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ABSTRACT 
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This paper desribes a technique for 
finding the numerical solution of the 
Full Potential equation for steady tran- 
sonic flow about airfoils. The exterior 
but finite domain is discretized by 
breaking it up into triangles. Differ- 
ence equations are formulated using var- 
iational principle and a formula for the 
derivative in an arbitrary polygon. The 
iterative schemes include multigrid-AD1 
for structured grids and modified check- 
erboard for more arbitrary grids. 
Results show consistency and compare 
favorably with codes using quadrilateral 
elements. 

INTRODUCTION 

Solutions to the potential flow equa- 
tion have been shown to give accurate 
predictions of the aerodynamic charac- 
teristics of streamlined bodies in the 
low transonic speed range. Computer 
codes that solve numerically for the 
potential flow about wings and airfoils, 
coupled with a boundary layer correction 
algorithm, provide crucial design and 
analysis tools for efficient shapes in 
the new generation of commercial air- 
craft. 

For a single airfoil in an external 
domain, fast and reliable methods exist 
to generate a grid and to solve the 
resulting difference equations. Now the 
task before the computational aerodyna- 
micist is to develop techniques to find 
the solution over more complicated geo- 
metries such as multi-element airfoils. 

The Augmentor Airfoil(l), for exam- 
ple, is an asymmetric airfoil with two 
aft auxiliary foils originally designed 
for STOL purposes. It has been shown 
experimentally to have surprisingly low 
drag, and efficient manuevering charac- 
teristics at transonic speeds. Whether 
these characteristics are due to viscous 
effects or are a property of the invis- 
cid flow is a question which may be 
answered through analysis of the poten- 
tial flow about such a configuration. 

In obtaining the difference equation, 
the two best known ways that are suited 
for handling complex geometries are the 
finite element and finite volume 

mthods ( 2 , 3 )  . The mapping function from 
,:ie computational to the physical domain 
used to transform the equations in the 
finite difference method is not needed 
for the finite volume method because the 
difference equation is formulated in the 
physical plane. In finite element 
theory the governing differential equa- 
tion is replaced by a variational prin- 
ciple and solution methods can be 
applied directly in the physical plane. 

The most commonly used element to 
date has been the quadrilateral with 
bilinear variation of the potential and 
isoparametric representation. However, 
the triangular finite element has some 
interesting advantages. First, the tri- 
angle is the simplest two-dimensional 
geometric figure with area; thus one 
would think grid generation around com- 
plex geometries might be easier than 
with quadrilaterals. For example, the 
discretization of an n-element airfoil 
and far field boundary produces an n+l 
connected domain with a polygonal bound- 
ary. It can be proved that both trian- 
gle and quadrilateral finite elements 
can cover this domain exactly, but tri- 
angulation might be done in a more effi- 
cient manner. 

Secondly, if one restricts the poten- 
tial to vary linearly between vertices 
of a triangle, then the gradient (the 
velocity) is constant within the trian- 
sle. Hence there is no error associated 
1,ith integration of the variational, 
;l",i:e the integrand is a function only 
of the velocity. The difference equa- 
tion reduces to a simple formula that 
can be thought of as a mass flux balance 
on a secondary polygonal cell around the 
node. The Retarded Density/Artificial 
Compressibility method is used to modify 
the difference scheme in order to en- 
force the entropy condition. 

The more complex the geometry, the 
harder it is to create grids which have 
structure, i.e., which have each grid 
line being parameterized with a variable 
varying in a monotonically increasing 
fashion. The existing methods, patch- 
ing, conformal mapping, solving nonli- 
near elliptic equations, and integral 
curve methods(4), all have difficulties 
in generating efficient curvilinear 
coordinate systems around n-element air- 
foils. Inevitably the aspect ratio of 
some elements becomes large, which leads 
to inaccuracies. 
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On t h e  o ther  hand, one can f i t  a  com- 
p l e t e l y  uns t ruc tured  g r i d  of f a i r l y  low 
aspect  r a t i o  elements about almost any 
domain. One of t h e  authors  is  c u r r e n t l y  
developing an algorithm t o  cover a  
domain with t r i a n g l e s  t h a t  have s t r i c t  
bounds on t h e i r  aspect  r a t i o .  The use 
of an uns t ruc tured  g r i d  r e s t r i c t s  t h e  
choice of t h e  i t e r a t i v e  scheme. Point  
schemes a r e  t h e  only a l t e r n a t i v e ,  un less  
one wants t o  i n v e r t  d i r e c t l y  t h e  f u l l  
sparse  but uns t ruc tured  matrix and use a  
Newton type i t e r a t i o n .  

