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1 Abstract

The following work presents preliminary developments
in the simulation of aeroelastic helicopter rotor flows in
the hover regime. Simulations are carried out by solv-
ing the full time-accurate compressible Euler equations
on a moving multiblock mesh around a complete rotor
configuration. Aeroelastic effects are introduced as an
integral part of the simulation. The resulting program,
ROTORS8Y7, is implemented in parallel, using a domain
decomposition approach and the MPI (Message Passing
Interface) Standard for communication purposes. Com-
parisons of the solutions with experimental data are pre-
sented for two-bladed and five-bladed helicopter rotors
in hover. The results demonstrate that combining highly
efficient algorithms with high performance parallel com-
puting ylelds an accurate and efficient method for the
computation of complex vortical flows of interest to the
rotorcraft community.

2 Introduction

During the course of the last three years, much effort
has been placed at Princeton on the development of ac-
curate and efficient methods for the calculation of un-
steady viscous and inviscid flows including aeroelastic ef-
fects. Efficiency has been achieved through the usage of
fast implicit algorithms and the utilization of high per-
formance parallel computing platforms. The pursuit of
high accuracy has focused on the implementation of re-
fined artificial dissipation algorithms which provide the
necessary upwind bias without unnecessarily corrupting
the flow solution and the use of properly resolved meshes
for the physical phenomena at hand. It is our opinion
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that a successful tool for the computation of flows of rel-
evance to the rotorcraft community must be composed
of parts of both of these ingredients.

The accurate computation of helicopter rotor flows
in both hover and forward flight is a particularly chal-
lenging problem due to the inherent difficulties that it
entails. Two aspects of these computations stand out as
being especially complex. On one hand, reliable predic-
tion of helicopter hover and forward flight performance
is heavily dependent on the proper resolution of the
blade/vortex interaction that occurs near the tip region.
This interaction has a strong influence on the inflow an-
gles and pressure distributions of the outboard sections
of a blade. On the other hand, the establishment of
a full rotor wake is a problem of inherent stiffness due
to the varying scales present in the problem: while it
is necessary to accurately resolve the turning motion of
the blade, a large number of revolutions is required for
the establishment of a steady wake pattern.

Furthermore, the simulation of the forward flight
problem has not been thoroughly attempted yet because
of the phenomenal computational requirements neces-
sary to complete the work. Typical CFD computations
of two-bladed helicopter rotors in forward flight use a
pseudo-steady formulation and ad-hoc modeling of the
wake on the half of the rotor in which the calculations
are not carried out [9]. This paper will show that a full
multigrid-implicit approach to the solution of the un-
steady Euler equations for helicopter flows is now com-
putationally feasible using a parallel implementation of
the method, and an algorithm where the time-step of
the computation is solely dictated by accuracy require-
ments, and not by numerical stability restrictions. Using
this method, the flowfield of a helicopter rotor in hover
is easlly calculated with a moving mesh strategy without
the need to resort to a quasi-steady formulation. With
this in mind, the solution of the forward flight prob-
lem only requires an additional factor in computing time
equal to the number of blades in the rotor, since periodic




boundary conditions can no longer be used. In addition,
we also present a steady-state approach to the calcula-
tion of the hover problem, that yields faster turnaround
for this type of calculations. Both the fully unsteady
and the steady-state formulations yield the exact same
results upon convergence, but only the fully unsteady
approach is applicable to the computation of the for-
ward flight regime.

The results presented in this paper are computed us-
ing a fully-implicit discretization of the Euler equations.
At every time-step, the inversion of the implicit equa-
tions is achieved with the aid of a pseudo-time inner
iteration which takes advantage of convergence accel-
eration techniques such as multigrid and residual aver-
aging [1, 2, 3, 7]. This implicit discretization allows
the time-step to be based on accuracy requirements,
and not on numerical stability issues: for isolated in-
viscid wing calculations, CFL numbers on the order of
3,000 — 5,000 are typical. For viscous calculations on
meshes with wide ranges in the sizes of the cells in the
domain (for instance, for appropriate resolution of the
boundary layer and blade tip vortex regions), the CFL
number can easily reach 50,000 and would make the use
of an explicit time integration completely impracticable.

The rotor blades are allowed to deform aeroelastically
forced by the instantaneous aerodynamic load around
the blade. The aeroelastic solution is performed using
a truncated modal decomposition-approach of the finite
element equations of motion of the structure, and the
mode shapes and frequencies are provided by a finite
element solver based on 16 degrees-of-freedom plate ele-
ments which are appropriate for this kind of calculation.
The aeroelastic equations are implicitly coupled to the
flow solver solution leading to a high degree of fidelity
in the simulation, even when large time-steps are taken.
Details of the aeroelastic coupling to the flow solver can
be found in [1].

