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ALSTRACT

An Euler equation code is coupled with a boundary-laver code for
calculating viscid-inviscid interaction on airfoils. The Euler equation
code is a new finite volume three-step scheme that is stable for Courant
numbers up to two. The boundary-laver code is an inverse mean-flow kinetic
energy integral method. Viscid-inviscid coupling is achieved using the
surface source methoed. Calculations were made for transonic flow over an
airfoil and compared with experimental surface pressurc and boundary-laver
data.

1. INTRODUCTION

Methods available for calculating transonic viscid-inviscid interacting
flow over airfoils are either Navier-Stokes methods or inviscid-methods
coupled with boundary-layer solutions. Whereas the Navier-Stokes cquations
properly describe interacting flow, these equations are prescntly restricted
from routine usc because of computer requirements. Inviscid flow boundarv-
layer coupling methods on the other hand require less computer resources,
but these methods have been developed for irrotational inviscid flow and
usually attached boundary layers. Recent reviews of viscid-inviscid cou-
pling methods by Lockl and Melnik? are available, hence a review of previous
work 1s not included here. The purpuse of this paper is to report on com-
putations of transonic viscid-inviscid interacting flow on airfoils which
are based on coupling an Euler equation code to allow for rotational
inviscid flow, with an inverse boundary-layer code to allow for attached
or separated flow.

Lockl points out that the use of potential flow equations introduces
a source of error and uncertainty because the flow is assumed to be every-
where irrotational and isentropic. Lock! illustrates that the pressure
rise for an isentropic shock is greater than that for a true shock, with
the difference becoming appreciable for local Mach numbers greater than 1.2.
Therefore, because many flows of practical interest have ilocal Mach numbers
greater than 1.2, there is need of a method for calculating viscid-inviscid
interacting flow without the restriction of irrotational, isentropic




inviscid flow.

Lockd also points out that attached flow boundary-layer methods require
an artificial safety valve to prevent the breakdown of the method past
separation. This is particularly a problem in passing through a shock wave
arc at the trailing edge of an airfoil. Moreover, this problem can be
compounded in the early iteration cycles where the shocks may be strong
even 1f the final solution contains no regions of separated flow. It is
assumed that these artificial fixes do not significantly influence the
final solution.d This problem is overcome in the present method by using
an inverse boundary-layer method that permits regions of separated flow
during the iteration cycles and/or in the final converged solution.

The method used for solving the Euler equations is a new method due to
Jameson, Rizzi, Schmidt, and Turkel.3 The inverse boundary-layer method
is that described in Ref. 4. The Euler equation method is discussed first,
followed by a description of the inverse boundary-layer method. The method
used to couple the viscid-inviscid solutions is then described, followed
by computed results for supercritical flow over an airfoil for which
experimental surfac. pressure and boundary-layer data are available.

11. EULER EQUAT1ON METHOD

The numerical method used to solve the Euler equations is described
in Ref. 3. The method is a new unsplit, three-step (one predictor and
two correctors), finite volume scheme. The scheme is second order
accurate and a Fourier analysis indicates the scheme is stable for the
one dimensional initial value problem for Courant numbers up to 2.
Steady flow calculations are further accelerated by using a variable time
step determined at each grid peint by the local Courant number. The
encrgy equation is not solved, rather the steady state conditicn of
censtant total enthalpy is used to determine the pressure. The basic
time stepping scheme is followed by a filter at each time step which
introduces an effective artificial viscosity. This filter helps stabilize
the scheme for flows with shocks such that the expected limiving values
ol Courant number werce used throughout the grid in the present calculaticns.
This Euler equation code is operational on the CRAY~1 and the CYBER
203 computers. However, no significant optimizations have vet been per-
formed to fully utilize either machine, hence current computation times
represent an upper bound and mean very little. For a 121 x 30 mesh, one
cycle requires about 0.15 seconds on the CRAY-1 and the CYBEK 203 requires
about twice this much time. Reasonably converged solutions require 1000
cycles, although good engineering answers are obtained in 500 to 800 cycles.

