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ABSTRACT

This paper presents the development of a conservative
interface technique designed for turbomachinery applications
involving multiple rows of blades. Instead of interpolating
solution information between blade rows, unique patch
boundaries are defined at rotor/stator interfaces on which
numerical fluxes are evaluated directly. The fluxes are then
distributed to both sides of the interface in a fully conservative
fashion. Accuracy is maintained by representing the primitive
variables in each interface cell using a system of quadratic
polynomials. The coefficients of each polynomial are calculated
using neighboring flow information from both sides of the
interface. In order to make the reconstruction process more
tenable, the current implementation is restricted to pairs of blade
rows which maintain identical axisymmetric radial distributions
of points at their juncture. Preliminary inviscid flow results
show significant improvements in solution quality relative to
calculations conducted using conventional nonconservative
interpolation techniques.

INTRODUCTION

Prohibitive computational requirements have until recently
limited unsteady turbomachinery calculations to small engine
sections containing modest numbers of circumferentially
reduced stages. Shared and distributed memory massively-
parallel platforms, however, such as those being investigated by
the Department of Energy’s Accelerated Strategic Computing
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Initiative (ASCI), have the potential to render large-scale
unsteady turbomachinery calculations possible in the foreseeable
future [18].

Given the prospect of simulations consisting of large
numbers of stages, an important concern becomes the manner in
which flow information is passed between adjacent rows of
blades.  Conventional methods are commonly based on
interpolating flow information between rotor and stator meshes.
Some recent examples can be found in the following references
[41[5]1[14][18]. While convenient to implement, such
interpolation methods do not maintain conservation across
blade-row interfaces. @ While a lack of conservation is
disconcerting even for turbomachinery calculations involving a
limited number of stages, conservation errors would quickly
overwhelm a solution containing, say, 10 to 20 stages.

The conservative interface technique presented here was
developed to provide an alternative to traditional
nonconservative methodologies for passing flow information
between consecutive blade rows in relative motion. It is based
on the approach described in reference [3] and has been
developed and tested using ONERA's multi-block flow solver,
Canari.

OVERVIEW OF CANARI

The Canari multi-block flowsolver [13][17], which was
developed in the CFD Research Branch of ONERA, served as
the framework for the current development. Canari’s
fundamental algorithm is based on the compressible, mass-
averaged, Navier-Stokes equations and includes several
turbulence models. Since the scope of the current work is
limited to inviscid flow, only a description of Cangri’s Euler
algorithm is provided here.
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Using the freestream total density (p,), total speed of sound
(c,) and characteristic length scale (L) to nondimensionalize the
flow variables, the governing equations may be cast in the
following conservative form,

oU OJE OJF oG
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ot ox Jdy Iz
Here ¢ is time and (x,y,z) are the Cartesian spatial coordinates.
The state vector (U) and flux terms (E, F,G) are given by,

U=[p pu pv pw pel

0. (1)
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In the above expressions, (u,v,w) are the Cartesian velocity
components, p is the density and p is the pressure.

Canari is based on the Jameson-Schmidt-Turkel (JST) [11]
multi-step explicit finite-volume algorithm. Common forms of
both linear and nonlinear artificial-dissipation terms are
employed to augment stability using well-established values of
the damping coefficients [13]{17]. Canari’s algorithm has
proven reliable for a variety of internal and external fluid-flow
problems [2][6][7].

Figure 1 Eight-mesh axisymmetric duct configuration.

Figure 2 Non-coincident interface between wheels.

DEVELOPMENTAL TEST CASE

A simple test case was chosen to conduct the development.
The grid configuration is shown in Figures 1 and 2. The test
case consisted of the inviscid M.. = 2.0 flow through an
axisymmetric duct with an 11.31° ramp in the lower wall. In the
figures, the geometry is modeled using two separate ‘wheels’
each consisting of four pie-slice-shaped domains of n/2 each.
For simplicity, we will refer to the wheels as ‘blade-rows’ and to
the four grid-blocks that make up each wheel as ‘blades’
(although no actual blades exist). Each wheel is 1.0 units long
and has an outer wall radius of 1.0 units. The inner radii at the
inlet and outlet are 0.20 and 0.28 units, respectively, and the
ramp between these two values extends from x = 0.4 to x = 0.8.
Each of the eight meshes making up the configuration maintains
uniform spacing and possesses axial, radial and circumferencial
grid dimensions of (26x21x6). In the figures, the downstream
wheel has been rotated by 7/25 to create the non-coincident
interface shown. Note that the lack of coincidence occurs in the
@ direction only, as radii on opposite sides of the inter-wheel
boundary are equal.

