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1 Abstract

In 1975 Chapman, Mark and Pirtle suggested that
computers should begin to supplant wind tunnels.
This paper examines the extent to which this vision
has been sustained, and what remains to be done to
achieve the goal of a numerical wind tunnel. Five
principal steps in the development of software for
aerodynamic simulation are identified, with empha-
sis on the issues of mathematical modeling of fluid
flow and computational algorithms. After a survey
of the current state of the art, future prospects are
examined. In light of progress in computer process-
ing speeds and memory, it is concluded that the goal
will be realized, though much remains to be done,
and to be an effective tool, aerodynamic simulation
needs to be embedded in a complete numerical de-

sign environment.

2 Introduction

In a landmark paper of 1975 [1}, Chapman, Mark
and Pirtle anticipated that “computers should be-
gin to supplant wind tunnels in the aerodynamic
design and testing process”. In effect, computers
would ultimately provide a numerical wind tunnel.
They listed three main objectives of computational

aerodynamics:

1. To provide flow simulations that are either im-
practical or impossible to obtain in wind tun-
nels or other ground based experimental test

facilities.

2. To lower the time and cost required to obtain
aerodynamic flow simulations necessary for the
design of new aerospace vehicles.

3. Eventually, to provide more accurate simula-
tions of flight aerodynamics than wind tunnels

can.

Chapman, Mark, and Pirtle also noted that the
inherent limitations of computational and wind tun-
nel simulations are complementary. Wind tunnels
are limited by the size of the models that can be
placed in them, and by the density, temperature and
velocity of the flow that they can sustain, with the
consequence that flight-Reynolds numbers cannot be
realized with complete models. Their accuracy is
also limited by wall and support interference, and
by aeroelastic distortion. Computers are not lim-
ited in any of these ways, but they are limited in
speed and memory, which in turn limit the attain-
able complexity and resolution of the simulations.

Now that computational fluid dynamics (CFD)
has come of age, we can survey the extent to which
their vision has been sustained, and examine what
remains to be done to achieve a more complete real-
ization of the goal of a numerical wind tunnel. Prior
to 1965 computational methods were hardly used
in aerodynamic analysis, although they were widely
used for structural analysis. There had been serious
studies of CFD at Los Alamos and a basic theoretical
groundwork and fundamental algorithms had been
developed, especially at the Courant Institute. The
introduction of panel methods by Hess and Smith at
Douglas Aircraft in 1962, and their subsequent de-
velopment [2, 3, 4], marked the introduction of CFD
as a practical tool for aerodynamic analysis.

The decade 1970-1980 was a period in which
CFD became useful for the analysis of previously
intractable transonic flow problems. Garabedian
and his associates at the Courant Institute devel-



oped design and analysis methods for supercritical
airfoils from 1970 onwards [5], and these were used
by Whitcomb to improve his airfoils [6]. Murman
and Cole revolutionized the field by their introduc-
tion of a scheme using mixed upwind and central
differences to solve the transonic small disturbance
equation [7, 8]. This was extended to treat gen-
eral transonic potential flows in the author’s ro-
tated difference scheme [9], and fully conservative
and finite volume implementations were soon de-
veloped [10, 11, 12]. Intensive research led to dra-
matic reductions in computational costs through the
use of fast algorithms, notably the introduction of
approximate factorization methods and multigrid
schemes [13, 14, 15, 16, 17, 18, 19, 20]. There were
also notable developments in algorithms for solv-
ing the Euler and Navier-Stokes equations, including
the MacCormack and the Beam-Warming schemes
[21, 22, 23]. An important theoretical development
was the Kreiss-Gustafsson theory for initial bound-
ary value problems [24, 25, 26]. This decade also
saw the emergence of practical computer programs
for three-dimensional transonic flow, some of which
have remained in use to the present time.!

" The decade 1980-1990 saw the rapid expansion
of CFD to more complex applications, which in-
cluded more complete geometric configurations and
higher level models of the flow. A variety of meth-
ods were developed for the solution of the Euler and
Navier-Stokes equations on arbitrary meshes, in-
cluding NASA Langley’s CFL3D and NASA Ames’
ARC3D and INS3D codes. The author’s FLO57
code to solve the three-dimensional Euler equations
was also widely distributed, and provided the ba-
sis for Euler codes used at Boeing, for the Lock-
heed TEAM code, and for NASA Langley’s TLNS3D
code to solve the thin layer Navier-Stokes equations.
Multigrid acceleration methods were extended to the
Euler equations [27, 28, 29]. These methods achieve
very rapid comvergence to a steady state by ad-
vancing the solution in a cycle through a sequence
of successively coarser grids, on each of which the
correction is determined by the error on the next
finer grid. This essentially allows global equilibrium
to be achieved simultaneously with local equilib-

rium. Intensive research efforts were concentrated

1FLO22, for example, developed by Caughey and the au-
thor was modified by Henne for inverse wing design, and is
still used at Douglas Aircraft.

on the development of non-oscillatory shock captur-
ing schemes, with the emergence of key new concepts
such as flux splitting [30], and total variation dimin-
ishing (TVD) and essentially non-oscillatory (ENO)
schemes [31, 32].

An obstacle to the treatment of configurations
with complex geometry has been the problem of
mesh generation. Several general techniques were
developed, including algebraic transformations and
methods based on the solution of elliptic and hyper-
bolic equations. In the last few years methods using
unstructured meshes have also begun to gain more
general acceptance. The Dassault-INRIA group led
the way in developing a finite element method for
transonic potential flow. They obtained a solution
for a complete Falcon 50 as early as 1982 [33]. Euler
methods for unstructured meshes have been the sub-
ject of intensive development by several groups since
1985 [34, 35, 36, 37, 38], and Navier-Stokes meth-
ods on unstructured meshes have also been demon-
strated [39, 40].

In the next section, this paper discusses steps
needed for the implementation of a numerical wind
tunnel which could meet industrial needs. A crit-
ical issue examined in Section 4 is the choice of
mathematical models: what level of complexity is
needed to provide sufficient accuracy for aerody-
namic design, and what is the impact on cost and
turn-around. Section 5 addresses issues in the for-
mulation of numerical algorithms which provide the
fundamental building blocks for a numerical wind
tunnel. Issues of software design, verification, and
maintenance are briefly reviewed in Section 6, which
also addresses software evaluation and validation.
Section 7 addresses the current state of the art, and
presents representative calculations from a number
of contributors who have kindly supplied their re-
sults. The final section examines some of the re-
maining issues, including optimization and design,

and offers an outlook for the future.

3 Disciplines and steps need-
ed for the implementation

of a numerical wind tunnel

CFD, as it has now developed, lies at the intersec-
tion of a number of distinct disciplines, as illustrated



in the Figure 1. These include Mathematics, Fluid
Dynamics, Computer Science, and (for useful aero-
nautical applications) Aerospace Engineering. The
development of a numerical wind tunnel will require
all of these disciplines. The theoretical underpin-

Fluid Mechanics
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Aeronautical
Engineering

Figure 1: Disciplines of Computational
Aerodynamics.

nings rest in mathematics and numerical analysis.
These include such areas as theory of partial differ-
ential equations (including mixed elliptic, parabolic
and hyperbolic systems of equations), formulation
of proper boundary conditions, and error estimates
and convergence proofs for discrete approximation
schemes.

Issues in computer science are becoming increas-
ingly important in CFD. With the advent, first of
vector, and then of massively parallel computers, al-
gorithms can no longer be developed without consid-
ering the architecture on which they are to be imple-
mented. In algorithms using unstructured meshes,
for example, loops which exchange data along edges
between neighboring mesh points introduce vector
dependencies. Graph coloring algorithms can be
used to separate the edges into groups such that no
two edges of the same color meet at the same mesh
point. The dependency is then eliminated by using
a separate loop for each group. Another important
contribution of Computer Science to CFD is the de-
velopment of computer graphics. These techniques
are vital for effective postprocessing and interpreta-

tion of the results.