Depending on t h e  s t r u c t u r e ,  one of 
two i t e r a t i v e  schemes were used on t r i -  
angular grids. A mul t i l eve l  i t e r a t i v e  
scheme was constructed based on t h e  
checkerboard scheme f o r  uns t ruc tured  
g r i d s .  A f a s t  i t e r a t i v e  method, Multi- 
grid-ADI, was used on t h e  s t r u c t u r e d  
g r i d s .  

This paper d i scusses  t h e  d e r i v a t i o n  
of t h e  d i f f e r e n c e  scheme on t r i a n g l e s ,  
and t r i e s  t o  e s t a b l i s h  i t s  accuracy and 
usefulness  i n  computing t h e  t ransonic  
flow around a i r f o i l s .  

DERIVATION 9 DIFFERENCE EQUATIONS 

Suppose one must es t imate  df /dx i n  an 
a r b i t r a r y  polygon with n-1 s i d e s  and 
values of f  given a t  each of t h e  n  
nodes. Define t h e  average value of df /dx 
a s  t h e  a rea  i n t e g r a l  over t h e  polygon, 

where A i s  t h e  a r e a  of t h e  polygon. 
Using  ree en's theorem, t h e  expression 
becomes 

1 
= x ) f  d y ,  (2 )  

and tak ing  a  r e p r e s e n t a t i v e  value of f  
f o r  a  edge t o  be t h e  average of  t h e  end- 
po in t  va lues ,  one f i n d s  

The index N+l is  1. The same procedure 
g ives  an exact  equat ion f o r  t h e  a r e a ,  

expressions f o r  t h e  v e l o c i t i e s  u  and v .  
Since t h r e e  po in t s  determine a  p lane ,  
t h e  t r i a l  func t ion  i n  a  t r i a n g l e  is  an 
equat ion f o r  a  p lane ,  and t h e  grad ien t  
w i l l  be constant  wi th in  t h e  t r i a n g l e ,  
s e e  f i g u r e  1 A .  

Figure 1. A. T r i a l  func t ion  

B.  Basis func t ions  

This  represen ta t ion  of t h e  p o t e n t i a l  
is  analogous t o  t h e  Area Basis Functions 
of F i n i t e  Element Theory(5), s e e  f i g u r e  
1B. The t r i a l  funct ion is  

where 
x  (y3-y2)+x2(y - ~ 3 1 + ~ 3 ( ~ 2 - Y  1 

A1 = X I ( Y 3 - Y 2 ) + ~ 2 ( ~ 1 - ~ 3 ) + ~ 3 ( ~ 2 - ~ 1 )  

For a  d i f f e r e n c e  scheme t o  be compat- 
i b l e ,  t h e  p o t e n t i a l  must be continuous 
between elements. Compatibi l i ty  is 
ensured i n  t r i a n g l e s  by t h e  l i n e a r i t y  of 
t h e  p o t e n t i a l ;  no isoparametr ic  repre -  
s e n t a t i o n  is needed. 

The v a r i a t i o n a l  p r i n c i p l e  f o r  com- 
p r e s s i b l e ,  i n v i s c i d ,  i r r o t a t i o n a l  flow 
was desr ibed by Bateman(6). Consider 
t h e  i n t e g r a l  

R e s t r i c t i n g  one 's  a t t e n t i o n  t o  t r i a n -  
g l e s ,  d e f i n e  ' t h e  v e l o c i t y  p o t e n t i a l  a s  
t h e  func t ion  defined a t  t h e  nodes; 
assume f u r t h e r  t h a t  t h e  p o t e n t i a l  v a r i e s  
l i n e a r l y  between nodes. The polygon 
formula derived above gives exact  

where P is given by t h e  i s e n t r o p i c  r e l a -  
t ion  



The solution of the continuity 
equation for a compressible, inviscid, 
irrotational flow is a stationary point 
of the integral. This can be seen by 
noting that the Euler-Lagrange equation 
of I is the continuity equation, since 

a P ap - = - p u  and = - p v ,  ( 9 )  au 

The integral can be cast as the sum 
of integrals over the N triangles that 
make up the domain, 

Because of the constant gradient, the 
pressure is constant in each triangle; 
thus 

Taking the first variation, one finds 

From the polygon formula (6u,6v) 
can be written i 

where the subscriptsi,2 and 3 refer to 
the three vertices of the ith triangle. 