The flow solver uses a multiblock mesh configuration
to allow for future high resolution of more complex blade
tip shapes and the inclusion of full helicopter geome-
tries (rotor hub and fuselage). Initially, these multiblock
meshes are generated by the decomposition of an O-H
mesh, but in the future, they will be constructed us-
ing traditional elliptic multiblock mesh generation tech-
niques.

Finally, the complete rotor solution (aeroelastic effects
included) is implemented for distributed memory archi-
tectures using a static domain decomposition approach
and the MPI (Message Passing Interface) Standard for
communication purposes. The heart of the computa-
tional algorithm is of an explicit nature, and therefore,
high parallel efficiencies can be achieved for this type
of implementation [8]. This paper represents our first
step toward complete unsteady simulation of helicopter
aeroelastic phenomena in forward flight.

3 Governing Equations and Dis-
cretization

Consider a control volume V with boundary 4V in a
Cartesian coordinate system. The control volume moves
with velocity b = (2, Yz, 2;) while the fluid velocity is
u = (u,v,w). In this coordinate system, the three-
dimensional unsteady compressible Euler equations can
be written as:
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where w is the vector of conserved flow variables
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in each of the coordinate directions. The equations of
motion of the fluid can then be written in integral form
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where the right hand side vector S is given by
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Also, for an ideal gas, the equation of state may be
written as

1
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When the integral governing equations (2) are indepen-
dently applied to each cell in the domain, we obtain a
set of coupled ordinary differential equations of the form

d
g1 (Wisk Vigr) + E(wiji) + D(wije) =0, (3)
where E(w;;z) are the convective Euler fluxes and
D(wijk) are the artificial dissipation fluxes added for nu-
merical stability reasons. This equation (3) can be dis-
cretized implicitly as follows (drop the %, j, b subscripts




for clarity):

d
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where R is the sum of the two flux contributions, and
the superscripts denote the time step of the calculation.
If we discretize the time derivative term with, say, a
backwards difference second order accurate operator, we
obtain
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The time integration of the Euler equations at each time
step can then be seen as a modified pseudo-time steady-
state problem with a slightly altered residual
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In this case, the vector of flow variables w which satisfies
the equation R*(w) = 0 is the w{nt1) vector we are
looking for. In order to obtain this solution vector, we
can reformulate the problem at each time step as the
following modified steady-state problem in a fictitious
time, t*:

dw

dt*
to which one can apply the fast convergence techniques
used for steady-state calculations. Applying this pro-
cess repeatedly one can advance the flow field solution
forward in time in a very eflicient fashion.

If we wished to solve for the absolute velocities in
hover without physically rotating the computational
grid, we may follow the formulation of Holmes and
Tong [6]. This involves adding source terms to equa-
tion 2 so that our governing equation becomes:
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The grid velocity vector is b = (—Qz,0,Qz), while
the additional term on the right hand side of equation 6
is introduced to account for the actual motion of the
grid and has the form

+R*(w) =0, (5)
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for a rotor which lies in the z, z plane. With this for-
mulation, the problem at hand can now be solved as a
steady-state hover problem.

4 Parallel Multiblock Flow

Solver: ROTORS87

4.1 Solver Algorithm

The essential algorithm used in the flow solution for the
multiblock flow solver is similar to the one used in the
original version of the code which used a single block
mesh [7]. A cell-centered discretization of the governing
flow equations is used, and the time derivative operator
in equation 4 is discretized with a second-order accurate
backwards difference formula. The Euler and artificial
dissipation fluxes are lumped with the discretization of
the time derivative operator, and a new modified residual
is thus formed. A modified 5-stage Runge-Kutta time-
stepping scheme is used to drive this modified resid-
ual to an acceptable level of convergence. When this
is achieved, the solution corresponds to the flow field
variables at the new time-step (for the new mesh loca-
tion).

The only difference with the solution strategy adopted
for the original solver reported in [7] resides in the fact
that an additional outer loop over all the blocks in the
domain is added. The internal structure of the flow
solver is, however, completely different, since it is opti-
mized for large loops over all the cells in the domain,
regardless of the number of blocks present. The solver
is now split into a pre-processing step that sets up the
required data structures and array sizes, and the actual
flow solver itself.