The complexity of fluid fiow is such that useful
CFD methods can hardly be developed without a
good understanding of fluid mechanics, and uncriti-
cal use of inappropriate CFD methods by users lack-
ing an understanding of fluid mechanics can lead to
unfortunate results. Numerical dissipation, for ex-
ample, can lead to spurious flow separation at a high
angle of attack in what is supposed to be an inviscid
solution. Finally, it is difficult to achieve effective
use of CFD methods in the design process without
a broad knowledge of aerospace engineering. This
background is needed both to determine which cal-
culations are likely to be useful and cost effective,
and to know how to interpret the results to improve
a proposed design.

The core requirement for the successful implemen-
tation of a numerical wind tunnel is the development
of the basic software for the computational simu-
lation of complex fluid flows. A level of accuracy
sufficient to assure confidence in the aerodynamic
design must be achieved with acceptable computa-
tional costs and rapid turn-around. Five principal
steps can be identified in the development of soft-

ware for aerodynamic simulation. These are:

1. Choice of a mathematical model appropriate to

the requirements.

2. Mathematical analysis of the model to ensure
that the problem is properly formulated (for
example, definition of far field boundary con-

ditions, conditions for uniqueness).

3. Formulation of a numerical approximation

scheme.
4. Implementation as a computer program.
5. Validation.

All of these steps need to be carefully carried out to
produce the reliable, robust, and accurate software
that is needed.

Software which meets the basic requirements for
the computational simulation of aerodynamic flows
is the first step towards a numerical wind tunnel,
but not by itself sufficient. A satisfactory numeri-
cal wind tunnel will need the simulation software to
be embedded in a more comprehensive environment

to provide user-friendly interfaces and efficient data




management. The transfer of large volumes of data
representing the geometries and computational re-
sults can become a major bottleneck. It is essential
to develop procedures allowing the easy transfer of
geometric data from computer aided design (CAD)
systems. A numerical wind tunnel should also con-
tain automatic measurement systems capable of de-
termining the geometry of real objects. These in-
terfaces should be general enough to allow the sub-
stitution of alternative CAD systems, and also of
alternative aerodynamic simulation modules. Ef-
ficient methods for handling the output data are
equally important. These must provide both for
visualization of the results, and for their quantita-
tive evaluation. Visualization is important because
it can pfovide the designer with the insights needed
to make an improvement, while quantitative evalu-
ation is needed both for verification of the perfor-
mance, and to allow optimization of the design.

4 Mathematical Models of
Fluid Flow and Computa-

tional Costs
4
The choice of a model depends on the complexity

of the flow, the level of accuracy required, and the
computational cost. The Reynolds number of aero-
dynamic flows associated with the flight envelopes
of full scale aircraft are very large (of the order of
10 million and up). Correspondingly the flows that
need to be predicted are generally turbulent. The
size of the smallest eddies in a turbulent flow may
be estimated by dimensional analysis to be of the or-
der of Re?, where Re is the Reynolds number based
on a representative global length scale. In a three-
dimensional simulation, allowing for the need to re-
solve time scales which correspond to the smallest
length scales, the computational complexity of a full
simulation of a turbulent flow, down to the smallest
scales in space and time, can therefore be estimated
as proportional to the cube of the Reynolds number.
Consequently a direct simulation of the full Navier-
Stokes equations is not feasible, forcing the use of
mathematical models with some level of simplifica-
tion. Figure 2 indicates a hierarchy of models at dif-
ferent levels of simplification which have proved use-
ful in practice. Efficient flight is generally achieved
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Figure 2: Equations of Fluid Dynamics for
Mathematical Models of Varying Complexity
(Supplied by Luis Miranda, Lockheed
Corporation).

by the use of smooth and streamlined shapes which
avoid flow separation and minimize viscous effects,
with the consequence that useful predictions can be
made using inviscid models. Inviscid calculations
with boundary layer corrections can provide quite
accurate predictions of lift and drag when the flow
remains attached, but iteration between the inviscid
outer solution and the inner boundary layer solution
becomes increasingly difficult with the onset of sepa-
ration. Procedures for solving the full viscous equa-
tions are likely to be needed for the simulation of ar-
bitrary complex separated flows, which may occur at
high angles of attack or with bluff bodies. In order to
treat flows at high Reynolds numbers, one is gener-
ally forced to estimate turbulent effects by Reynolds
averaging of the fluctuating components. This re-
quires the introduction of a turbulence model. As
the available computing power increases one may
also aspire to large eddy simulation (LES) in which
the larger scale eddies are directly calculated, while
the influence of turbulence at scales smaller than
the mesh interval is represented by a subgrid scale
model.

Computational costs vary drastically with the
choice of mathematical model. Panel methods can
be effectively implemented with higher-end personal

computers (with an Intel 80486 microprocessor, for



Studies of the dependency of the re-
sult on mesh refinement, performed by this author

example).

and others, have demonstrated that inviscid tran-
sonic potential flow or Euler solutions for an air-
foil can be accurately calculated on a mesh with
160 cells around the section, and 32 cells normal
to the section. Using multigrid techniques 10 to
25 cycles are enough to obtain a converged result.
Consequently airfoil calculations can be performed
in seconds on a Cray YMP, and can also be per-
formed on 486-class personal computers. Corre-
spondingly accurate three-dimensional inviscid cal-
culations can be performed for a wing on a mesh, say
with 192x32x48 = 294,912 cells, in about 5 min-
utes on a single processor Cray YMP, or less than a
minute with eight processors, or in 1 or 2 hours on
a work station such as a Hewlett Packard 735 or an
IBM 560 model.

Viscous simulations at high Reynolds numbers
require vastly greater resources. Careful two-
dimensional studies of mesh requirements have been
carried out at Princeton by Martinelli. He found
that on the order of 32 mesh intervals were needed
to resolve a turbulent boundary layer, in addition
to 32 intervals between the boundary layer and the
far field, leading to a total of 64 intervals. In or-
der to prevent degradations in accuracy and con-
vergence due to excessively large aspect ratios (in
excess of 1,000) in the surface mesh cells, the chord-
wise resolution must also be increased to 512 inter-
vals. Reasonably accurate solutions can be obtained
in a 512x64 mesh in 100 multigrid cycles. Figure 3
shows a comparison of experimental data with a cal-
culated result for the RAE 2822 airfoil at a Mach
number of 0.729, an angle of attack of 2.31° and a
Reynolds number of 6 million. Translated to three
dimensions, this would imply the need for meshes
with 5-10 million cells (for example, 512x64x256
= 8,388,608 cells). When simulations are performed
on less fine meshes with, say, 500,000 to 1 million
cells, it is very hard to avoid mesh dependency in
the solutions as well as sensitivity to the turbulence
model.

A typical algorithm requires of the order of 5,000
floating point operations per mesh point in one
multigrid iteration. With 10 million mesh points,
the operation count is of the order of 0.5x10!! per
cycle. Given a computer capable of sustaining 10!!
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F igure 3: Comparison of the Calculated Result and

Experimental Data for the RAE 2822 Airfoil at
Mach 0.729 and 2.31° Angle of Attack (Supplied by
Luigi Martinelli, Princeton University).

operations per second (100 gigaflops), 200 cycles
could then be performed in 100 seconds. Simulations
of unsteady viscous flows (flutter, buffet) would be
likely to require 1,000-10,000 time steps. A fur-
ther progression to large eddy simulation of complex
configurations would require even greater resources.
The following estimate is due to W.H. Jou [41]. Sup-
pose that a conservative estimate of the size of ed--
dies in a boundary layer that ought to be resolved
is 1/5 of the boundary layer thickness. Assuming
that 10 points are needed to resolve a single eddy,
the mesh interval should then be 1/50 of the bound-
ary layer thickness. Moreover, since the eddies are
three-dimensional, the same mesh interval should be
used in all three directions. Now, if the boundary
layer thickness is of the order of 0.01 of the chord
length, 5,000 intervals will be needed in the chord-
wise direction, and for a wing with an aspect ratio
of 10, 50,000 intervals will be needed in the spanwise



direction. Thus, of the order of 50 x 5,000 x 50,000
or 12.5 billion mesh points would be needed in the
boundary layer. If the time dependent behavior of
the eddies is to be fully resolved using time steps on
the order of the time for a wave to pass through a
mesh interval, and one allows for a total time equal
to the time required for waves to travel three times
the length of the chord, of the order of 15,000 time
steps would be needed. Performance beyond the ter-
aflop (10!2 operations per second) will be needed to
attempt calculations of this nature, which also have
an information content far beyond what is needed for
enginering analysis and design. The designer does
not need to know the details of the eddies in the
boundary layer. The primary purpose of such cal-
culations is to improve the calculation of averaged
quantities such as skin friction, and the prediction of
global behavior such as the onset of separation. The
current use of Navier-Stokes and large eddy simula-
tions is to try to gain an improved insight into the
physics of turbulent flow, which may in turn lead to
the development of more comprehensive and reliable
turbulence models.