Reordering in terms of the points j = 
1,2,. . . ,M, the expression for the first 
variational becomes 

where 

and where j is the index for the center 
point and k is the index of the sur- 
rounding six triangles , A x and A y are 
the lengths of the leg opposite the jth 
node, see figure 2. 

The discrete Euler-Lagrange equation 
is 

Figure 2. Difference formula stencil 

at every point j, j=1,2,. . . ,M. 

Physically, 

is a mass flux through some surface in 
the jth triangle. A representative sur- 
face is the one drawn dotted in figure 
3A, the endpoints being the midpoints of 
two legs extending from the jth node. 
Since the density and velocity are con- 
stant, the surface that extends through 
the midcell point is equally as repre- 
sentative, figure 3B. the midcell 
point, figure 3B. Thus S approximates 
a mass flux in a secondary cell formed 
from the mid-cell points. The secondary 
mesh is interlocking, thus the domain is 
completely covered once, figure 4A. 

Figure 3. Flux line and modification 

Jq- 1 
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B. 

A. 

Figure 4. A .  Secondary cell,B.boundary 

Consider the six-triangle group pic- 
tured in figure 5 A ;  for Laplace1s equa- 
tion the flux balance formula becomes 
just the discrete Laplacian, 

Consider further the group in figure 5 B ;  
the flux balance equation for ~a~lace's 
equation is 

A ~ S  3 .=($1-2$o+$r)+($z-2$0++5) 

+($3-2$0+$6). 
(19) 



n / 2  A 
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Figure 5. A.,B. Polygon examples 

Figure 6. Retarded density diagram 
This equation is logical if one appeals 
to the Mean Value Theorem 5or harmonic 
functions. 

The boundary conditions are 

in the far field ,and 

on the airfoil. The difference equation 
for points on the airfoil involves only 
three triangles. The mass flux balance 
still holds, however, with just the 
three, figure 4B. 

For the solution to be unique, the 
Kutta condition, that the flow leave the 
trailing edge smoothly, must be 
enforced. A branch cut, across which 
there is a constant jump in potential 
from the airfoil to the outer boundary, 
is also nessecary if a bound vortex is 
contained in the airfoil. Since there 
are actually two values of the potential 
at a point on the cut, there must be two 
conditions there. One is 

(22) 
= const along cut, 

and the other is that the flux balance 
hold. In the special case of the trail- 
ing edge point, the flux balance from 
the upper secondary cell will give the 
flux into the lower secondary cell and 
vice versa, thus giving two conditions. 

In supercritical flows, nonuniqueness 
can be caused by expansion shocks, which 
can appear as a result of ignoring the 
second law of Thermodynamics. A biasing 
of the difference scheme upstream pro- 
vides a way to exclude the non-physical 
solutions. The addition of the proper 
upwind bias is accomplished by moving 
the point of evaluation of the densities 
slightly upstream. This method of 
retarding the densities was developed by 
Eberle(7) and Hafez et al(8). 

The quantity 

is evaluated at nodes if the averaged 
Mach number is greater than some cutoff 
number, McL1. The quantity (23) is cal- 
culated using the polygon formula on the 
polygon formed by the secondary cell. 
The density of a triangle is then 
modified by locating the node that is 
nearest to the upstream direction from 
the triangle centroid, node 1 of figure 
6, and 

where b is the distance between the cen- 
troid and node 1 and where 

1-11 = Max (1 - M:/M~,o). (25) 

The modified densities replace the regu- 
lar densities in the flux balance for- 
mula. This procedure makes for a fully 
rotated scheme, however, it lowers by 
one the order of accuracy. 

GRID GENERATION 

Two types of triangular grids were 
used to test the difference equations: 
a structured grid produced by placing 
diagonals on a quadrilateral grid, and 
an unstructured grid produced by an 
algebraic method. 