CONSERVATIVE INTERFACE TREATMENT

QOverview

The conservative interface algorithm is simple in concept.
Instead of interpolating the solution from the interior region of
one grid to overlapping ghost cells created at the boundary of
another (and vice versa), we endeavor to evaluate numerical
fluxes directly along blade-row interfaces. The interface flux
contributions are then distributed to the cells on opposite sides
in a fully conservative fashion.

The process begins at the start of each global iteration when
the angular position of the rotating wheel is incremented by A6.
Because the interface treatment was designed to accommodate
blade rows of non-reducible counts, the interface cells from each
individual blade grid are first concatenated to form a set of
wheel arrays which extend through a full 2rn. This mapping
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serves as a simple means for cross-referencing grid and flow
information between consecutive blade rows as rotation occurs.
These atrays are updated after each incremental rotation such
that their members always remain ordered between O and 2m.
This is conducted using a system of pointers which avoids the
need to rearrange each wheel array after every iteration.

The above mapping is next used to create a unique patch
boundary at the juncture between two adjacent blade rows. For
the present work, this task is greatly simplified because the
interfaces between consecutive blade rows are constrained to be
planar and oriented in the x-direction (see Figure 2). Referring
to Figure 3, the construction of the patch boundary reduces to
superposing the upstream (solid lines) and downstream (dotted
lines) blade-row boundary meshes. The superposition is carried
out by merge-sorting the angular positions of the radial grid lines
from both sides of the interface. Using this merged list, we can
readily calculate the ‘small-face’ areas created by the
superposition process. Some typical small faces are shaded in
Figure 3 for clarity.
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Figure 3 Superposed interface grids.

The unique patch boundary (as defined above) is then used
at the beginning of each Runge-Kutta stage to reconstruct the
fluxes along the interface. To this end, we first represent the
primitive flow variables (p,u,v,w,p) in each interface cell using a
quadratic polynomial. Interface cells are simply defined as the
cells along the boundary (one row deep). The coefficients for
each variable’s polynomial are calculated using information
from the surrounding cells on both sides of the interface.
Stencils are taken to include all of the cell’s face and edge
neighbors. Two typical stencils are shown in Figure 4a. In the
figure, each stencil contains eight points. Note that to limit the
reconstruction to two dimensions and thus render it tenable for
practical applications, we have constrained the radii of
corresponding circumferential gridlines on opposite sides of the
interface to be equal and constant with 6. Note that this
restriction only affects interface cells.

The cell-wise polynomials are next used to reconstruct the
flow at the centroid of each small face (see Figure 4b). The

polynomial contributions from each side result in two
reconstructed states at each small face. A unique flux value is
then obtained by averaging the flux vectors, multiplying by the
small-face area and subtracting an appropriate numerical
smoothing term, {Dj. Two different forms of artificial
dissipation were investigated. Both will be explained in detail
later in the paper.

The resulting small-face fluxes are next distributed to the
interface cells on both sides by summing the appropriate small-
face contributions. The distributed fluxes are finally included in
the normal flux summation of the respective interior schemes.
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Figure 4 a. Typical stencils. b. Reconstruction along interface.

Areas, Normals and Volumes

To facilitate the process of maintaining conservation across
mesh interfaces, grid metrics were calculated based on a
cylindrical coordinate system. The metrics were then converted
into Cartesian coordinates so that they were consistent with
Canari’s algorithm. This process is accomplished to ensure that
the sum of the cell-face areas corresponding to a given annulus
will be equal on both sides of the interface and also equal to the
sum of the small-face areas corresponding to the same annulus
(see Figure 3). The directional areas in cylindrical coordinates
for each quadrilateral cell face are given by:

s =1 § r’do =—§ rodr )
face face
1 l:(r404 =50, —1)— (10, —16,)(r, —1,)
6 +©, 61" =)~ (0, =6))(r," —1,’)
S, = § r0dx = xrdd 3)
face face
1_
= Erface [(93 =0,)(x, —x,)— (0, —6,)(x; — x, )]
5, = § rdx == xdr )
face face
1
= E[()% =x )1, —n)—(x, —x, )1 — ’i)]
The corresponding cell volumes are,
Vol = 1# (xrdrd6 +4 r*dOdx+ rodrdx) )

faces

=L Y Xrdrd® +17d0dx+70 drdx

faces
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We then transform the above areas via,
S 1 0 0 S