It is doubtful whether a universally valid turbu-
lence model, capable of describing all complex flows,
could be devised [42]. Algebraic models [43, 44]
have proved fairly satisfactory for the calculation of
attached and slightly separated wing flows. These
models rely on the boundary layer concept, usu-
ally incorporating separate formulas for the inner
and outer layers, and they require an estimate of a
length scale which depends on the thickness of the
boundary layer. The estimation of this quantity by
a search for a maximum of the vorticity times a dis-
tance to the wall, as in the Baldwin-Lomax model,
can lead to ambiguities in internal flows, and also
in complex vortical flows over slender bodies and
highly swept or delta wings [45, 46]. The Johnson-
King model [47], which allows for non-equilibrium
effects through the introduction of an ordinary dif-
ferential equation for the maximum shear stress, has
improved the prediction of flows with shock induced
separation {48, 49].

One-point closure models depending on the solu-
tion of transport equations are widely accepted for
industrial applications. These models eliminate the
need to estimate a length scale by detecting the edge
of the boundary layer. Eddy viscosity models typi-

cally use two equations for the turbulent kinetic en-
ergy k and the dissipation rate ¢, or a pair of equiv-
alent quantities [50, 51, 52, 53, 54, 55]. Models of
this type generally tend to present difficulties in the
region very close to the wall. They also tend to be
badly conditioned for numerical solution. In an at-
tempt to alleviate this problem, new models requir-
ing the solution of one transport equation have re-
cently been introduced [56, 57]. The performance of
the algebraic models remains competitive for wing
flows, but the one- and two-equation models show
promise for broader classes of flows. In order to
achieve greater universality, research is also being
pursued on more complex Reynolds stress transport
models, which require the solution of a larger num-
ber of transport equations.

Another direction of research is the attempt to de-
vise more rational models via renormalization group
(RNG) theory [58, 59]. Both algebraic and two-
equation k — € models devised by this approach have
shown promising results [60].

The selection of sufficiently accurate mathemat-
ical models and a judgment of their cost effective-
ness ultimately rests with industry. Aircraft and
spacecraft designs normally pass through the three
phases of conceptual design, preliminary design, and
detailed design. Correspondingly, the appropriate
CFD models will vary in complexity. In the con-
ceptual and preliminary design phases, the emphasis
will be on relatively simple models which can give re-
sults with very rapid turn-around and low computer
costs, in order to evaluate alternative configurations
and perform quick parametric studies. The detailed
design stage requires the most complete simulation
that can be achieved with acceptable cost. In the
past, the low level of confidence that could be placed
on numerical predictions has forced the extensive
use of wind tunnel testing at an early stage of the
design. This practice was very expensive. The lim-
ited number of models that could be fabricated also
limited the range of design variations that could be
evaluated. It can be anticipated that in the future,
the role of wind tunnel testing in the design process
will be more one of verification. Experimental re-
search to improve our understanding of the physics
of complex flows will continue, however, to play a

vital role.



5 Algorithms for flow simula-

tion

The computational simulation of fluid flow presents
a number of severe challenges for algorithm design.
At the level of inviscid modeling, the inherent non-
linearity of the fluid flow equations leads to the for-
mation of singularities such as shock waves and con-
tact discontinuities. Moreover, the geometric con-
figurations of interest are extremely complex, and

generally contain sharp edges which lead to the shed- *

ding of vortex sheets. Extreme gradients near stag-
nation points or wing tips may also lead to numerical
errors that can have global influence. Numerically
generated entropy may be convected from the lead-
ing edge for example, causing the formation of a
numerically induced boundary layer which can lead
to separation. The need to treat exterior domains of
infinite extent is also a source of difficulty. Bound-
ary conditions imposed at artificial outer boundaries
may cause reflected waves which significantly inter-
fere with the flow. When viscous effects are also
included in the simulation, the extreme difference
of the scales in the viscous boundary layer and the
outer flow, which is essentially inviscid, is another
source of difficulty, forcing the use of meshes with ex-
treme variations in mesh interval. For these reasons
CFD, has been a driving force for the development
of numerical algorithms.

The algorithm designer faces a number of criti-
cal decisions. The first choice that must be made
is the nature of the mesh used to divide the flow
field into discrete subdomains. The discretization
procedure must allow for the treatment of complex
configurations. The principal alternatives are Carte-
sian meshes, body-fitted curvilinear meshes, and un-
structured tetrahedral meshes. Each of these ap-
proaches has advantages which have led to their use.
The Cartesian mesh minimizes the complexity of the
algorithm at interior points and facilitates the use
of high order discretization procedures, at the ex-
pense of greater complexity, and possibly a loss of
accuracy, in the treatment of boundary conditions
at curved surfaces. This difficulty may be alleviated
by using mesh refinement procedures near the sur-
face. With their aid, schemes which use Cartesian
meshes have recently been developed to treat very
complex configurations [61, 62, 63, 64].

Body-fitted meshes have been widely used and
are particularly well suited to the treatment of vis-
cous flow because they readily allow the mesh to be
compressed near the body surface. With this ap-
proach, the problem of mesh generation itself has
proved to be a major pacing item. The most com-
monly used procedures are algebraic transforma-
tions [65, 66, 67, 68], methods based on the solu-
tion of elliptic equations, pioneered by Thompson
[69, 70, 71, 72], and methods based on the solu-
tion of hyperbolic equations marching out from the

‘body [73]. In order to treat very complex configu-

rations it generally proves expedient to use a multi-
block [74, 75] procedure, with separately generated
meshes in each block, which may then be patched at
block faces, or allowed to overlap, as in the Chimera
scheme [76, 77]. While a number of interactive soft-
ware systems for grid generation have been devel-
oped, such as EAGLE, GRIDGEN, GRAPE, and
ICEM, the generation of a satisfactory grid for a
very complex configuration may require months of
effort.

The alternative is to use an unstructured mesh in
which the domain is subdivided into tetrahedrons.
This in turn requires the development of solution al-
gorithms capable of yielding the required accuracy
on unstructured meshes. This approach has been
gaining acceptance, as it is becoming apparent that
it can. lead to a speed-up and reduction in the cost
of mesh generation that more than offsets the in-
creased complexity and cost of the flow simulations.
Two competing procedures for generating triangula-
tions which have both proved successful are Delau-
nay triangulation [78], based on concepts introduced
at the beginning of the century by Voronoi [79], and
the moving front method [80].

Associated with choice of mesh type is the formu-
lation of the discretization procedure for the equa-
tions of fluid flow, which can be expressed as dif-
ferential conservation laws. In the Cartesian tensor
notation, let z; be the coordinates, p, p, T, and E
the pressure, density, temperature, and total energy,
and u; the velocity components. Each conservation
equation has the form

dw OF;
Bt + '5:'1; =0. (1)

For the mass equation

w=p, szpuj'



For the i momentum equation

w; = pui, Fy; = puiuj + pbij — 0ij,

where 05 is the viscous stress tensor. For the energy
equation

orT

=pFE, F; =
W=p5E 5 Oz;’

(pE + p)uj — ojpug — K5—

where k is the coefficient of heat conduction. The
pressure is related to the density and energy by the

equation of state

p=(y—1)p (E - %ui“i)

In the

Navier-Stokes equations the viscous stresses are as-

in which v is the ratio of specific heats.

sumed to be linearly proportional to the rate of
strain, or

_ Bu;  Ouy Ouy,
T = H (am] 8:1:,) A0y (b'z_k) ’

where ¢ and A are the coefficients of viscosity and
bulk viscosity, and usually A = —2u/3.