The quadrilateral grid is generated 
by an airfoil-to-slit transformation, 
which produces an H-type grid. A square 
root transformation maps the input air- 
foil and slit computational domain to 
upper half planes. The mapped airfoil 
coordinates are then added to the compu- 
tational plane by a shearing map. The 
physical plane is generated using a 
square map on the sheared plane. There 
is a sparseness of points around the 
leading edge that is corrected by a 



nonorthogonal map i n  t h e  intermediate  
plane.  For more d e t a i l s ,  s e e  Pe lz (9) ;  
t h e  r e s u l t i n g  g r i d  is  shown i n  f i g u r e  7 .  

The a lgebra ic  algorithm was o r i g i -  
n a l l y  developed by Bank(lO), and i s  
s t i l l  being modified f o r  n-element a i r -  
f o i l  g r i d s  by one of t h e  au thors .  Basi- 
c a l l y  it takes  a  simply connected 

Figure 7. S t ruc tured  g r i d  NACA 0012 
64 x 32 

domain, and searches t h e  boundary t o  
f i n d  t h r e e  adjacent  po in t s  t h a t  s a t i s f y  
t h e  c r i t e r i o n  

where A is  t h e  a rea  and t h e  h ' s  a r e  t h e  
d i s tances  between t h e  po in t s .  For high 
q u a l i t y  t r i a n g l e s ,  P = .5  gives an 
aspec t  r a t i o  of l e s s  than 13/4 f o r  i s o -  
c e l e s  t r i a n g l e s .  

I f  t h e  r e s u l t i n g  domain is  s t i l l  a  
many-sided polygon, it is s p l i t  i n t o  two 
domains and t h e  searching is  done on 
both domains. This procedure cont inues 
u n t i l  t h e  domain i s  completely covered. 
One t y p i c a l  r e s u l t  is  shown i n  f i g u r e  8.  
An advantage of t h e  method is t h a t  one 
has con t ro l  i n  t h e  placement of t r i a n -  
g l e s .  

Figure 8. Unstructured g r i d  NACA 0012 

128 p o i n t s  on a i r f o i l  

ITERATIVE SCHEME 

On t h e  s t r u c t u r e d  g r i d  rap id  conver- 
gence was obtained using a  mul t ig r id  
method adapted f o r  t ransonic  flow prob- 
lems by Jameson(l1). The l i n e a r  d i f f e r -  
e n t i a l  equation 

can be approximated on a  g r i d  of mesh 
s i z e  h  by 

L e t t i n g  t h e  i n i t i a l  guess be +.h, t h e r e  
e x i s t s  a  cor rec t ion  64" such t h a t  

Ins tead  of so lv ing  f o r  t h e  cor rec t ion  on 
t h e  g r i d  of mesh s i z e  h ,  one solves f o r  

it on a  g r i d  of mesh s i z e  2h, 

where I  i s  an operator  t r a n s f e r r i n g  t h e  
values from t h e  h  g r i d  t o  t h e  2h g r i d .  
The f i n e  g r i d  r e s i d u a l  becomes t h e  fo rc -  
ing funct ion f o r  t h e  coarse g r i d  prob- 
lem. Using t h e  same procedure, t h e  
problem can be c a s t  on t h e  4h g r i d .  

To t r a n s f e r  t h e  cor rec t ion  from t h e  
coarse t o  f i n e  g r i d ,  an i n t e r p o l a t i o n  
operator  i s  def ined,  

A t  each s t e p  a smoothing operator  i s  
used t o  damp t h e  e r r o r s  caused by t h e  
t r a n s f e r .  

In  t h i s  way t h e  s i g n a l  propagation 
per  i t e r a t i o n  i s  increased t o  t h e  width 
of t h e  l a r g e s t  g r i d ,  and t h e  e r r o r s  i n  
each frequency band a r e  damped on an 
appropr ia te  g r i d .  This  method is 
extended t o  nonl inear  problems by using 
t h e  f u l l  approximation scheme of 
Brandt ( l2 ) ,  

The algorithm t o  damp t h e  high f r e -  
quency e r r o r s  ( a l i a s e d  on coarse r  g r i d s )  
a t  each mul t ig r id  s t e p  is  a  genera l iza -  
t i o n  of t h e  Al te rna t ing  Di rec t ion  scheme 



of Peaceman and Rathford(l3). The left 
side of the correction-residual equation 

is factored in a way approximating L, 

gives 

Requiring S to be the timelike direc- 
tion restricts 

where 

w is the relaxation parameter, and d is 
a parameter to be chosen. 