S, |=|0 cosf =—sin@| S, |, ©6)
S, 0 sinf@ cos@ || S,
to obtain the face normals in Cartesian coordinates,
A = (nony,n) = (S,,8,,5,)/|S|. )

Cell-wise Polynomial Reconstruction
The cell-wise reconstruction is based on a quadratic
polynomial of the form,

[D0AD)=f +anrb+aAz+a A0 +apr*+a Az . (8)

Here f, represents the reconstruction of any primitive variable f.
J» 1s the primitive’s point-wise value at the cell’s centroid from
which (A6 Ax) are measured. The constants a,, are calculated
using a singular-value-decomposition (SVD) formulation of the
least-squares problem with information from neighboring cells.
A typical stencil includes all face and edge neighbors on both
sides of the interface (see Figure 4a).

Two slightly different formulations were implemented. In
the first formulation, referred to here as the ‘least-squares’ (LS)
formulation, the problem reduces to the following. Given N
surrounding cells, we wish to choose the M coefficients of
equation (8) so that the difference between the reconstructed
solution and the discrete solution at the surrounding cell centers
is as small as possible. Writing equation (8) for each
neighboring cell resuits in the following system of equations,

{af} = [X.n {an} ©)
where Af, = (f,—f,), n=1,2..Nand m = 1,2...M (note that M =
5 for a quadratic polynomial). Thus, we want to find {am} such
that

(10)

X = Ko Hon} -

is minimized. If N > M, we can decompose [X into the

-

product of two orthogonal and one diagonal matrices as follows,
X,.] = [U,.][diag(W,)][V,.]"- (11)
Using this decomposition, the solution to (10) is given by

{a.} =V, [diag(%vm)] an{Af} (12)
or Z Z (13)

l n=1
The routine used to construct the matrices (U,V,W) is presented
in reference [15].

The second formulation, which was developed by Delanaye,
et al. [9], is a slight variation on the above theme. It is based on
calculating the first-order gradients using a ‘Green-Gauss’ (GG)
loop as shown in Figure 5. An error term based on a SVD
calculation of the second-derivative terms is then subtracted
from the loop gradients to produce second-order accuracy.

!
Figure S Typical ‘Green-Gauss’ loop.

The first-order gradients are given by the following,

U =i fo=s § G-fuds s

L Loop

where S is the loop area. In discrete form, equation (14) may
be written,

{;} s 2 f){ ;} []{Af}

where [B]E o |7 (xn+1:x,,_1)-~-
2SL (en—l 0n+1) "t

and r, is the radius at the cell center. We next expand [B]{Af,}
in a Taylor series about the point (8,,x,),

_m P
[B]{4f, }=[B]{4e, Ax}{ f} ;
2 2 * o6
+[B]{A6" A, AGAx 3 [, p+B(ARY)
[c] Jox

Truncating and replacing (£, £, £.) by (@3a4a5), we arrive at a
second-order gradient approximation,

2 a,
{a}= Yol _tar -1 a . a5)
2 i as

Equation (15) depends on obtaining at least first-order accurate
approximations to the second derivative terms (azasas). To this
end, we substitute (15) back into (9) which gives us the
following overdetermined system for the three unknowns

(a3,a4)a5)$

{Ag,}
([I1-{A6, Ax}BD{Af,}=
AQ? 2 a4 (16)
(—{Ag, A ClH—— —— ABAx })<q,
ag |-

Y]
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Because equation (16) has the same form as equation (9) (note [
= 1,2,3), we use the aforementioned SVD solution procedure to
solve for (asasas). We then back substitute into equation (15)
for (aj,a,).