4.2 Parallelization Strategy

The original single block solver was parallelized using a
static domain decomposition along the three coordinate
directions of the block. The parallelization strategy for
the multiblock solver, however, is quite different. Simi-
larly to the single block solver (from now on referred to
as UFLO8T), ROTORSY is parallelized using a domain
decomposition model, a SPMD (Single Program Mul-
tiple Data) strategy, and the MPI Library for message
passing. The partitioning of the mesh could be per-
formed in the same fashion as in UFLOS8T for each and
every one of the blocks in the multiblock mesh. Since
the sizes of the blocks can be quite small sometimes,
further partitioning would severely limit the number of
multigrid levels that could be used in the flow solution,
and thus would hurt convergence. For this reason, it was
decided to use a domain decomposition strategy that al-
located complete blocks to a given processor.

The underlying assumption is the fact that there are
always more blocks than processors available. If this is
the case, every processor in the domain would be respon-
sible for the computations inside one or more complete
blocks. In the case in which there are more processors
than blocks available, the blocks can be adequately par-
titioned during a pre-processing step in order to have
at least as many blocks as processors. This approach
has the advantage that the number of multigrid levels
that can be used in the parallel implementation of the



code is always the same as in the serial version. More-
over, the number of processors in the calculation can be
any integer number, since no restrictions are imposed
by the partitioning in all coordinate directions used by
the single block program. In sum, each processor runs a
copy of a multiblock flow solver (although typically only
with a small number of blocks), and the various proces-
sors communicate at different stages of the calculation
in order to send/receive the necessary information for
all fluxes to be computed adequately.

The only drawback of this approach is the loss of the
exact load balancing that one had in UFLO87. The
blocks in the calculation can have different sizes, and
consequently, it is very likely that different processors
will be assigned a different total number of cells. This,
in turn, will imply that some of the processors will be
waiting until the processor with the largest number of
cells has completed its work and parallel performance
will suffer. The approach that we have followed to solve
the load balancing problem is to assign to each proces-
sor, in a pre-processing step, a certain number of blocks
such that its total number of cells is as close as possi-
ble to the exact share for perfect load balancing. An
algorithm is used that distributes the blocks trying to
minimize the maximum number of cells in all processors.
Although this algorithm is not assured to obtain a truly
optimum distribution of the blocks, it has been found in
practice to yield quite satisfactory results [8].

Within each processor there will be several blocks that
need to communicate with their neighboring blocks. The
data for these neighboring blocks can reside in a different
processor, and therefore, communication is necessary. In
order to minimize communication cost, it was decided
to pack all data that needed to be sent from one proces-
sor to another in one single message, regardless of the
number of blocks that resided in each of the processors.
Within each processor, the data for the flow variables
and grid locations is stored in a large one-dimensional
array. In order to accomplish this type of communi-
cation, during the pre-processing step, each processor
compiles a pointer list with all the entries in these large
arrays that need to be sent to all other processors. Simi-
larly, another pointer list for the locations of the data to
be received is also set up. At the time of information ex-
changes, each processor communicates all the necessary
data for the blocks that it contains to those processors
that need to receive it. The communication is imple-
mented using the asynchronous (non-blocking) send and
receive MPI constructs in order to be able to perform
some useful work while the information is being trans-
ferred.

4.3 Boundary Conditions

Four different types of boundary conditions are imposed
on the faces of the blocks in the mesh. All block faces
which lie directly on the surface of the blade use a flow
tangency boundary condition. For moving meshes, the
velocity of the mesh cells must be taken into account
in order to properly implement these kind of boundary

conditions.

At the inflow boundary, and on the far-field side walls
of the mesh, non-reflecting boundary conditions based
on one-dimensional Riemann invariants normal to the
boundary are imposed. At the outflow boundary, a di-
rect extrapolation of the flow quantities is performed, as
reported elsewhere in the literature [13, 10, 12, 14].

Finally, for hover calculations which only use one
blade sector, periodicity boundary conditions are used
to transmit the data from the vertical inflow plane to
the outflow and vice versa.

Notice that no attempt is made to artificially cor-
rect the boundary conditions in order to match the ex-
perimental thrust coefficients. Every effort is made to
achieve boundary conditions that resemble the condi-
tions of a rotor in free hover.

4.4 Mesh Movement

For rigid rotor blade calculations, the mesh is only re-
quired to rotate about the vertical axis in a solid body
fashion. Therefore, a simple rotational transformation
is applied to every point in each of the blocks in the
mesh.

