2
(p− pd)

2

=
1

2
τ2
vn + τvn (p− pd) +

1

2
(p− pd)

2
.

For cancellation of the boundary terms

φk (njδσkj + nkδp) =
{

nlnmσlm + n2
l (p− pd)

}

nk (njδσkj + nkδp)

leading to the boundary condition

φk = nk (τvn + p− pd) .

In the case of high Reynolds number, this is well approximated by the equations

φk = nk (p− pd) , (62)

which should be compared with the single scalar equation derived for the inviscid boundary condition (29).
In the case of an inviscid flow, choosing

N (τ) =
1

2
(p− pd)

2

requires

φknkδp = (p− pd)n
2
kδp = (p− pd) δp

which is satisfied by equation (62), but which represents an overspecification of the boundary condition since
only the single condition (29) needs be specified to ensure cancellation.



Boundary Conditions Arising from the Energy Equation

The form of the boundary terms arising from the energy equation depends on the choice of temperature
boundary condition at the wall. For the adiabatic case, the boundary contribution is (56)

∫

B

kδT
∂θ

∂n
dBξ,

while for the constant temperature case the boundary term is (58). One possibility is to introduce a contri-
bution into the cost function which depends on T or ∂T

∂n so that the appropriate cancellation would occur.
Since there is little physical intuition to guide the choice of such a cost function for aerodynamic design, a
more natural solution is to set

θ = 0

in the constant temperature case or
∂θ

∂n
= 0

in the adiabatic case. Note that in the constant temperature case, this choice of θ on the boundary would
also eliminate the boundary metric variation terms in (57).

8 Results

8.1 Redesign of the Boeing 747 wing

Over the last decade the adjoint method has been successfully used to refine a variety of designs for flight at
both transonic and supersonic cruising speeds. In the case of transonic flight, it is often possible to produce
a shock free flow which eliminates the shock drag by making very small changes, typically no larger than
the boundary layer displacement thickness. Consequently viscous effects need to be considered in order to
realize the full benefits of the optimization.

Here the optimization of the wing of the Boeing 747-200 is presented to illustrate the kind of benefits
that can be obtained. In these calculations the flow was modeled by the Reynolds Averaged Navier-Stokes
equations. A Baldwin Lomax turbulence model was considered sufficient, since the optimization is for the
cruise condition with attached flow. The calculation were performed to minimize the drag coefficient at a
fixed lift coefficient, subject to the additional constraints that the span loading should not be altered and
the thickness should not be reduced. It might be possible to reduce the induced drag by modifying the span
loading to an elliptic distribution, but this would increase the root bending moment, and consequently require
an increase in the skin thickness and structure weight. A reduction in wing thickness would not only reduce
the fuel volume, but it would also require an increase in skin thickness to support the bending moment. Thus
these constraints assure that there will be no penalty in either structure weight or fuel volume.

Figure 2 displays the result of an optimization at a Mach number of 0.86, which is roughly the maximum
cruising Mach number attainable by the existing design before the onset of significant drag rise. The lift
coefficient of 0.42 is the contribution of the exposed wing. Allowing for the fuselage to total lift coefficient
is about 0.47. It can be seen that the redesigned wing is essentially shock free, and the drag coefficient is
reduced from 0.01269 (127 counts) to 0.01136 (114 counts). The total drag coefficient of the aircraft at this
lift coefficient is around 270 counts, so this would represent a drag reduction of the order of 5 percent.

Figure 3 displays the result of an optimization at Mach 0.90. In this case the shock waves are not
eliminated, but their strength is significantly weakened, while the drag coefficient is reduced from 0.01819
(182 counts) to 0.01293 (129 counts). Thus the redesigned wing has essentially the same drag at Mach 0.9
as the original wing at Mach 0.86. The Boeing 747 wing could apparently be modified to allow such an
increase in the cruising Mach number because it has a higher sweep-back than later designs, and a rather
thin wing section with a thickness to chord ratio of 8 percent. Figures 4 and 5 verify that the span loading
and thickness were not changed by the redesign, while figures 6 and 7 indicate the required section changes
at 42 percent and 68 percent span stations.