The finite difference method, which requires the
use of a Cartesian or a structured curvilinear mesh,
directly approximates the differential operators ap-
pearing in these equations. In the finite volume
method [81], the discretization is accomplished by
dividing the domain of the flow into a large number
of small subdomains, and applying the conservation

laws in the integral form

i fea+ |
— | wdV + F.dS =0.
ot Jq a0

Here F is the flux appearing in equation (1) and dS
is the directed surface element of the boundary 8Q
of the domain §2. The use of the integral form has
the advantage that no assumption of the differen-
tiability of the solutions is implied, with the result
that it remains a valid statement for a subdomain
containing a shock wave. In general the subdomains
could be arbitrary, but it is convenient to use either
hexahedral cells in a body conforming curvilinear
mesh or tetrahedrons in an unstructured mesh.
Alternative discretization schemes may be ob-
tained by storing flow variables at either the cell cen-
ters or the vertices. These variations are illustrated
With a
cell-centered scheme the discrete conservation law

in Figure 4 for the two-dimensional case.

takes the form

4b: Vertex Scheme.

Figure 4: Structured and Unstructured

Discretizations.
L > FS=0, (2)
dt
faces

where V is the cell volume, and F is now a numerical
estimate of the flux vector through each face. F may
be evaluated from values of the flow variables in the
cells separated by each face, using upwind biasing to
allow for the directions of wave propagation. With
hexahedral cells, equation (2) is very similar to a
finite difference scheme in curvilinear coordinates.
Under a transformation to curvilinear coordinates

X, equation (1) becomes

) 8 (.0X;
oVt 5x; (Ja ]FJ')‘O’

where J is the Jacobian determinant of the transfor-
mation matrix [g—xl- The transformed flux J %F
corresponds to the dot product of the flux F w1th a
vector face area J %:E-i’ while J represents the trans-
formation of the cell volume. The finite volume form
(2) has the advantages that it is valid for both struc-
tured and unstructured meshes, and that it assures
that a uniform flow exactly satisfies the equations,
because Y f,.0q S = 0 for a closed control volume.
Finite difference schemes do not necessarily satisfy
this constraint because of the discretization errors in
evaluating %i—(ji and the inversion of the transforma-
tion matrix. A cell-vertex finite volume scheme can
be derived by taking the union of the cells surround-

ing a given vertex as the control volume for that ver-



tex [82, 83, 84]. In equation (2), V is now the sum
of the volumes of the surrounding cells, while the
flux balance is evaluated over the outer faces of the
polyhedral control volume. In the absence of upwind
biasing the flux vector is evaluated by averaging over
the corners of each face. This has the advantage of
remaining accurate on an irregular or unstructured
mesh.

An alternative route to the discrete equations is
provided by the finite element method. Whereas the
finite difference and finite volume methods approx-
imate the differential and integral operators, the fi-
nite element method proceeds by inserting an ap-
proximate solution into the exact equations. On
multiplying by a test function ¢ and integrating by
parts over space, one obtains the weak form

%///r)¢wd9=///(1F'V¢dQ—/ | 9FdS ()

which is also valid in the presence of discontinuities
in the flow. In the Galerkin method the approximate
solution is expanded in terms of the same family of
functions as those from which the test functions are
drawn. By choosing test functions with local sup-
port, separate equations are obtained for each node.
For example, if a tetrahedral mesh is used, and ¢ is
piecewise linear, with a nonzero value only at a sin-
gle node, the equations at each node have a stencil
which contains only the nearest neighbors. In this
case the finite element approximation corresponds
closely to a finite volume scheme. If a piecewise
linear approximation to the flux F is used in the
evaluation of the integrals on the right hand side
of equation (3), these integrals reduce to formulas
which are identical to the flux balance of the finite
volume scheme.

Thus the finite difference and finite volume meth-
ods lead to essentially similar schemes on structured
meshes, while the finite volume method is essentially
equivalent to a finite element method with linear el-
ements when a tetrahedral mesh is used. Provided
that the flow equations are expressed in the con-
servation law form (1), all three methods lead to
an exact cancelation of the fluxes through interior
cell boundaries, so that the conservative property of
the equations is preserved. The importance of this
property ensuring correct shock jump conditions was
pointed out by Lax and Wendroff {85].

These procedures lead to nondissipative approx-
imations to the Euler equations. Dissipative terms
may be needed for two reasons. The first is the pos-
sibility of undamped oscillatory modes. The second
reason is the need for the clean capture of shock
waves and contact discontinuities without undesir-
able oscillations. An extreme overshoot could result
in a negative value of an inherently positive quantity
such as the pressure or density. Consider a general

semi-discrete scheme of the form
d
Ez'vj = chk(vk - 'v,-). (4)
k

A maximum cannot increase and minimum cannot
decrease if the coefficients c;x are non-negative, since
at a maximum v, —v; < 0, and at a minimum v —
v; > 0. Thus the condition

cig 20 (5)

is sufficient to ensure stability in the maximum
norm. Moreover, if the scheme has a compact sten-
cil, so that ¢;x = 0 when j and k are not nearest
neighbors, a local maximum cannot increase and lo-
cal minimum cannot decrease. This local extremum
diminishing (LED) property prevents the birth and
growth of oscillations. The one-dimensional conser-
vation law PR

5£+6—$f(u)=0

provides a useful model for analysis. In this case
waves are propagated with a speed a(u) = %5, and
the solution is constant along the characteristics
%—f = a(u). Thus the LED property is satisfied. In
fact the total variation

TV (u) = / ”

— 0o

Ou
Oz

of a solution of this equation does not increase, pro-

dzx

vided that Any discontinuity appearing in the solu-
tion satisfies an entropy condition [86]. Harten pro-
posed that difference schemes ought to be designed
so that the discrete total variation cannot increase
[31]. If the end values are fixed, the total variation

can be expressed as

TV(u) =2 (Z maxima — Z minima ) .

Thus an LED scheme is also total variation dimin-
ishing (TVD). On a triangular mesh, a definition of

total variation such as

TV (u) =/]|Vu[|d5



is not an entirely satisfactory measure of oscillation.
This is illustrated in Figure 5, where the total vari-
ation of two peaks is found to be less than that of a

)
i
0 0 0 0
h
1 0 1

5a: Two Peaks: TV =4+ 2v3 (L), 6 (Lg), or
2+ 2v3 (Loo).

0 0 0 0
5b: One Ridge: TV = 6+ 3 (L1), 7 (L2), or
5+3v3 (Loo)-

Figure 5: Breakdown of TVD: The One Ridge Case
is Less Oscillatory than the T'wo Peaks Case.

single ridge. The LED principle, however, continues
to be useful for multi-dimensional problems on both
structured and unstructured meshes.

Positivity conditions of the type expressed in
equations (4) and (5) lead to diagonally dominant
schemes, and are the key to the elimination of im-
proper oscillations. The positivity conditions may
be realized by the introduction of diffusive terms
or by the use of upwind biasing in the discrete
scheme. Unfortunately, they may also lead to se-
vere restrictions on accuracy unless the coefficients
have a complex nonlinear dependence on the solu-
tion. Following the pioneering work of Godunov
[87], a variety of dissipative and upwind schemes
designed to have good shock capturing properties
have been developed during the past two decades
[30, 88, 89, 90, 91, 92, 31, 93, 94, 95, 96, 97, 98].

A conservative semidiscrete approximation to the
one-dimensional conservation law can be derived by
subdividing the line into cells. Then the evolution
of the value vj in the jth cell is given by

d
A:E-(E’Uj + (hﬂ_% - hj__%) =0,
where hj+% is an estimate of the flux between cells
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j and j + 1. The simplest estimate is the arithmetic
average (fj+1+ f;)/2 but this leads to a scheme that
does not satisfy the positivity conditions. To correct
this, one may add a dissipative term and set

1
hivy =5 (v +£5) = gy (0541 — v;) .