Although slightly more involved than the previously
described least-squares procedure, the Green-Gauss method has
the advantage that it decouples the calculation of the first and
second-order gradient terms. This is useful when limiting the
reconstruction in regions of high gradients. One can apply a full
second-order quadratic reconstruction in smooth flow regions
while switching to a robust first-order linear reconstruction near
shocks. In the present work, Barth’s limiter [1] was employed
using the implementation found in reference [9].

Artificial Dissipation
We experimented with two different types of artificial
dissipation at the interface. The first was based on Roe’s [16]
standard Jacobian linearization. Note that since the interface
was aligned in the x-direction, we are only concerned here with
the x-Jacobian matrix, [A,]=[dE/dU]. The so-called matrix-

smoothing term takes the following form,
1
{D}MATRIX =E[ Axl:l{AU} an
J=[r[diag {2} ](rT"

and {1}={0,0.0,0+¢S,0—cS}.
In the above, @ =V -S and c is the speed of sound.

AX

where I:

Decomposed forms of the transformation matrices [T] and

[T]_1 can be found, for example, in reference [12].

The second type of artificial dissipation was based on a
simple scalar term of the form,

Do =5[dias u 00T 9)
where A, = |Q| +cS.

Time-Integration

All calculations performed in this study were conducted
using a four-step Runge-Kutta time-integration scheme with
CFL = 3.0. As stated earlier, the current implementation
assumes that consecutive blade-row grids have been constructed
such that they abut perfectly at a planar interface between them.
Because there is no disruption of the grid structure whatsoever,
traditional acceleration techniques such as implicit residual
smoothing and multigrid remain fully operational.

Test Results
Steady (Non-Rotating) Case
The ultimate goal in developing a technique to pass flow
information through non-matching zonal grid boundaries is that
the application of the method to a non-coincident interface
reproduce the results that the baseline numerical scheme would
yield when applied to a single, continuous mesh. To evaluate

the present method in this regard, a steady (non-rotating)
inviscid solution (M., = 2.0) was first conducted using a single
smoothly varying grid to represent the entire axisymmetric
channel (as described previously). The single grid had
dimensions of (51x21%21) and maintained a mesh spacing that
was consistent with the eight-grid configuration shown in
Figures 1 and 2. This case served as a reference in comparing
subsequent solutions.

Steady (non-rotating) calculations were next carried out
using the previously described eight-grid configuration
illustrated in Figures 1 and 2. The non-coincident interface
shown in Figure 2 was created by rotating the downstream wheel
by w/25 and then fixing it. Calculations of the eight-grid
configuration were conducted using both a standard linear-
interpolation approach and the current conservative technique.
Four separate conservative calculations were conducted to
examine different reconstruction techniques (Green-Gauss vs.
least-squares) and different numerical smoothing methods
(matrix vs. scalar). In the figures below, these cases are referred
to as ‘GG + Matrix’, ‘LS + Matrix’, ‘GG + Scalar’ and ‘LS +
Scalar’.

All four calculations conducted using the conservative
interface treatment showed improvements over the linearly-
interpolated results in both convergence and accuracy. Figure 6
shows a comparison of the iteration histories for the steady
cases. The four conservative solutions were virtually identical.
All four converged to machine zero in 35% fewer iterations than
did the linear-interpolation case. The playing field was
somewhat leveled, however, when we examined CPU cost.
Figure 7 shows a plot of convergence vs. CPU seconds on a
DEC Alpha machine. As expected, the ‘LS + Scalar’
conservative case was the cheapest of the four. The unoptimized
code added approximately 30% extra CPU time per iteration in
comparison to the traditional linear-interpolation scheme. The
most expensive of the four was the Green-Gauss (GG)
reconstruction with matrix smoothing. It added approximately
35% extra CPU time per iteration. Although the additional CPU
expense is significant when using a scalar machine, operating in
a massively-parallel environment would considerably lighten the
burden. Indeed, individual processors could be dedicated
specifically to the interface treatment making the extra CPU cost
inconsequential.

Figure 8 presents line plots of several quantities along a
constant @ plane. These include mass flow (puA), pressure (p),
total pressure (p,) and entropy (s). Entropy is defined here as,

s =log(p/p")~108(p/ P7 ), =log(p/p?)~log(l/y).
With the exception of massflow which is a cross-sectional
property, the line plots are taken at the average channel radius,
(Tinner + Touer)/2. This coincides with the location at which a
shock crosses the interface. Note that the interface itself is
located at X;peerface = 1.0.

