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Abstract

A fully-implicit multigrid method has been developed for
the computation of time dependent free surface flow. The
method uses the generalized artificial compressibility ap-
proach to couple the incompressible Euler equations and con-
tinuity equation in a hyperbolic manner which allows several
techniques for convergence acceleration to be implemented.
Two grid adaption strategies are used to capture wave mo-
tions as well as wavemaker’s oscillations. Comparisons are
made between these two techniques and experimental data
of the flow field around a NACA 0012 airfoil placed beneath
an initially calm free surface. Transient solutions of a wave-
maker oscillating horizontally are also presented to validate
the new method.

Introduction

For decades, considerable work has been directed towards
the study of nonlinear free surface flows not only to gain new
insights into the problem but also because of the practical
importance in ship hydrodynamics. However, even with
the new generation of computers, two major difficulties still
remain which make the development of efficient and accurate
free surface flow solvers a challenging task.

One difficulty is the continuous evolution of the physical
domain caused by the free surface deformation. Thus the
need to adapt the mesh is inevitable. There are two viable
approaches. The first one makes use of a kind of spring mech-
anism or transformation to shift the grids [8, 19]. However,
this method fails when the waves start to overturn. More-
over, the numerical discretization on such meshes results
into inaccuracies because the approximation does not take
into account mesh-point rearrangement and grid distortion.

This problem is prevented by the second approach which
deletes and inserts points while the simulation progresses.
Both methods are implemented in our work and the results
are compared.

The other major difficulty, which is common to any incom-
pressible flows not just free surface flows, is the enforcement
of a solenoidal velocity field, as it is required by the continu-
ity equation. Lack of a pressure evolution term precludes the
straightforward application of efficient time-marching algo-
rithms which are available for hyperbolic problems. One of
the approaches to circumvent this difficulty is to introduce a
pseudo-temporal evolution term for the pressure in the conti-
nuity equation as in the well-known artificial compressibility
method of Chorin [9]. This transforms the governing equa-
tions into a hyperbolic system at the expense of time accuracy.
However, the time accuracy can be recovered by augment-
ing spatial residuals in the momentum equations with the
discretized time derivatives, and by driving these modified
residuals to zero at each mesh point and every time step. This
generalized artificial compressibility approach ensures a di-
rect coupling between the velocity and pressure fields upon
convergence of the pseudo-transient at each time step. The
use of this strategy for incompressible flow has been origi-
nally proposed by Rogers and Kwak [15]. A similar approach
has also been used by Miyaka et al. [16] using an explicit,
up to a second order accurate discretization in time, rational
Runge-Kutta scheme for the subiterations. A very efficient
method, which couples a second order accurate backward
differencing of the temporal derivatives and a very efficient
finite-volume multigrid strategy, has been described and val-
idated in [1, 12, 13] for both two-dimensional Euler and
Navier-Stokes equations on structured quadrilateral meshes.
The method has been also implemented and validated for the



solution on unstructured grids of both incompressible and
compressible flow on oscillating airfoil by Lin [6]. In the
present algorithm, fast convergence to a steady state of the
pseudo-transient is achieved by making use of a multigrid
technique originally developed by Jameson for compressible
flow [1}, and adapted by Hino, Martinelli and Jameson [8]
for steady free-surface calculations on triangular grids. De-
tails on the space discretization can be found in reference [5]
and a comprehensive study of the artificial compressibility
method for unstructured grids is given in [10]. The A-stable
discretization in time allows the stability constraint on the
physical time step to be relaxed, while standard convergence
acceleration techniques such as local pseudo-time stepping
and residual averaging are applied to the pseudo-transient
iteration. Also, to alleviate the stiffness effects stemming
from the unsteady source terms included in the residuals, a
point-implicit five-stage Runge-Kutta scheme is constructed
following the guidelines given in [4]. Finally, the range of
the characteristic wave speeds associated with the hyperbolic
pseudotransient problem is optimized for better convergence
by employing a suitable form of the local preconditioning
[11,13].