In order to estimate the required value of the coeffi-
cient oy 1 let a;, 1 be a numerical estimate of the

wave speed 3L,

1 —Fi .
%ﬁi——_v? if v # 5
Q; 1 = .
its %5 if vjp1 =7
V=V
Now
1
hivy = fits(fin- fi) = ajy3 (Wirr —v5)

1
fi— (aj+% - §aj+%) (w1 = v5)

and similarly
1
hj_% =fi— ;1 + Eaj_% (’Uj - 'Uj-l) .
Thus the positivity conditions are satisfied if
1
S ‘“j+%) (6)

for all j. The minimum sufficient value of one half

the wave speed produces the upwind scheme

if ajti >0

- 5
s firr i a3 <0

N

It may be noted that the successful treatment of
transonic potential flow also involved the use of up-
wind biasing. This was first introduced by Murman
and Cole to treat the transonic small disturbance
equation [7]. The author’s rotated difference scheme
[9], which extended their technique to treat the gen-
eral transonic potential flow equation, proved to be
very robust. TVD schemes can yield sharp discrete
shock waves without oscillations, but in this simple
form they are at best first- order accurate.

Higher order non-oscillatory schemes can be de-
rived by introducing anti-diffusive terms in a con-
trolled manner. If the first order diffusive flux
@4 %(vﬂ.l —v;) is replaced by the third order diffu-

sive flux

1
dj+% =1 {A’UH_% — 5 (A?j+% +A’Uj__%)}



where AUH% denotes v;j11 — vj, the positivity con-
dition (5) is violated because of the presence of
the anti-diffusive terms £ (Avj +3+Av; ). The
Jameson-Schmidt-Turkel (JST) scheme [99], ad-
dressed this problem by blending first and third or-
der diffusive fluxes. The ratio of the blend is con-
trolled by a sensor of flow gradients, usually the
second difference of the pressure. This is quite ef-
fective in steady state calculations. An alternative
route to high resolution is to limit the anti-diffusion
through the introduction of flux limiters dependent
on the ratios of slopes Avj+% and Av i—1 in adjacent
cells, which guarantee the satisfaction of the positiv-
ity condition. The use of limiters can be traced to
the work of Boris and Book with their flux corrected
transport (FCT) method [88], which was generalized
and improved by Zalesak {100]. Flux limiters were
independently introduced by Van Leer [89].

A particularly simple way to introduce limiters,
proposed by the author [96], is to use flux lim-
ited dissipation. This method produces a symmetric
TVD scheme similar to that subsequently proposed
by Yee [97]. It may be implemented as follows. Let
L(u,v) be a limited average of u and v with the fol-
lowing properties:

Pl. L(u,v) = L{v,u)

P2. L{ou,av) = aL(u,v)

P3. L(u,u)=u

P4. L(u,v) = 0 if w and v have opposite signs

Properties (P1-P3) are natural properties of an av-
erage. Property P4 is needed for the construction
of an LED or TVD scheme. Consistent with these

properties
o= (2)us (2]
where ¢(r) > 0 when r > 0 and ¢(r) = 0

when r < 0. Now replace the arithmetic average
3 (Avj+% + Avj__%) by the limited average so that
the diffusive flux becomes

It may then be verified that the positivity condition
(5) is satisfied if (6) holds. This symmetric limited
positive (SLIP) scheme can also be implemented for

multi-dimensional problems on unstructured grids
[101].
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In order to apply these ideas to a system of equa-
tions one may split the flux into components corre-
sponding to the different wave speeds. This con-
cept was first proposed by Steger and Warming
[30]. Roe’s flux difference splitting method [91]
has proved particularly effective.Consider the one-
dimensional case, which may be written in vector

notation as

ow  Of(w)

Bt 9z
where w is the vector of dependent variables, and
f(w) is the flux vector. The wave speeds of the sys-
tem (1) are the eigenvalues of the Jacobian matrix

0,

2 Let A._ 1 be a matrix depending on the values
W 3+ 1
w;t1 and w; such that

fin— £ = A;, 1 (Wit —w;).

Now decompose this matrix as Ajpy = TAT 1,
where the columns of T are the eigenvectors of
A; +1 and A is a diagonal matrix containing the
eigenvalues. Then the low order diffusive flux
may be calculated as 2T [A[T~! (wj41 — W;), which
corresponds to upwinding the characteristic vari-
ables. A simple non-oscillatory scheme is obtained

by the use of a scalar diffusive coefficient a; +3 2

%max‘/\ (Aj"'%)l' Blended first and third order
scalar diffusion is quite effective for steady flow cal-
culations [99], and it can be improved by the addi-
tion of pressure difference to the momentum diffu-
sion [101].

Characteristic splitting has the advantage that it
allows a discrete shock structure with a single inte-
rior point. In multi-dimensional problems it may be
implemented separately in each mesh direction. A
substantial body of current research is directed to-
ward the implementation of truly multi-dimensional
upwind schemes {102, 103, 104]. Some of the most
impressive simulations of time dependent flows with
strong shock waves have been achieved with higher
order Godunov schemes [105]. In these schemes the
average value in each cell is updated by applying
the integral conservation law using interface fluxes
predicted from the exact or approximate solution
of a Riemann problem between adjacent cells. A
higher order estimate of the solution is then recon-
structed from the cell averages, and slope limiters
are applied to the reconstruction. An example is the
class of essentially non-oscillatory (ENO) schemes,
which can attain a very high order of accuracy at



the cost of a substantial increase in computational
complexity [32, 106, 107, 108]. Methods based on
reconstruction can also be implemented on unstruc-
tured meshes [109, 110]. Recently there has been an
increasing interest in kinetic flux splitting schemes,
which use solutions of the Boltzmann equation to
predict the interface fluxes {111, 112, 113, 114]

The discretization of the viscous terms of the
Navier-Stokes equations requires an approximation
to the velocity derivatives %;i:; in order to calculate
the stress tensor. Usually these are calculated by
central difference formulas. A desirable property
is that a linearly varying velocity distribution, as
in a Couette flow, should produce a constant vis-
cous stress and hence an exact stress balance. This
property is not necessarily satisfied by finite dif-
ference schemes or finite volume schemes on curvi-
linear meshes. The characterization k-exact has
been proposed for schemes that are exact for poly-
nomials of degree k [115]. Finite volume schemes
that are linearly exact can be constructed by us-
ing the same type of formula to calculate the veloc-
ity and metric derivatives g;\’i,?, and 58% and setting
[%’j] = [3‘2}7] - [%] . This formulation yields a con-
stant stress when u is linear, and in turn a viscous
stress balance. In the case of an unstructured mesh
the weak form (3) leads to a natural discretization
with linear elements, in which the piecewise linear
approximation yields a constant stress in each cell.
This method produces a representation that is glob-
ally correct when averaged over the cells, as is proved
by energy estimates for elliptic problems [116]. It
should be noted however, that it yields formulas that
are not necessarily locally consistent with the differ-
ential equations, if Taylor series expansions are sub-
stituted for the solution at the vertices appearing in
the local stencil. Thus the use of an irregular tri-
angulation in the boundary layer may significantly
degrade the accuracy.

If the space discretization procedure is imple-
mented separately, it leads to a set of coupled or-
dinary differential equations, which can be written
in the form 4

= +R(w) =0,
where w is the vector of the flow variables at the
mesh points, and R(w) is the vector of the resid-
uals, consisting of the flux balances defined by the
space discretization scheme, together with the added
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dissipative terms. If the objective is simply to reach
the steady state and details of the transient solution
are immaterial, the time-stepping scheme may be
designed solely to maximize the rate of convergence.
The first decision that must be made is whether to
use an explicit scheme, in which the space deriva-
tives are calculated from known values of the flow
variables at the beginning of the time step, or an
implicit scheme, in which the formulas for the space
derivatives include as yet unknown values of the flow
variables at the end of the time step, leading to the
need to solve coupled equations for the new values.
The permissible time step for an explicit scheme is
limited by the Courant-Friedrichs-Lewy (CFL) con-
dition, which states that a difference scheme cannot
be a convergent and stable approximation unless its
domain of dependence contains the domain of de-
pendence of the corresponding differential equation.
One can anticipate that implicit schemes will yield
convergence in a smaller number of time steps, be-
cause the time step is no longer constrained by the
CFL condition. Implicit schemes will be efficient,
however, only if the decrease in the number of time
steps outweighs the increase in the computational ef-
fort per time step consequent upon the need to solve
coupled equations. The prototype implicit scheme
can be formulated by estimating -8—3':'— at t + uAt as
a linear combination of R(w™) and R(w™+1). The

resulting equation
with = wh — At {(1 - p) R (w™) + uR (w"1)}
can be linearized as

R n
(I + uAta—w-) dw + AtR (w”) = 0.