8.2 Wing design using an unstructured mesh

A major obstacle to the treatment of arbitrarily complex configurations is the difficulty and cost of mesh
generation. This can be mitigated by the use of unstructured meshes. Thus it appears that the extension of
the adjoint method to unstructured meshes may provide the most promising route to the optimum shape
design of key elements of complex configurations, such as wing-pylon-nacelle combinations. Some preliminary
results are presented below. These have been obtained with new software to implement the adjoint method for
unstructured meshes which is currently under development [30]. Figures 8 and 9 shows the result of an inverse
design calculation, where the initial geometry was a wing made up of NACA 0012 sections and the target
pressure distribution was the pressure distribution over the Onera M6 wing. Figures 10, 11, 12, 13, 14, 15,
show the target and computed pressure distribution at six span-wise sections. It can be seen from these
plots the target pressure distribution is well recovered in 50 design cycles, verifying that the design process
is capable of recovering pressure distributions that are significantly different from the initial distribution.
This is a particularly challenging test, because it calls for the recovery of a smooth symmetric profile from
an asymmetric pressure distribution containing a triangular pattern of shock waves.

Another test case for the inverse design problem uses the wing from an airplane (code named SHARK) [31]
which has been designed for the Reno Air Races. The initial and final pressure distributions are shown the
figure 16. As can be seen from these plots, the initial pressure distribution has a weak shock in the outboard
sections of the wing, while the final pressure distribution is shock-free. The final pressure distributions are
compared with the target distributions along three sections of the wing in figures 17, 18, 19. Again the design
process captures the target pressure with good accuracy in about 50 design cycles. The drag minimization
problem has also been studied for this wing, and the results are shown in figure 20. As can be seen from this
plot, the final geometry has a shock-free profile and the drag coefficient has been slightly reduced.

9 Conclusion

The accumulated experience of the last decade suggests that most existing aircraft which cruise at transonic
speeds are amenable to a drag reduction of the order of 3 to 5 percent, or an increase in the drag rise Mach
number of at least .02. These improvements can be achieved by very small shape modifications, which are
too subtle to allow their determination by trial and error methods. The potential economic benefits are
substantial, considering the fuel costs of the entire airline fleet. Moreover, if one were to take full advantage
of the increase in the lift to drag ratio during the design process, a smaller aircraft could be designed to
perform the same task, with consequent further cost reductions. It seems inevitable that some method of
this type will provide a basis for aerodynamic designs of the future.
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Fig. 2. Redesigned Boeing 747 wing at Mach 0.86, Cp distributions
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Fig. 3. Redesigned Boeing 747 wing at Mach 0.90, Cp distributions
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Root Section:   9.8% Semi-Span

Cp = -2.0

Cl:  0.348    Cd: 0.01749    Cm:-0.0971                                         
Mid Section:  48.8% Semi-Span

Cp = -2.0

Cl:  0.262    Cd:-0.00437    Cm:-0.0473                                         
Tip Section:  87.8% Semi-Span

Cp = -2.0

Fig. 8. Initial pressure distribution over a NACA 0012
wing

NACA 0012 WING TO ONERA M6 TARGET                                               
Mach: 0.840    Alpha: 3.060                                                     
CL:  0.314    CD: 0.01592    CM: 0.0000                                         
Design:  50    Residual:  0.1738E+00                                            
Grid: 193X 33X 33                                                               

Cl:  0.294    Cd: 0.03309    Cm:-0.1026                                         
Root Section:   9.8% Semi-Span

Cp = -2.0

Cl:  0.333    Cd: 0.01115    Cm:-0.0806                                         
Mid Section:  48.8% Semi-Span

Cp = -2.0

Cl:  0.291    Cd:-0.00239    Cm:-0.0489                                         
Tip Section:  87.8% Semi-Span

Cp = -2.0

Fig. 9. Final pressure distribution and modified section
geometries along the wing span

NACA 0012 WING TO ONERA M6 TARGET               
MACH   0.840    ALPHA  3.060      Z     0.00

CL    0.2814    CD    0.0482    CM   -0.1113

GRID  192X32    NDES      50    RES0.162E-02
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Fig. 10. Final computed and target pressure distribu-
tions at 0 % of the wing span