Discretization of the Governing Equations

Governing Equations

Consider a general two-dimensional homogeneous incom-
pressible inviscid free surface flow problem. Let the refer-
ence length, velocity and density be Ly, Uy and py. The
dimensionless Cartesian velocity components and dimen-
sionless pressure are denoted by u, v and p respectively. Let
p=p + fl; be the pressure minus the hydrostatic part, where

the Froude number F=-Yo A is height of the free surface,
Vo

and g is the gravitational acceleration. The dimensionless
governing equations which consist of the continuity equa-
tion and the time-dependent momentum equation are
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where u is the velocity measured with respect to an inertial
reference frame , u,=u — u, is the velocity of the fluid
relative to the control surface with velocity u, , and n is
the unit normal. Note that the time rate of volume change
in equation (1) is of importance. In semi-discrete form,
equations (1) and (2) become

d
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where Ti;=w;; - I"™ + K, I™=diag[0, 1, 1] is the modified
identity, K=[1,0,0], w;;=[p,u,v] and residual R(w;;)
is obtained by approximating convective fluxes with central
difference in space plus a third order artificial dissipation term
to prevent an odd-even decoupling. A backward difference
discretization in time considered here is of the form
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In particular, dropping the subscripts 2, 7 for clarity, for a
second order discretization in time , one obtains

R* (w) =Alt (@TV + @T"V™ + T V™) + R(w) =0

where q=(3/2, —2,1/2) and R* (w) is the augmented resid-
ual. In order to perform time resolved calculation, general-
ized artificial compressibility approach is used, which results
in a system of coupled O.D.E.’s to be solved to convergence
at each time step

awV .
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where the preconditioning matrix is P,=diag[T'?,1,1] and
IM=max (0.25 ,u? + v?). A point-implicit, k-stage Runge-
Kutta method which can be cast as ‘
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where w” is the value of w after n pseudotime steps, is applied
to drive equation (3) to steady state in pseudotime ¢*. Once
a “steady-state” is reach, R* (w) =0 is satisfied and one step
in real time has advanced.

Several efficient techniques are employed to accelerate con-
vergence at each time step. The most important one is
the multigrid scheme, which also uses separately generated
meshes. The details of the multigrid scheme can be found
in {5, 7]. Another is called the local time stepping technique
which allows each control volume to be advanced in pseudo
time by its own maximum local pseudo time step. Resid-
ual averaging is also an effective method to increase the
pseudo time step by collecting information from residuals
at neighboring points [7]. These techniques are performed
on the subiterations and do not affect time accuracy. Note
that equation (3) can also be used to obtain a steady state




solution when At approaches infinity, and R* (w) =R(w).
In this paper both steady and unsteady flow problems will be
examined.

Boundary Conditions
A free-slip condition on the solid bodies is implemented as

u, - n=0 4

which states that there is no normal flow through the bodies.
The free surface condition consists a dynamic and a kine-
matic condition. The former states the continuity of normal
stress on the air-liquid surface. For an inviscid flow, and
neglecting the surface tension, this is expressed as

A

p=po, at y=h

or
h
P=Po+ 77, at y=h )
where py is the atmospheric pressure which is assumed to be
constant. The latter condition describes that the free surface
is a material surface and can be written as

+Up—=— —v=0, at y=h (6)
i

This time-marching equation for the wave height must be
solved together with the bulk flow equations. Thus, a pseu-
dotime derivative term must be added to implement the dual
time stepping method described earlier.

For the steady flow calculations, additional boundary con-
ditions are needed at the far field boundaries because of
the truncation of the computational domain. Thus, a wave
dumper is imposed on equation (6) near the downstream nu-
merical boundary to prevent reflection of waves to the domain
as described in [8, 20]. A uniform flow with an undisturbed
free surface is imposed at the inflow: wu=1,v=0, p=0, h=0.
Also at the bottom, a deep water approximation is applied
and the pressure is set to the unperturbed value p=0. At
boundary nodes, all the other flow quantities are obtained by
using one-sided control volumes.

Grid Generation And Grid Adaption
A computational mesh is necessary to discretize the gov-
erning equations in space. Ultimately, the quality of the
mesh determines the accuracy of a numerical solution. Sev-
eral methods have been proposed to generate unstructured
meshes. Among them, a Delaunay triangulation technique
is used in the present work. The Delaunay triangulation is
defined such that no points lie inside the circumcircle of any
triangle; it is easy to implement, and it is unique.

The method used to generate the mesh is based on an initial
triangulation of the boundary points followed by the insertion

of new points inside the domain according to a prescribed
rule. Details on grid generation using Dealunay triangulation
can be found in reference [14].