If one sets 4 = 1 and lets At — oo this reduces to
the Newton iteration , which has been successfully
used in two-dimensional calculations [117, 118]. In
the three-dimensional case with, say,an N x N x N
mesh, the bandwidth of the matrix that must be
inverted is of order N2, Direct inversion requires
a number of operations proportional to the number
of unknowns multiplied by the square of the band-
width of the order of N7. This is prohibitive, and
forces recourse to either an approximate factoriza-
tion method or an iterative solution method.
Alternating direction methods, which introduce
factors corresponding to each coordinate, are widely
used for structured meshes [22, 23]. They can-
not be implemented on unstructured tetrahedral



meshes that do not contain identifiable mesh direc-
tions, although other decompositions are possible
[119]). If one chooses to adopt the iterative solu-
tion technique, the principal alternatives are vari-
ants of the Gauss-Seidel and Jacobi methods. A
symmetric Gauss-Seidel method with one iteration
per time step is essentially equivalent to an approx-
imate lower-upper (LU) factorization of the implicit
scheme [120, 121, 122, 123]. On the other hand,
the Jacobi method with a fixed number of itera-
tions per time step reduces to a multistage explicit
scheme, belonging to the general class of Runge-
Kutta schemes [124].
proved very effective for wide variety of problems,

Schemes of this type have

and they have the advantage that they can be ap-
plied equally easily on both structured and unstruc-
tured meshes [99, 29, 125, 126].

Let w™ be the result after n steps. The general
form of an m-stage scheme is

w® = wm

wl) = w® _ o A/RO
w1 = w® g, AR
w(ntD) wlm)

In cases where only the steady state solution is
needed, it is helpful to separate the residual R(w)
into its convective and dissipative parts Q{w) and
D(w). Then the residual in the (g + 1) st stage is
evaluated as

g

R = Z {ﬂqu (W(T)) + YgrD (W(T))} ’

r=0Q
where
g q

Zﬂqr = I,Z'ﬂ;r = 1.

r=0 r=0
Blended multistage schemes of this type [125], can
be tailored to give large stability intervals along both
the imaginary and negative real axes.

Radical improvements in the rate of convergence
to a steady state can be realized by the multigrid
time-stepping technique. The concept of accelera-
tion by the introduction of multiple grids was first
proposed by Fedorenko [13]. There is by now a fairly
well-developed theory of multigrid methods for ellip-
tic equations based on the concept that the updat-

ing scheme acting as a smoothing operator on each
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grid [14, 19]. This theory does not hold for hyper-
bolic systems. Nevertheless, it seems that it ought
to be possible to accelerate the evolution of a hyper-
bolic system to a steady state by using large time
steps on coarse grids so that disturbances will be
more rapidly expelled through the outer boundary.
Various multigrid time-stepping schemes designed
to take advantage of this effect have been proposed
[27, 28, 82, 83, 127, 128, 129, 130, 131].

One can devise a multigrid scheme using a se-
quence of independently generated coarser meshes
by eliminating alternate points in each coordinate
direction. In order to give a precise description of
the multigrid scheme, subscripts may be used to in-
dicate the grid. Several transfer operations need to
be defined. First the solution vector on grid k must

be initialized as
0
wi ) = T kp—1Wk—1,

where wg_j is the current value on grid k — 1, and
Tk k-1 is a transfer operator. Next it is necessary
to transfer a residual forcing function such that the
solution grid k is driven by the residuals calculated
on grid k — 1. This can be accomplished by setting

P = Qre—1Re—1 (wk—l) — Ry [wSCO)] ,

where Q-1 is another transfer operator. Then
Ri(wy) is replaced by Ry(wg) + Pk in the time-
stepping scheme. Thus, the multistage scheme is

reformulated as

wil) wg)) — ay Aty [RSCO) + Pk]
w£q+1) = ’U)Eco) — Og41 Atk [Rscq) + Pk] .
(m)

The result w; =~ then provides the initial data
for grid k + 1.
tion on grid k has to be transferred back to grid
k — 1 with the aid of an interpolation operator

I_1 k. With properly optimized coefficients mul-

Finally, the accumulated correc-

tistage time-stepping schemes can be very efficient
drivers of the multigrid process. A W-cycle of the
type illustrated in Figure 6 proves to be a particu-
larly effective strategy for managing the work split
between the meshes. In a three-dimensional case
the number of cells is reduced by a factor of eight
on each coarser grid. On examination of the figure,

it can therefore be seen that the work measured in
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6a: 3 Levels.

4 Level Cycle 4 Level Cycle
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Figure 6: Multigrid W-cycle for managing the grid

calculation. E, evaluate the change in the flow for

one step; T, transfer the data without updating the
solution.

units corresponding to a step on the fine grid is of
the order of

14+2/844/64+...<4/3,

and consequently the very large effective time step
of the complete cycle costs only slightly more than
a single time step in the fine grid.

The need both to improve the accuracy of com-
putational simulations, and to assure known levels
of accuracy is the focus of ongoing research. The
main routes to improving the accuracy are to in-
crease the order of the discrete scheme, and reduce
the mesh interval. High order difference methods are
most easily implemented on Cartesian, or at least ex-
tremely smooth grids. The expansion of the stencil
as the order is increased leads to the need for com-
plex boundary conditions. Compact schemes keep
the stencil as small as possible [132, 133, 134]. On
simple domains, spectral methods are particularly
effective, especially in the case of periodic bound-
ary conditions, and can be used to produce expo-
nentially fast convergence of the error as the mesh
interval is decreased [135, 136]. A compromise is to
divide the field into subdomains and introduce high
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order elements. This approach is used in the spectral
element method [137].

High order difference schemes and spectral meth-
ods have proven particularly useful in direct Navier-
Stokes simulations of transient and turbulent flows.
High order methods are also beneficial in compu-
tational aero-acoustics, where it is desired to track
waves over long distances with minimum error. If
the flow contains shock waves or contact disconti-
nuities, the ENO method may be used to construct
high order non-oscillatory schemes.

In multi-dimensional flow simulations, global re-
duction of the mesh interval can be prohibitively ex-
pensive, motivating the use of adaptive mesh refine-
ment procedures which reduce the local mesh width
h if there is an indication that the error is too large
[138, 139, 140, 141, 142, 143]. In such h-refinement
methods, simple error indicators such as local so-
lution gradients may be used. Alternatively, the
discretization error may be estimated by compar-
ing quantities calculated with two mesh widths, say
on the current mesh and a coarser mesh with double
the mesh interval. Procedures of this kind may also
be used to provide @ posteriori estimates of the error
once the calculation is completed.

This kind of local adaptive control can also be ap-
plied to the local order of a finite element method to
produce a p-refinement method, where p represents
the order of the polynomial basis functions. Finally,
both h- and p- refinement can be combined to pro-
duce an h-p method in which kA and p are locally
optimized to yield a solution with minimum error
[144]. Such methods can achieve exponentially fast
convergence, and are well established in computa-

tional solid mechanics.

6 Software Design, Develop-

ment, Maintenance and

Validation

Given a well formulated mathematical model and
a stable and accurate numerical approximation
scheme, the difficulties of implementation in com-
puter programs are often underestimated. With the
use of CFD for increasingly complex simulations,
CFD software is becoming correspondingly more dif-
ficult to develop and maintain. Even with a single

Ik
.



author it is hard to eliminate programming errors.
When code development is undertaken by a number
of authors, perhaps changing over time, there may
be no one who knows precisely what is contained
in a large software package. It becomes essential to
use structured and carefully controlled programming
techniques. If uncontrolled changes are permitted,
a program which was thought to be validated on
Monday may no longer be valid by Wednesday, be-
cause of newly introduced errors due to improper
code modifications. In the field of structural analy-
sis it is normal practice to rely on commercial soft-
ware which is carefully validated and well supported.
Outside the Aircraft Industry, a variety of commer-
cial software packages are also used, but these prod-
ucts have yet to gain acceptance within the Industry
for aerodynamic design.