Since the above equation yields a 
parabolic equation in psuedotime, the 
parameter is replaced by the operator 

giving a hyperbolic equation necessary in 
supersonic flow. The choice of ai,an,as 
is made to keep the proper domain of depen- 
dence. 

For unstructured grids where neigh- 
boring points can be considered to be 
independent of each other, a point 
scheme is necessary. Since successive 
schemes require updated neighboring 
nodes, the Jacobi scheme is the only 
scheme possible. 

Consider the two-step Jacobi scheme 
called the checkerboard scheme, 

It requires the same order operations to 
obtain a converged solution as point 
SOR, which is a considerable gain over 
single step Jacobi. 

Consider further a modification of 
the checkerboard scheme to supersonic 
flow by the addition of a streamwise 
derivative of the correction(l4). To 
analyze this, the time analogy is used 
on the quasilinear equation, 

Letting 

The modification is realized on trian- 
gles by 

The second term on the left can be cal- 
culated by the polygon formula for the 
derivative in the triangle directly 
upstream of the node in question. 

RESULTS 

Tests were performed for a single 
NACA 0012 airfoil in a domain which 
extends 3-5 chords from the airfoil. 
Results for structured grids are shown 
in figures 9 to 12. Figure 9 shows a Cp 
distribution at M=.5, alpha=O. No dis- 
cernible difference was found in compar- 
ing this solution to a quadrilateral 
finite volume code of Jameson (FL042). 

N A C A  0012 
M A C H  0.500 A L P H A  0.0 
CL 0.0000 C O  0.0012 CM -0.ODTj 
G R I D  128X 64 N C Y C  12 RES0.170-'36 

Figure 9. Subcritical-pressure dist~ibution 



Figure 10 shows a s e r i e s  of supercr i -  
t i c a l  runs with decreasing mesh s i z e .  
The change i n  t h e  s o l u t i o n s  decreases 
p rogress ive ly ,  implying t h a t  a s  t h e  mesh 
s i z e  goes t o  zero,  t h e  s o l u t i o n  is  t h a t  
of t h e  o r i g i n a l  PDE. Figure 11 shows a 
p l o t  of d rag  c o e f f i c i e n t  aga ins t  mesh 
s i z e  squared. The s t r a i g h t  l i n e  i n d i -  
c a t e s  second-order accuracy. The formu- 
l a t i o n  of t h e  d i f f e r e n c e  equat ions using 
t r i a n g l e s  r e s u l t s  i n  a  conservat ive,  
apparent ly second-order scheme f o r  t r a n -  
son ic  cases .  Figure 12  g ives  a  compari- 
son with FL042 on g r i d s  with comparible 

number of nodes. The shock is  somewhat 
sharper  i n  t h e  t r i a n g l e  case ,  mainly 
because t h e  H-grid has more po in t s  i n  
t h a t  region than t h e  0-type g r i d  of 
FL042. 

NRCR 0012  
MRCH 0.600 ALPHA 0 . 0  
CL 0 . 0 0 0 0  CD 0 .0059  CM 0 .0000  
GRID 128x32  NCYC 20  RESO. 6130-07 

Figure 12. Pressure d i s t r i b u t i o n  f o r  
s u p e r c r i t i c a l  case  
* FL042, -- t r i a n g l e  code 

NACR 0 0 1 2  
MRCH 0 . 8 0 0  ALPHR 0 . 0  
CL 0 . 0 0 0 0  CD 0 .0069  CM - 0 . 0 0 0 0  
GRID 128X 64 NCYC 100 RES 0 . 9 3 0 - 0 7  

Figure 10. Convergence p l o t  
g r i d s  16x8, 32x16, 64x32, 128x64 

NACA 0012 FL11Y7 
MRCH 0 .800  RLPHA 0 . 0  
CL - 0 . 0 0 0 0  C O  @ . C C F F  C V  ? L C * :  
ELEMEN? 111 N C l C  , 301  R E C  - . 5 : C - L '  

Figure 13. Pressure d i s t r i b u t i o n  f o r  
s u p e r c r i t i c a l  case  on 
uns t ruc tured  g r i d  Figure 11. P l o t  of  drag versus  mesh s i z e  



Figure 13 shows a result for an 
unstructured grid. Globally, it com- 
pares well with Figure 12; however, the 
wiggles in the supersonic zone are 
caused by either the varying of triangle 
areas, or insufficient resolution near 
the airfoil. 
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