Two grid adaption techniques are used. One is the so called
spring method which uses a spring mechanism to deform the
mesh nodes. This method ignores remeshing procedure and
therefore takes into account only mesh deformations. When
the mesh distorts too much, the accuracy of the numerical
solution will suffer. For this reason, another technique is
implemented. In this second approach points are inserted in
the domain when better resolution is required while existing
points are deleted when they lie outside the domain. Thus,
with this grid adaption strategy, the mesh quality can be
guaranteed.

Results
Steady Flow Solver

We consider a uniform flow past a NACAOQ12 airfoil placed
beneath the water. The characteristic length, velocity, and
density are chosen as the chord length of the airfoil, the
distant upstream velocity, and the density of the fluid respec-
tively. The Froude number is 0.567 while the submergence
¢ which is the distance between the center of the airfoil and
the undisturbed free surface is either 1.034 or 0.951, as in the
experiments of Duncan [17]. This problem is computed to
assess both the efficiency and the accuracy of the multigrid
solver, as well as to evaluate an alternative strategies of mesh
rearrangement including the point insertion/deletion method
described earlier. Such a remeshing strategy is more gen-
eral than the spring method originally employed by Hino et
al. [8] and may allow in the future to follow waves past the
overturning.

Figure la shows the grid corresponding to the final con-
verged solution for ¢=1.034, while figure 1b and lc present
comparisons of the wave elevations computed by using the
two mesh movement strategies. The experimental data from
reference [17] are also plotted. The computed waves are in
phase with the one measured although there are slight differ-
ence in amplitude between the two. This indicates the level of
accuracy that is achieved by our discretization method. The
two adaption strategies perform equally well for the deeper
submergence case, c=1.034. However, for the shallower one,
¢=0.951, the adaption method gives better accuracy than the
spring method as it can be seen in figure 1c. This is due to
the excessive mesh stretching exhibited by the spring method
which impairs the accuracy of the computed solution for large
amplitude waves. The convergence history plots of the root
mean square error of the divergence of the velocity presented
in figures 2a and 2b show that the multigrid scheme con-
verges the velocity field to satisfy the continuity equation
(solenoidality condition) to machine accuracy.



Unsteady Flow Solver

We consider a fluid in a finite rectangular tank with a verti-
cal piston wavemaker at one end which corresponds to the
experiment of [18]. The characteristic length, velocity, and
density is set as the initial depth of the water H, /g H, and the
fluid density. The nondimensional length of the tank is 20 in
this study and the origin of the axis is fixed at the initial point
of the intersection between wavemaker and unperturbed free
surface. The horizontal velocity of the piston wavemaker
U (t) is prescribed as the following Fourier series

72
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n=1

The amplitudes U, frequencies wy, and phase §,, are tabu-
lated in [18].

For this case it is found that 10-25 multigrid cycles are suffi-
cient to make the velocity field solenoidal within a tolerance
of 10~3 for each physical time step.

The free surface profiles at several different locations, i.e.
z=3.17, 5.00, 6.67, 8.33, 10.00, and 12.17, are compared
with linear theory. Figure 3 shows that our unsteady solver
is able to capture the trend of the wave motion. Moreover,
the computed solutions are in better agreement with the ex-
perimental data reported in the literature [18]. This is not
surprising since we are accounting for most of the nonlinear-
ity of the problem. More specifically, on a 296 X 16 mesh,
when the computed wave height at z=3.17, t=25 is compared
to the experiments, we find that:

[ At _|h )
computation | 0.10 | -0.6239
computation | 0.05 | -0.6662
linear theory -0.7197
experiments -0.667

Thus, the error is less than 6% .

Conclusions

A fully-implicit multigrid solver has been developed for the
solution of time resolved non-linear surface wave propaga-
tion problems. Good performance and accuracy is demon-
strated in comparison with experimental evidence and linear
theory. The proposed algorithm is quite flexible, and can
be extended to both 3-Dimensional flows, and more com-
plex viscous flow problem. Moreover, the method can be
applied to problems which require the solution of the flow
equations coupled with either a mathematical model of the
structure and/or the motion of a body. Thus, we believe that

this method will evolve into a viable tool for the simulation
of non-linear “seakeaping” problems.
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Figure 1: Steady State Calculation of Wave Pattern over a
NACAQ012 Airfoil . Dot Line Spring Method, Dash Line
Adaption Method.
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