111. INVERSE BOUNDARY-LAYER METHOD

The singularity associated with boundary-laver computations at sep-
aration is avoided bv using an inverse boundary-layer calculation method.
By specifyving, for example, the displacement thickness distribution instead
of the pressurce distribution (a so-called inverse method) this singularity
is removed? and boundary-layer computations can procecd throughout separated
regions. The inverse method used here is the mean-flow kinetic energy
integral method described in Ref. 4. This method is based on turbulent
boundary-layer velocity profiles that describe separated or attached flow.

o




The same calculation scheme is used whether the flow is attached or sepa-
rated and hence no switching or artificial {ix is required for points near
separation. The dissipation integral is evaluated at each streamwise
location using the velocity profiles and the Cebeci-Smith algebraic eddy
viscosity model . ©

In an inverse boundary-layer method, pressure is a dependent variable,
and in the particular inverse method used here the displacement thickness
(6%) distribution is specified. The method used to provide a rational,

a priori, spccification of the §* distribution is the method of Carter.
Carter's method can be written as

% {(m+1 *(m *(m u v
g LT et ey )
]qlw,i
ok (m¥l) L . , . . .
where ¢ is the new displacement thickness at a streamwise location,

§*(™) is the displacemcnt thickness from the previous iteration, Ue,v 1s

the local velocity at the edge of the boundary layer obtained from the last
boundary-layer solution,[é]w i is the magnitude of the local velocity vector
obtained from the last Euler’equation solution, and w is the relaxation
parameter.

Figure 1 illustrates that Eq. (1) can also be used with an inverse
method to solve a conventional attached flow boundary-layer problem
(albeit an increasingly adverse pressure gradient flow) with known pressure
distribution. For such a problem, the known pressure distribution is used
te determine the velocity disgribution which corresponds to fqlw,i in Eq.
(1). 1In this case the term Iq!w,i would, of course, remain fixed at each
streamwisc location and Eq. (1), with ue,v updated after egch inverse
boundary-layer solution, is used to obtain the converged &¢° distribution.
Figure 1 illustrates that the inverse method, with Eq. (1) used for updating
5%, provides essentially the same result as the direct method after about
4 iterations with w = 2 and the initial 8" distribution being that for a
flat plate. Therefore, although a direct method is faster than an inverse
method for attached flow because iteration is not required, a direct method
is not required. .

IV, VISCID-INVISCID COUPLING

The method used to achieve viscid-inviscid coupling is the surface
source model (or the method of equivalent sources of Lighthill9). This
method has an advantage over the effective displacement surface approach
in that a surface source mass flux is imposed as a boundary condition in
the inviscid calculation at the physical body surface or in the wake, and
hence mesh adjustment during the iteration process is not required. The
surface source mass flux, (pv)p, imposed at the physical surface is given
by

d »7‘<
(oeueo )

dx (2)

(oV)n =

where (pv), is the local mass flux normal to the surface. The right hand
side of Eq. (2) is evaluated after each inverse boundary-layer solution to




determine (_ov)n for subsequent inviscid calcuiations.

The viscid-inviscid interaction calculation scheme proceeds in the
following steps.
1. The Euler cquation solution is advanced 20 to 50 cycles with
({)V)n = 0.
An inverse boundary-laver solution is obtained with ¢°(1) given
by Eq. (1), where 8(0) 5 a4 flat plate distribution, Ue,v 1s
constant at the free-stream value (u«), and }qiw’i is obtained
from the last cycle of the Euler equation solution.
3. The Euler equation solution is advanced 20 to 50 cycles with
(pv)n held fixed at the value given by Eq. (2).
4. An inverse boundary-layer solution is obtained with &% (m+l) given
by Eq. (1).
0. Steps 3 and 4 are repeated until convergence on ¢* or cp (surface
pressure coefficient) is obtained.
The number of cycles the Fuler equation solution is advanced in steps 1 and
3 depends upon the problem. For example, if strong shocks form in the early
cycles of the Euler equation solution and if over relaxation is used, like
w = 2, it can be advantageous to call the inverse boundary-layer solution
after only a few cycles. 1t is possible to obtain a converged viscid-
inviscid interaction solution in fewer cvycles than required to obtain a
converged inviscid solution due to a weaker shock resulting from the
inclusion of viscous c¢ffects. However, most solutions presented were cycled
1.5 to 2 times the number of cycles required for a purely inviscid solution.