For calculations in which the rotor blades are allowed
to deform aeroelastically, a procedure for moving the
mesh points within each block must be determined.
In general, the original mesh for the undeformed rotor
blade is generated using an elliptic or hyperbolic mesh
generator. During the solution process, the blades de-
form due to the unsteady airloads, and the mesh must
be moved to conform at all times with the instantaneous
position of the surface of the blade.

Clearly, the process of mesh generation is a highly
interactive and time consuming process, and thus cannot
be embedded in the calculation process. Since the mesh
deflections are typically small, an automatic procedure
to achieve mesh deformations was pursued.

Reuther et al. [11] have used a procedure called
WARP3D for the deformation of multiblock meshes used
in automatic aerodynamic design calculations. In this
case, the blocks on the surface of the wing must be de-
formed due to the effect of the changing values of the
design variables in the optimization problem. The mesh
motion requirements for the aeroelastic rotor simulation
are perfectly addressed by this mesh motion strategy,
and thus, WARP3D was used here as well. In a sense,
the mesh deflections in an unsteady aeroelastic simu-
lation can be viewed as deformations caused by design
variables which correspond to the modal coordinates of
the different modes of vibration of the structure.

WARP3D uses an algorithm which is quite similar to
transfinite interpolation (TFI). Unlike TFI, where there
is no prior knowledge of the interior mesh, WARP3D
makes use of the relative interior point distributions in
the initial mesh. The algorithm allows the perturbation
of all the points in a given block by specifying the final
location of the faces that move during the simulation
process. The reader is referred to {11] for more details.



5 Structural Equations and

Coupling

The structural equations are obtained from a finite ele-
ment model and generally take the form

(3] {4} + [C]{4} + [K]{e} = {F}, (7)

where [M], [C], and [K] are n x n mass, damping, and
stiffness matrices for an n-dof structure. The solution
is obtained using a modal decomposition approach in
which only the first N normal vibration modes are con-
sidered so that the truncated model becomes

i+ 2Gwin; +win = fi, i=1,...,N (8)

where 7; is the i-th normal coordinate, w; is the natural
frequency of the #-th mode, {; is the modal damping
constant and f; is the corresponding forcing term.

For true unsteady calculations such as the ones re-
quired for forward flight simulations, these equations
are decomposed into a first order system, discretized us-
ing second or third-order accurate backward differencing
and then marched to a steady state in pseudo-time as
described in [1].

The structural equations are coupled to the flow so-
lution through the forcing terms f; which reflect the in-
stantaneous pressure distribution on the surface of the
blade. Information is exchanged between the fluid and
structural solvers at several points within the pseudo-
time iteration so that the blade position and velocity
are consistent with the pressure distribution when full
convergence is achieved.

In the hover case, the same approach can be followed if
a time-accurate formulation with a moving mesh is used.
If instead we solve for the steady-state solution, carry-
ing the additional information from the time histories
of the normal coordinates and the mass matrix effects
leads to slower aeroelastic convergence. This time to
convergence depends heavily on the atmospheric condi-
tions and the true stability characteristics of the blade.
In order to obtain faster aeroelastic convergence, the
time dependent terms in equation 8 can be dropped in
this formulation. After the forcing terms for all normal
modes of vibration are calculated, the deflected position
of the blade can simply be obtained from:

m:u]:—:?, i=1,...,N 9

Further acceleration to aeroelastic convergence can
usually be obtained by employing an overrelaxation ap-
proach to the evolution of each of the normal coordi-
nates, in a similar fashion to the work of Borland [4].
This method has not been yet tried in our work, but
will be used in the near future.

The structural model for the present work employs 16-
dof plate finite elements but the structural information
could be provided by other more elaborate finite element
models since the solver only relies on a description of the
normal modes.

Mention should be made of the fact that additional
data structures needed to be set up in the case of a
multiblock flow solver, since different portions of the
blade now reside on arbitrary blocks in the mesh, which,
in turn, might even reside in different processors. This
issue is taken care of in a preprocessing step by distribut-
ing the complete mode shapes to all the processors, and
maintaining the proper masks in all blocks that allow
their cells to know which global structural cell number
they correspond to.

6 Results

This section presents some preliminary results of Euler
calculations for helicopter rotors in hover. The rotors
in this work were simulated with both the full unsteady
formulation utilizing a moving grid and the quasi-steady
hover formulation. Both results were essentially identi-
cal. Because the quasi-steady formulation consumed less
time, most of the results in this paper were computed
using the quasi-steady code.