In order to increase the confidence level in the use
of CFD in industry, there is a strong desire that
codes should be validated. In considering this re-
quirement, it is important to distinguish between the
issues of the correctness of the program and the suit-
ability of the mathematical model to the intended
application. Simply comparing experimental data
with numerical results provides no way to distin-
guish the source of discrepancies, whether they are
due to bad numerical approximation, to program-
ming errors, or to deviations between the mathe-
matical model and the true physics. Some measures
that may be taken to assure program correctness are

as follows:

1. Modular programming: it should then be pos-
sible to substitute logically identical but inde-
pendently programmed versions of each mod-
ule (with different loop structures, for example)

and retain the identical results.

2. Mesh refinement studies: does the program give
a definite answer as the mesh interval is succes-

sively decreased?

3. Consistency checks for established mathemati-
cal properties: for example, does a wing with
a symmetric section produce no lift at zero an-
gle of attack, or in steady inviscid flow is the
stagnation enthalpy constant?

Ideally the numerical scheme and computer program
should be checked and internally validated by tests
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of this kind to the point that discrepancies with ex-
perimental data can properly be attributed to in-
adequacy of the mathematical model, and not the
computer program itself.

The software may include options to treat a range
of mathematical models appropriate to different
stages of the design process, and to a variety of appli-
cations such as internal and external flows, with or
without chemical reaction. Assuming that the soft-
ware is demonstrated to provide correct solutions to-
the mathematical models it contains, the criteria for
its evaluation are:

1. The level of accuracy that it provides over a

range of applications.

2. The computational costs and also the man- '
power costs associated with carrying out the

simulations.
3. The turn-around time.

If either the computational or the manpower costs
are excessive, the simulations are not viable for in-
dustrial use. Moreover, if the turn-around cannot
be achieved within hours, or overnight, the simula-
tions do not provide an effective tool for the aero-
dynamic design process. Interactive design requires
turn-around of a few minutes, with immediate com-
puter access. One route to this goal is the use of
distributed computing equipment, with a network
of linked workstations that are powerful enough to

give the rapid turn-around that is needed.

7 Current status of numerical

aerodynamic simulation

At this stage, the evolution of CFD has reached
a plateau on which the key enabling problems for
inviscid flow calculations are rather well under-
stood. For example, a variety of high resolution
non-oscillatory shock capturing schemes are avail-
able, while multigrid and other acceleration methods
allow converged solutions to be obtained in 10-50
cycles. Effective techniques have been developed to
treat complex configurations with both structured
and unstructured meshes. As an example of a cur-
rent industrial application, Plate 1 shows the re-
sults of Euler calculations used in the design of the
Northrop YF-23. These calculations were performed



by R.J. Busch, Jr. using an O-O mesh [145]. The
flow solver was the author’s FLO57 program. It can
be seen that the comparison with experimental data
is quite good even at a fairly high angle of attack,
and valuable information for the aerodynamic design
was obtained by the use of a relatively inexpensive
computational model.

Unstructured meshes offer the flexibility to treat
arbitrarily complex configurations without the need
to spend months developing an acceptable mesh.
The next two plates show the results of Euler calcu-
lations using the AIRPLANE code [35]. Recent ad-
vances in the performance of microprocessors have
made it possible to perform calculations like these
for complete aircraft or space vehicles on worksta-
tions, in this case the IBM RISC 6000 series. Plate
3 shows calculations for supersonic transport con-
figurations. The agreement with éxperimental data
is quite good, and it has also been possible to pre-
dict the sonic boom signature [146]. The US Space
Shuttle was simulated on a mesh with about 400,000
points, and the calculation required about 12 hours
with an IBM 560 model workstation. The MD11
calculation was performed on a mesh with about
645,000 points.
several times faster.

Forthcoming workstations will be
Thus at the level of inviscid
modeling, complete configurations can easily be ana-
lyzed with distributed computing equipment readily
accessible by engineering design groups.

" Plates 4 and 5 show other examples of the use
of unstructured meshes. Plate 4, provided by D.J.
Mavriplis shows the simulation of a wing body na-
celle combination on a mesh with 800,000 points, us-
ing a multigrid acceleration procedure [147], which
yielded a three-fold reduction in computational
costs. Plate 5 illustrates the power of unstructured
meshes to treat configurations with moving bound-
aries by redistributing and reconnecting the mesh
points. This calculation, performed by R. Lohner,
simulates the flow over an emerging ejection seat.
{148].

The analysis of viscous flow continues to present a
severe challenge. Plate 6 shows direct Navier-Stokes
(DNS) simulations of transition to turbulence. The
first, supplied by M.Y. Hussaini, is an incompress-
ible simulation using a spectral method [149]. The
second, supplied by M.M. Rai, shows the result of a
simulation at a Mach number of 0.1 and a Reynolds
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number of 50,000/inch using a high order upwind
biased finite difference scheme [132]. Viscous flow
simulations of full configurations are feasible only
with Reynolds averaging, and are still very expen-
sive, while the results may be quite sensitive to the
choice of turbulence models. Calculations which are
representative of the current state of the art are pre-
sented in Plates 7-11. The first shows an analysis of
a complete F-18 at a high angle of attack performed
by Cummings et al. at NASA Ames [150]. They
used a multiblock with about 900,000 mesh points.
The agreement with the experimental data and visu-
alization are quite good. Plate 8 shows a similar cal-
culation performed by Ghaffari et al. at NASA Lan-
gley, which exhibits equally good agreement with the
data [151]. They also used a multiblock mesh, in this
case with about 1.24 million mesh points. The com-
putational costs of these simulations are outside the
acceptable range for routine use in the aerodynamic
design process. Each of the calculations by Ghaffari
et al. required 20-24 hours on the NAS Cray 2. The
multiple authorship of each of these papers provides
an indication of the magnitude of the effort absorbed
by these calculations. In fact a team of ten persons
has been working on the generation of a 16 million
point multiblock mesh for the analysis of the Space
Shuttle Launch Vehicle [152].

Plate 9 shows viscous simulations of the ON-
ERA M6 wing using a variety of turbulence mod-
els. These results were obtained by C. Rumsey and
V. Vatsa [48]. At lower angles of attack the various
models agree quite well both with each other and
with the experimental data. At higher angles of at-
tack there is a complete divergence of the results.
This illustrates that the accuracy attainable in vis-
cous simulations continues to be limited by the ac-
curacy of the turbulence modeling. The confidence
level that can be placed in currently available mod-
els decreases sharply in the presence of significant
flow separation. On the other hand, Plate 10, sup-
plied by J. Yu, shows that useful wing simulations
can be performed for modern transport aircraft [49].
An example of the prediction of a high lift configura-
tion is shown in Plate 11, a calculation by S. Rogers
[153]. '

Plates 12 and 13 illustrate the flexibility of numer-
ical simulation with two examples of entirely differ-

ent geometric configurations. Plate 12, supplied by



M.J. Siclari, shows the flow over a magnetically levi-
tated (MAGLEV) train [154]. Plate 13, supplied by
Kiris et al., shows the simulation of the flow through
a turbopump inducer [155]. Finally, Plates 14 and
15 illustrate simulations of flows that could not read-
ily be duplicated in wind tunnels, because of the
Plate 14 shows a
simulation of a hypersonic forebody by S. Lawrence
[156], while Plate 15, supplied by H. Rieger [157],
shows a simulation of the Hermes Space Shuttle.

unusual or extreme conditions.

The broad range of these calculations indicates
the extent to which CFD is now a mature science.
Inviscid simulations are now a routine design tool.
Viscous calculations still present a challenge both to
improve their reliability and accuracy, and to reduce
their cost and turn-around time. CFD has played a
particularly important role in the analysis of hyper-
sonic vehicles such as the US Aerospace Plane and
the European Space Shuttle, which could not be ad-
equately tested in experimental facilities. A survey
of computational studies of the Hermes which have
been carried out at institutions throughout Europe,
is given by Periaux et al. [158]. Thus, the first of
the goals cited by Chapman, Mark and Pirtle, to
provide otherwise infeasible simulations has indeed

been realized.