Using the single-grid calculation as the reference, we see
that the results obtained using the conservative interface
treatment were markedly improved relative to the linearly-
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interpolated results. Examining first the massflow (puA), we see
that in all cases the conservative approach eliminated the
discrepancy produced by the nonconservative linear-
interpolation scheme. As a result, the pressure peaks of the
conservative solutions were captured more precisely. In
addition, the conservative total pressure and entropy plots
matched the single-grid results considerably better than did the
linearly-interpolated solution. Although the mass production
attributed to the nonconservative approach was a mere 0.02%
for this simple test case, the associated increase in entropy was a
resounding 28%. Such a discrepancy highlights the importance
of an accurate interface boundary treatment.

Among the steady conservative cases, there was no
discernable difference in accuracy between the least-squares and
the Green-Gauss reconstruction methods. The matrix and scalar
smoothing calculations, however, did produce somewhat
different results. This is most readily seen from the entropy (s)
plot in Figure 8. Relative to the single grid solution, the
calculation performed using matrix smoothing underpredicted
the entropy jump through the shock and the scalar smoothing
calculation overpredicted it. Of the two, the scalar approach
actually matched Canari’s interior scheme slightly better. This
is probably due to the fact that the scalar term given in equation
(18) is very similar in nature to the second-order artificial-
dissipation term of Canari’s internal algorithm. Indeed, the
internal scheme’s second-order smoothing term would be the
dominant artificial-dissipation term near a shock. Further work
is needed to more smoothly blend the interior and interface
schemes’ numerical-dissipation terms.

‘Pseudo-Unsteady’ (Rotating) Case

A ‘pseudo-unsteady’ test was next carried out to ascertain
the functionality of the interface procedure for rotating meshes.
‘Pseudo-unsteady’ is defined here to mean that although the
downstream mesh was indeed rotating geometrically, rotational
accelerations and angular velocities were not taken into account.
In other words, the physical locations of the flow-quantity array
addresses were indeed rotating, although the values of the flow
quantities themselves did not reflect that rotation. Because the
flow was inviscid and axisymmetric, the steady-state solution
should be recovered. Performing the calculation in this way
(instead of in ‘full-unsteady’ mode), provided us with a
convenient method with which to evaluate the performance of
the rotational scheme using the steady-state solution as a
reference.

The Green-Gauss reconstruction with scalar smoothing was
chosen to perform this test. The downstream wheel was rotated
by a fixed amount of ©/100 after each timestep. Referring to the
convergence history shown in Figure 9, we see that the solution
converged less than three-orders of magnitude before entering a
limit cycle. In investigating the reason for this, we discovered
that Canari’s treatment of the circumferential boundary
condition between grids of the same wheel (unrelated to the
current interface procedure) caused a cyclic asymmetry to persist
throughout the calculation. The observed limit-cycle was the

result of these asymmetries interacting with one another at the
interface as the downstream wheel was rotated. Nonetheless, the
calculation proved to be stable and produced a flowfield that
was practically identical to the previous steady results. Note that
the pseudo-unsteady case is labeled ‘Rotating’ in Figure 8.

CONCLUSION

Given the prospect of performing large-scale
turbomachinery calculations consisting of dozens of stages, the
nonconservative nature of conventional blade-row interface
techniques render them inadequate. As an alternative, this paper
has presented a conservative methodology that is based on
creating unique patch boundaries between adjacent rows of
blades. Numerical fluxes are evaluated directly along these
interfaces, eliminating the need to interpolate flow information
to a system of overlapping ghost cells. Interface fluxes are then
distributed in a fully conservative fashion to the cells on both
sides of the patch boundary. Preliminary inviscid test results
have demonstrated the method’s potential for providing
improved accuracy and convergence characteristics relative to
traditional nonconservative methods.

FUTURE WORK

The conservative interface treatment documented in this
paper has recently been implemented into the 7FLOW code at
Stanford University and the results presented here reproduced.
In the future, the methodology will be incorporated into
ONERA’s object oriented flow solver, ELSA. Future
developments will focus on the extension of the algorithm to
viscous and turbulent flows and its application to more
complicated turbomachinery configurations.
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Figure 8 Line-plot comparisons at (Tiype;+Houter)/2-
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