NACA 0012 WING TO ONERA M6 TARGET               
MACH   0.840    ALPHA  3.060      Z     0.00

CL    0.2814    CD    0.0482    CM   -0.1113

GRID  192X32    NDES      50    RES0.162E-02
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Fig. 11. Final computed and target pressure distribu-
tions at 20 % of the wing span



NACA 0012 WING TO ONERA M6 TARGET               
MACH   0.840    ALPHA  3.060      Z     0.40

CL    0.3269    CD    0.0145    CM   -0.0865

GRID  192X32    NDES      50    RES0.162E-02
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Fig. 12. Final computed and target pressure distribu-
tions at 40 % of the wing span

NACA 0012 WING TO ONERA M6 TARGET               
MACH   0.840    ALPHA  3.060      Z     0.60

CL    0.3356    CD    0.0081    CM   -0.0735

GRID  192X32    NDES      50    RES0.162E-02
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Fig. 13. Final computed and target pressure distribu-
tions at 60 % of the wing span

NACA 0012 WING TO ONERA M6 TARGET               
MACH   0.840    ALPHA  3.060      Z     0.80

CL    0.3176    CD    0.0011    CM   -0.0547

GRID  192X32    NDES      50    RES0.162E-02
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Fig. 14. Final computed and target pressure distribu-
tions at 80 % of the wing span

NACA 0012 WING TO ONERA M6 TARGET               
MACH   0.840    ALPHA  3.060      Z     1.00

CL    0.4846    CD    0.0178    CM   -0.1518

GRID  192X32    NDES      50    RES0.162E-02
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Fig. 15. Final computed and target pressure distribu-
tions at 100 % of the wing span



SHARKX6 (JCV:  16 DEC 99)                                                       
Mach: 0.780    Alpha: 1.400                                                     
CL:  0.280    CD: 0.00624    CM: 0.0000                                         
Design:  60    Residual:  0.1528E+00                                            
Grid: 193X 33X 49                                                               

Cl:  0.241    Cd: 0.02383    Cm:-0.1179                                         
Root Section:   6.6% Semi-Span

Cp = -2.0

Cl:  0.406    Cd: 0.00203    Cm:-0.1871                                         
Mid Section:  49.2% Semi-Span

Cp = -2.0

Cl:  0.280    Cd:-0.01369    Cm:-0.1042                                         
Tip Section:  91.8% Semi-Span

Cp = -2.0

Fig. 16. Initial and final pressure and section geometries

SHARKX6 (JCV:  16 DEC 99)                       
MACH   0.780    ALPHA  1.400      Z   16.548

CL    0.2787    CD    0.0120    CM   -0.1352

GRID  192X32    NCYC      80    RES0.683E-03
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Fig. 17. Initial and final pressure distributions at 5 % of
the wing span

SHARKX6 (JCV:  16 DEC 99)                       
MACH   0.780    ALPHA  1.400      Z   66.191

CL    0.4341    CD    0.0018    CM   -0.2010

GRID  192X32    NCYC      80    RES0.683E-03
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Fig. 18. Initial and final pressure distributions at 50 %
of the wing span

SHARKX6 (JCV:  16 DEC 99)                       
MACH   0.780    ALPHA  1.400      Z  115.834

CL    0.3122    CD   -0.0139    CM   -0.1244

GRID  192X32    NCYC      80    RES0.683E-03
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Fig. 19. Initial and final pressure distributions at 95 %
of the wing span



SHARKX6 (JCV:  16 DEC 99)                                                       
Mach: 0.780    Alpha: 1.421                                                     
CL:  0.279    CD: 0.00613    CM:-1.2454                                         
Design:  10    Residual:  0.1887E-01                                            
Grid: 193X 33X 49                                                               

Cl:  0.245    Cd: 0.02372    Cm:-0.1192                                         
Root Section:   6.6% Semi-Span

Cp = -2.0

Cl:  0.401    Cd: 0.00088    Cm:-0.1754                                         
Mid Section:  49.2% Semi-Span

Cp = -2.0

Cl:  0.278    Cd:-0.01256    Cm:-0.1000                                         
Tip Section:  91.8% Semi-Span

Cp = -2.0

Fig. 20. Drag minimization for the SHARK wing