8 Outlook and Conclusions

Better algorithms and better computer hardware
have contributed about equally to the progress of
computational science in the last two decades. In
1970 the Control Data 6600 represented the state of
the art in computer hardware with a speed of about
108 operations per second (one megaflop), while in
1990 the 8 processor Cray YMP offered a perfor-
mance of about 10° operations per second (one gi-
gaflop). Correspondingly, steady state Euler calcu-
lations which required 5,000-10,000 steps prior to
1980 could be performed in 10-50 steps in 1990 us-
ing multigrid acceleration. With the advent of mas-
sively parallel computers it appears that the progress
of computer hardware may even accelerate. Teraflop
machines offering further improvement by a factor of
1,000 are likely to be available within a few years.
Parallel architectures will force a reappraisal of ex-
isting algorithms, and their effective utilization will
require the extensive development of new parallel
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software.

One may ask whether comparable improvements
can be anticipated in the efficiency of algorithms.
Clearly there is no possibility of a thousandfold
reduction in the number of cycles in calculations
already being completed in less than 100 cycles.
The only possibility of a radical reduction in the
number of arithmetic operations would lie in im-
proved discretization methods, such as higher order
schemes and adaptive mesh refinement. procedures.
The value of higher order methods for appropriate
applications, with sufficient smoothness in the solu-
tion, has been demonstrated in computational stud-
ies of transition from laminar to turbulent flow such
as those illustrated in Plate 6. Adaptive mesh re-
finement is currently the subject of widespread and
intensive investigation. While there are ongoing re-
search efforts directed toward the development of
optimal refinement techniques, automatic mesh re-
finement procedures have also reached the stage of
production use in the Dassault finite element codes
and Boeing’s TRANAIR code.

In parallel with the transition to more sophisti-
cated algorithms, the present challenge is to extend
the effective use of CFD to more complex applica-
tions. A key problem is the treatment of multiple
space and time scales. These arise not only in turbu-
lent flows, but also in many other situations such as
chemically reacting flows, combustion, flame fronts
and plasma dynamics. Another challenge, is pre-
sented by problems with moving boundaries. Ex-
amples include helicopter rotors, and rotor-stator
interaction in turbomachinery. Algorithms for these
problems can be significantly improved by innova-
tive concepts, such as the idea of time inclining.
It can be anticipated that interdisciplinary applica-
tions in which CFD is coupled with the computa-
tional analysis of other properties of the design will
play an increasingly important role. These applica-
tions may include structural, thermal and electro-
magnetic analysis. Aeroelastic problems and inte-
grated control system and aerodynamic design are
likely target areas.

Research must also be focused on the best way
to use CFD to arrive at good designs. Inverse
methods which determine shapes corresponding to
specified pressure distributions are already in use
(159, 160]. As the confidence level in CFD increases



and the computational costs decrease, it will be nat-
ural to combine CFD with automatic optimization
techniques to derive superior designs [161]. One
approach to this, explored by the present author
(162, 163], is to regard the design problem as a con-
trol problem for a system governed by a partial dif-
ferential equation (the flow equations) with bound-
ary control (the shape of the boundary). The (in-
finitely dimensional) Frechet derivative of the cost
function with respect to the shape can be calculated
by solving a single adjoint partial differential equa-
tion, at a cost comparable to a flow solution. This
method, which eliminates the need to estimate sensi-
tivity coeflicients by varying each parameter in turn,
has been successfully applied to the design of tran-
sonic airfoils. Plate 16 shows an example in which
an airfoil was modified in 8 iterations to essentially
eliminate shock drag at Mach 0.72, while also satis-
fying a constraint limiting deviations from the origi-
nal pressure distribution at a second subsonic design
point. Such a technique promises opportunities for
improvement in a wide variety of applications. It
might, for example, be used for the design of a wing
for a supersonic transport aircraft, or the design of
hydrofoils to reduce cavitation.

The development of improved algorithms contin-
ues to be important in providing the basic building
blocks for a numerical wind tunnel. In particular,
better error estimation procedures must be devel-
oped and incorporated in the simulation software to
provided error control. The basic simulation soft-
ware is only one of the needed ingredients, however.
The flow solver must be embedded in a user-friendly
system for geometry modeling, output analysis, and
data management that will provide a complete nu-
merical design environment (NUDE).

In the long run, computational simulation should
become the principal tool of the aerodynamic design
process because of the flexibility it provides for the
rapid and comparatively inexpensive evaluation of
alternative designs, and because it can be integrated
with a multi-disciplinary optimization (MDO) pro-
cedure. Experimental facilities are likely to be used
principally for fundamental investigations of the ba-
sic physics of fluid flow, and for final verification of
the design prior to flight testing. This is already
the accepted procedure in the structural design pro-
cess. The vision of Chapman, Mark, and Pirtle was
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prescient. Although much remains to be done, the
author believes that the numerical wind tunnel is

certainly going to be a reality.
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Plate 1: Northrop YF-23.
Supplied by R.J. Busch, Jr.
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. WING/BODY/NACELLES - EXPERIMENTAL DATA

3a: Force Coefficients, Mach 2.1.

blocked nacelles, AIRPLANE,Cy =0.077, data extrap from h/l = 0.20 -
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3b: Sonic Boom Prediction, Mach 2.5.

Plate 3: Supersonic Transport Calculations.
AIRPLANE code (A. Jameson and T.J. Baker).
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Plate 4: Multigrid Calculations of a Wing-Body-Nacelle Configuration.

Supplied by D.J. Mavriplis.
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Plate 5: F-16 Seat Ejection at Mach 1.2.

Supplied by R. Lohner.




LAMINAR BREAKDOWN
EXPERIMENT . DIRECT SIMULATION
z=/\2/64
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6a: Spectral Simulation of Incompressible Flow.
Supplied by M.Y. Hussaini.

CONTOUR LEVELS
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6h: Finite Difference Simulation at Mach 0.1, Reynolds Number 50000/Inch.
Supplied by M.M. Rai.

Plate 6: Direct Navier-Stolkes Simulations of Transition to Turbulence.




OFF-SURFACE INSTANTANEOUS STREAMLINES
FLOW WITH TANGENTIAL SLOT BLOWING
Moo = 0.243, o = 30.3°, Rez=11.0x 10%, B =0°

Plate 7: Navier-Stokes Predictions for the F-18 Wing-Fuselage at Large Incidence .
Supplied by R.M. Cummings, Y.M. Rizk, L.B. Schiff, and N.M. Chaderjian.
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Plate 8: Navier-Stokes Solutions about the F-18 Wing-LEX-Fuselage Configuration.
Supplied by F. Ghaffari, B.L. Bates, J.M. Luckring, J.L. Thomas, and R.T. Biedron.
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CFL3D with Different Turbulence Models.
Supplied by C.L. Rumsey and V.N. Vatsa.
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Plate 10: Navier-Stokes Solutions for a Boeing 747/200 Wing-Body Configuration with Engines.
Supplied by J. Yu.




Plate 11: Navier-Stokes Simulation of the T-39 Wing and Flap.
Supplied by S.E. Rogers.
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Inducer Code Validation TEST CONDITIONS
Radial Tip Clearance : 0.008 in.

Design Speed : 3600 rpm
Design Flow : 2236 gal/min Flud Medium ¢ ot gy

Tip ]?Emeter 1 61n. Reynolds Number : 1.918e+5 =i
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Plate 13: Incompressible Navier-Stokes Simulation of a Turbopump Inducer.
Supplied by D. Kwak and S. Rogers.
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M, = 16.
Res /in = 2.0 x 10°
a=0°

Equilibrium Air

Mach Confours
and
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Ames Research Center

Plate 14: 'Numerical Simulation of a Hypersonic Forebody.
Supplied by S.L. Lawrence.
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Plate 15: Numerical Simulation of the Hermes Space Shuttle.
Supplied by K. Dortmann, S. Leicher, and H. Rieger.
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