On the Construction of the BGK-Type
Schemes for Compressible Flow Simulations

by

K. Xu, C. Kim, L. Martinelli, and A. Jameson
Princeton University, Princeton, New Jersey, USA

Proceedings
6th International Symposium on Computational Fluid Dynamics

Lake Tahoe
September 1995



On the Construction of BGK-Type Schemes
for Compressible Flow Simulations

Kun Xu, Chongam Kim, Luigi Martinelli and Antony Jameson
Department of Mechanical and Aerospace Engineering
Princeton University, Princeton, NJ 08544

1 Introduction

The development of numerical methods based on gas-kinetic theory started in the earlier 1970s. The
first scheme of this class which is widely used in the astrophysical community is the beam scheme
[11]. This scheme is based on the collisionless Boltzmann equation, where the left and right moving
particles generated from the equilibrium states in each side could penetrate through the cell interface
to form the numerical fluxes. Beginning in the 1980’s, the beam scheme was “re-invented”, modified
or extended by many authors. Pullin was the first one to use the complete error function to get the
numerical fluxes and the scheme is named Equilibrium Flux Method (EFM). By applying the Courant-
Isaacson-Reeves (CIR) upwind technique directly to the collisionless Boltzmann equation, Deshpande
derived a similar scheme which is named Kinetic Flux Vector Splitting (KFVS). Combining both the
multidimensional technique and the KFVS, Eppard and Grossman developed several versions of first
order multidimensional gas-kinetic schemes [4].

In order to capture the gas evolution process more precisely, a new class of gas-kinetic schemes
based on the collisional BGK model has been recently proposed [8, 12, 13]. We will refer to this class
of schemes as BGK-type to distinguish them from other gas-kinetic schemes based on the collisionless
Boltzmann equation. In our approach, the full integral solution of the BGK model is used locally to
get the time-dependent gas distribution function at the cell interface. BGK-type schemes of this class
yield the Navier-Stokes equations directly, and have many advantages over most centered and upwind
schemes [13].

In this paper, we propose an alternative formulation which improves upon existing BGK-type
schemes. In particular, characteristic variables are used in the reconstruction step, and discontinuous
slopes of the equilibrium state g are allowed. Section 2 describes the basic scheme in terms of the
reconstruction and gas evolution approach. Section 3 includes some numerical examples which indicates
the merits of the proposed approach.

2 The BGK-Type Schemes for the Navier-Stokes Equations

2.1 Reconstruction
In the reconstruction stage, the cell averaged value U; can be interpolated as
Uj(z) for Ti1y2 ST < Tjp00,

and the interpolation principles could be TVD, ENO cr LED [6]. The interpolated value of U;(z) used
in this paper is the characteristic variable, from which the conservative variables in each cell can be



derived and denoted as mass j;(z) , momentum P;(z) and energy €;(z). For the BGK type flow solver,
the interpolated pointwise values as well as linear slopes of the conservative variables inside each cell
will be used to evaluate the time-dependent gas distribution functions at the cell interface.

2.2 The BGK Solver

For a one-dimensional flow the BGK model is

ft+ufm=g—f> (1)
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where f is the gas distribution function and g is the corresponding distribution of the equilibrium
state which f approaches. Both f and g are functions of space z, time t, particle velocity u and
internal degrees of freedom ¢. The equilibrium state is described by a Maxwellian distribution g =
p(i)‘K‘Eﬂe"A((“"U )?+€*) where p is the density and U is the macroscopic velocity. The internal degrees of
freedom of ¢ is given by K = (5—3v)/(y— 1)+ 2 in the one-dimensional case when the particle motion
in the y and z directions is included as internal motion. The relations between mass p, momentum P

and energy e densities with the distribution function f can be written as
p .
pl= /%fdz, a=1,2,3 2)
€

where 1), 18 the vector of moments Yo = (1, u, %(u2 +£2)T and d= = dudf is the volume element in
phase-space. Since mass, momentum and energy are conserved in particle collisions, f and g have to
satisfy the conservation constraint of

[ta= pratz=0, 0=123 )

at any point in space and time. To the first order of 7, the distribution function f can be written as
f = g—7(g9t+ugs). Taking moments 1, to the BGK equation, we can get the Navier-Stokes equations.
The general solution of f at the cell interface z;,,/y and time ¢ 1s

1/t :
f(xj"l'l/?v i, u, f) = ; A g(mla tl»ua é)e—(t—t )/Tdt/ + e—t/TfO(x - ut)’ (4)

where 2’ = z;,1/9 — u(t — ') is the trajectory of a particle motion and fp is the initial nonequilibrium
distribution function f at the beginning of each time step (¢ = 0). Generally, fo and g around the cell
interface z;,1/o are assumed to be

; g (1—+—al(m—zj+1/2)> s TS T/ (5)
0= 0
g’ (1 -+ a’(ac - ij/Q)), T 2> Li41/2
and
9= 90 (14 (1~ Hlz — 215112)8 (@ = 201/2) + Hle = 2151 )8 (€ = 25012) + A1) (6)

Here ¢!, g" and go are local Maxwellian distribution functions, which are located at the left, right and
middle of a cell interface, and H[z] is the Heaviside function. Notice that in the present approach
we allow for discontinuous slopes of g. The dependence of a!,a",..., A on the particle velocity can be
obtained from the Taylor expansion of gy and have the forms of a' = al¢q, ..., 4 = Axta, where all
coeflicients of all, aIQ, ..., Az are local constants.