6.1 Rigid Rotor Configurations

Three sets of calculations were performed on a 128 x
32 x 48 cell mesh modelling an untwisted, untapered
two-bladed NACA 0012 rotor with an aspect ratio of 6.
Experimental results for this rotor at varying collective
pitch angles and rotational speeds have been obtained
by Caradonna and Tung [5]. The first case considered
is a collective pitch of 0 degrees and a tip Mach number
of 0.520. This case is a good test of the flow solver in
the absence of downwash effects (thus removing possible
reflections from the boundaries). Figure 1 shows com-
putational and experimental pressure coefficient distri-
butions at three spanwise locations in the outer portion
of the blade. The computational results are in excellent
agreement with the experimental results.

The second case has a collective pitch of 8 degrees
and a tip Mach number of 0.439. Figure 2 shows the
pressure coefficient distribution at the same spanwise
locations, again indicating excellent agreement with the
experimental data. The final case is also at a collective
pitch of 8 degrees but has a higher tip Mach number of
0.877, which produces a region of supersonic flow over
the blade. Figure 3 shows the pressure coeflicient distri-
bution at the same three near-tip locations. Note that
the bottom surface and post-shock regions are captured
quite well, while the absence of boundary layer effects
leads to an inaccurate prediction of the shock location.
In these last two cases, the farfield boundaries on the
top and bottom of the domain were located five rotor
radii away from the rotor plane. As mentioned before,
no special boundary corrections were applied.

Figure 4 shows the topology of an O-H mesh for a
single sector of a linearly twisted five-bladed rotor with
a NACA 0012 blade section. The blade belonging to
this sector has a finer mesh definition on its surface and
appears to be solid black. The grid in the figure has
been intentionally coarsened for presentation purposes.




The results presented for this rotor have been calculated
on a mesh containing 96 x 32 x 56 cells.

Figure 5 shows the contours of downwash velocity on
a cutting plane that passes through the rotor hub. The
calculation corresponds to the same rotor in Figure 4
with a collective pitch of 10° at the % radius location.
The tip Mach number for this calculation is 0.576. As
can be seen in the figure, the wake contracts below the
rotor plane, and a strong downwash is created at this az-
imuthal location. The calculation has already reached
a steady-state hover condition, and this cutting plane
is simply representative of the complete solution. Ex-
cept for the near wake area, the contours of downwash
velocity look almost the same for arbitrary azimuthal
locations.

Figure 6 presents a prediction of thrust versus collec-
tive pitch with experimental results for the same five-
bladed rotor. The results are reasonably close to the
experimental curve, but have a slightly greater slope.
Since the flow solver was demonstrated to be accurate
using the experimental results above, it is believed that
boundary conditions may have a greater influence on
this case than the previous comparisons with experi-
ment. In addition, the higher collective pitch results
may be lacking in accuracy due to the omission of vis-
cous effects and inaccurate capture of the shed vortex.

6.2 Aeroelastic Rotor Results

In order to document the aeroelastic capabilities of the
ROTORST code, the aeroelastic model described in sec-
tion 5 was applied to the same five-bladed rotor from
Figure 4. In this case, the intention was to demon-
strate the feasibility of obtaining aeroelastic responses
for this type of flow, without large additional compu-
tational costs. For this purpose, the structure of this
rotor was modelled as a flat plate of aluminum of thick-
ness equal to 4% of the blade chord. The blade was
considered to be cantilevered at its root, and the finite
element model consisted of 72 16-degree-of-freedom flat
plate elements covering the span of the blade. For this
calculation, the first seven modes of vibration of the
structure (with natural frequencies shown in Table 1)
were kept. Of these seven modes, the first four are bend-
ing modes of varying order, the fifth and sixth modes are
torsional modes, and the seventh mode of vibration is a
sectional bending mode. All these modes are present in
the aeroelastic response of this rotor, but they are clearly
dominated in magnitude by the first bending mode.
The coupled aeroelastic calculation was carried out
by computing an update to the position of the structure
every 30 multigrid iterations of the flow solver. At each
aeroelastic solution, forcing terms for all of the modes
in the calculation were computed from the current pres-
sure distribution around the blades. From these forcing
terms, new modal coordinates were found and a new
deflected blade surface was obtained. Using WARP3D,
new deformed blocks for the multiblock mesh are calcu-
lated, and all grid metrics are recomputed. Sea-level at-

l Mode number l Modal frequency (Hz) l

1 2.103
82.487
647.200
2397.528
2495.157
6878.083
15572.949

N Ut W

Table 1: Modal Frequencies for the First Seven Modes
of Vibration of a Helicopter Rotor Blade

mospheric conditions were used to set up the freestream
pressures and densities.