In the reconstruction stage, we have obtained p;(z), Pj(z) and €;(z) in each cell z;_1/5 < < T;41/2
from the interpolation of the characteristic variables. By using the relation between the gas distribution
function fo and the macroscopic variables (Eq.(2)), we get

5j(332+1{2)‘59(%)

éj(%’ﬂ/z) _ N
/ g o dudt = (Pxxjﬂ/z) : / gldpodude = | Byl (@)

& (z541/2) Gz 417208 (25)
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similar equations can be found for ¢" and a”. Here, Az~ = 7,1/, — z; is the distance of the center

from the cell interface. From the above equations g’ and ¢” as well as a! and a” in fg can be completely
determined.
After determining fo, the equilibrium distribution function go at (z = 0,¢ = 0) can be found from

/gowadz= / . /g%adﬂ / . / " $ads, a=1,2,3 (7)

The moments of gg in the above equation correspond to the mass pg, momentum Py and energy €
densities at (z = 0,t = 0). Then, @' and @ in g can be obtained from the following formula

%M » ﬁz'il(Zz‘i_l)"pO
/go&lwadudé = EO:A_}ZJ:@Q : /g0a7¢adud§ - _z’+1(ZzI+1)—Po
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where Azt = 241 — T2
After substituting Eq.(5) and Eq.(6) into Eq.(4), the final gas distribution function at a cell interface
is
@iyt € = (= Mgot (r(=1+ /) +1e7/7) (@Blu) + (1 - Hu))) ugo
+7(t/7 -1+ eV Age + €Y7 fo(—ut),
with ( »
g(l—a'ut), u=>0
—ut) =
fo(~ut) {g’(l —a"ut), u<O0.

The only unknown term A in the above equation can be obtained from

/OT /(g ~ [)odtdZ |z, ,= 0.

Finally, the time-dependent numerical fluxes in the z-direction across the cell interface are computed

F, 1
(fp) - /u< : )f(xjﬂ/z’i»“vf)d“d&'
Fe/ iy 2(w? +€%) '

Positivity Condition: The BGK-type schemes provide an alternative gas evolution model in contrast to

the classical Riemann solver. From Eq.(7), we know that go has positive density and temperature if g
and ¢" obtained in the reconstruction stage are physical states with positive density and temperature.
Thus go > 0 is satisfied and all particles have positive probability. If we ignore all slopes in the
BGK-type schemes, the distribution function f at the cell interface could be simplified as

fespamt) = (A= gt s



Since gg > 0, fo > 0 and e~t/T < 1, f is strictly positive (f > 0). Therefore, f has positive density and
temperature, since

2
/fd,u>0 and /uzfdu—%

We define Eq.(8) as the positivity condition for the BGK schemes. Roe’s approximate Riemann solver
cannot guarantee that the solutions of the flow variables at the cell interface satisfy this condition [10].
Multidimensional Property: For two dimensional flow, the BGK model is

> 0. (8)

fitufe+vfy=_(9-f)/7
which yields the 2D Navier-Stokes equations of
Wi + AW, + BW, = S.

It is well known that the matrices A and B do not commute. This yields the necessity of wave
modelling for the development of multidimensional upwind schemes. However, since in the gas-kinetic
model the particle velocities are independent variables, BGK-type schemes extends transparently to
multi-dimensions.

3 Numerical Examples

Case(1). Reference [7] presents the analysis of a BGK scheme for the advection equations. By applying
the new numerical discretization in this paper, the similar BGK-type scheme for the linear advection-
diffusion equation can be obtained. Fig.(1) shows the results of a decaying sinusoidal wave after one
period time (¢ = 2.0) using 40 cells and an ENO reconstruction for the cell interface values, where CFL
time step is 0.1 and Re(= cL/v) is 400. Compared to the results of [2], higher order(more than second
order) results are almost identical, while first order and second order results of the BGK-type schemes
are much better.

Case(2). The Shu-Osher test case consists of a moving shock with Mach number 3 interacting with
sine waves. As observed by many authors, MUSCL type TVD schemes present very smeared results
for the density distribution. Fig.(2) shows the density distribution computed on 400 points using the
BGK solver and a 4th-order ENO [5] interpolation for the discrete values at the cell interface. The
results confirm the accuracy of the flow solver and the necessity of higher order reconstruction for this
test case.

Case(3). In order to validate the applicability of the present BGK-type scheme for the flow calculations
with both strong shocks and high expansion regions, an impulsively started cylinder with initial Mach
number of 3 is chosen. This problem is particularly difficult because the very wide expansion in the
rear part of cylinder produces a vacuum-like low density region. Most upwind schemes have difficulties
in maintaining positive pressure and/or density, and generally require “ ad hoc fizes ” to overcome this
problem. The present BGK scheme, however, doesn’t exhibit any particular difficulties and preserves
positivity. Both the first order and second order schemes are successfully applied in this case. Fig.(3)
shows density contours at ¢t = 4.0. The curved shock is nicely captured with two interior points and the
V-shaped weak shock induced by the expansion at the rear part of cylinder is also reproduced correctly.

4 Conclusion

Both the initial reconstruction of the data and the gas evolution stage can affect the accuracy and
robustness of a numerical scheme. The BGK model provides an alternative gas evolution model for the



Navier-Stokes equations and allows the construction of numerical methods which have many advantages
over more classical Godunov-type schemes, especially for hypersonic unsteady flow calculations.
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Figure 1: Linear Advection-Diffusion with ENO Interpolation ( Re = 400 )
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Figure 2: Shu-Osher case with 4th-order ENO reconstruction and 400 cells

Figure 3: Density Contours for M = 3.0 Cylinder Case with 300 x 100 cells