Figure 7 shows the evolution of the first three modes
of vibration of the structure during the aeroelastic cal-
culation process (the second and third modes have been
rescaled for presentation purposes). The other modes
exhibit similar responses at much smaller magnitudes.
For finer meshes, these responses require a longer time
to converge to a steady solution due to the slower re-
sponse of the wake system to the iteration process. It
is in this case when an overrelaxation correction of the
form described above can be useful. Figure 8 shows the
position of the airfoil section (NACA 0012) at the tip
of the rotor blade as the aeroelastic iterations proceed.
The differences become small after the initial jump is
overcome. This figure shows the extent to which the
response is dominated by the first mode of vibration:
a bending mode. Thus, it appears as if the tip of the
blade is merely displacing upwards (mimicking a coning
effect). Upon closer look, a small amount of twist is
also present. The final lift coefficient for this aeroelastic
rotor is slightly higher than the one for the rigid blade.
This difference in lift could be expected due to the higher
twist in the outboard sections of the aeroelastic rotor.
However, one can see that the accuracy of this lift predic-
tion depends heavily on the exactitude of the structural
model, which was chosen somewhat arbitrarily. In par-
ticular, the torsional rigidity of this model most likely
does not properly represent that of the real rotor, and
therefore, the sectional pitch of the blade is likely to be
incorrect. Further information about the real structural
models of these blades is required in order to present
comparisons between computed and experimental data.

6.3 Parallel Performance

Preliminary parallel efficiency results for the automatic
design version of the multiblock code were presented ear-
lier this year [8]. These performance figures, however,
depend heavily on the size of the mesh used, the num-
ber of blocks in the mesh, and the load balancing of the
calculation. Since one of the factors that enables the he-
licopter rotor calculations presented in this paper is the
parallel implementation of the computational method,
we found it appropriate to present the parallel perfor-
mance results for the meshes used in this work. The



total number of internal cells in one sector of the five-
bladed rotor is 172032, decomposed into 18 blocks of
varying sizes. Figure 9 presents the parallel speedup for
this calculation for a number of nodes ranging from 1 to
12. As we can see, with up to 8 processors, the curves
show the high performance that can be accomplished
with this implementation. For 12 processors, the per-
formance drops heavily due to the following two effects:
for a mesh of this size, the granularity of the solution
becomes quite high. Moreover, the load balancing that
can be accomplished with 18 blocks in 12 processors
is rather poor. For future Navier-Stokes calculations,
the granularity of the solution will become much lower,
and more blocks will be introduced to allow a load bal-
anced calculation with a larger number of processors.
These two effects combined will sustain the high paral-
lel performance of ROTORSYT for a much larger number
of nodes.

7 Conclusions

Preliminary results for helicopter rotors in hover with
aeroelastic deflections have been presented. Reasonable
agreement with experimental pressure distributions and
thrust curves has been achieved, but better resolution
of the tip vortex and improved farfield boundary condi-
tions are necessary for more accurate solutions.

The current formulation provides the accuracy and
efficiency required to tackle fully resolved, unsteady,
viscous, forward flight computations in a reasonable
amount of time, including aeroelastic effects. For
these calculations to be meaningful, proper considera-
tion must be given to the issues of low numerical dis-
sipation in the intrinsic algorithm, resolution of the tip
vortex, and meaningful blade-vortex interaction.

These issues are currently under investigation, and
will be addressed in the coming months.
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Figure 1: Pressure distribution on a nonlifting rotor in
hover, 6. = 0°, M; = 0.520.
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Figure 2: Pressure distribution on a rotor in hover, §. =

8°, M, = 0.439.
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Figure 3: Pressure distribution on a rotor in hover, 8. =

80, Mt = 0877
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Figure 6: Thrust versus collective pitch for a five-bladed
rotor, M; = 0.576, o — numerical, - = experimental.

Figure 4: Perspective View of the O-H Mesh Used in
One Sector of a Five-Bladed Rotor.

Time Evolution of the First Three Modes of Vibration
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Figure 7: Aeroelastic Evolution of the First Three
Modes of Vibration.

Figure 5: Contours of Downwash Velocity on a Cutting
Plane Through the Rotor Hub.
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Figure 9: Parallel speedup for 18 block mesh.
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