o

V. RESULTS

The experimental data of Cook, McDonald, and Firminl0 include surface
pressure and boundary-layer informaticn for transonic flow about the RAE

2822 airfoil. Two sets of experimental data, denoted as Cases 6 and 9 in
Ref. 10, are considered. Unfortunately these data, as all available
transonic airfoil data, are not interference free. The values of Mach

number and angle of attack corresponding to experimental (wind tunnel)
conditions were

Case 6 ., Case 9
M_ = 0.725 M, = 0.730
a = 2.92° a = 3.19°

and the corrected Mach number and angle of attack values used for the
present inviscid and viscid-inviscid interaction calculations were

Case b6 Case 9

{ = 0,729 M = 0.734
©, COrr © COrr

o = 2.44° G = 2.67°
corr corr

The Reynolds number based on chord was 6.5 x 10° for both cases.

Comparisons of calculated and measured surface pressure data are given
in Figs. 2 and 3. The Mach number correction of 0.004 was that used by
Lockl to obtain agreement between calculated and measured lower surface
pressure distributions using a potential flow code for the inviscid flow.
However, note in Figs. 2 and 3 that the lower surface agreement obtained
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here using this Mach number correction is not good. The corrccted angle of
attacks were determined by the information provided bv Cook, McDonald, and
Firmin.10 The calculated shock location using the corrected angle of attack
is close to the experimental shock location for Casc Y in Fig. 3, but the
calculated shock location for Case 6 in Fig. 2 is about 3 percent chord
forward of the experimental shock location. Adjustments in Mach number

and angle of attack to match surface pressure distributions and hence lift
coeff{icients were not made.

Comparisons of calculated and measured boundary-layer data are given
in Figs. 4-6. The calculated boundary-layer displacement thickness (6%/c)
and momentum thickness (6/c) distributions are slightly above the experi-
mental data over the aft portion of the airfoil for Case 6 in Fig. 4.
However, the calculated shock location is slightly forward of the experi-
mental shock location as mentioned above, which may contribute to this
difference. The calculated cgy, ¢*/c, and 8/c distributions for the stronger
shock case in Fig. 5 are in good agreement with the experimental data, even
in the shock boundary-layer interaction region. A more detailed comparison
of calculated and measured data throughout the shock region and at the
trailing edge is given in Fig. 6 by boundary-layer velocity profile compar-
isons. The agreement between calculated and measured data in Fig. 6 is
considered good. Calculated distributions of the source velocity, (pv)n,
are included in Figs. 4 and 5. This term becomes significant in, and down-
stream, of the shock with large positive values occurring in the shock
region and at the trailing edge. The source velocity becomes negative in
the wake and reaches a minimum just aft of the trailing edge.

V1. CONCLUDING REMARKS

The objectives of the present work were to develop a viscid-inviscid
interaction calculation method for airfoils that was not restricted to
irrotational, isentropic inviscid flow and which did not require artificial
fixes in the boundary-layer calculation, particularly in the shock and
trailing edge regions. High quality, interference free (or with all far
field boundary conditions measured) experimental data are needed to verify
such a method; unfortunately, such data are evidently not available. For
the experimental data considered, the suggested Mach number correctionsl
and angle of attack correctionslO did not bring the calculated results into
agreement with the experimental data, particularly with regard to the
lower surface pressure distributions. The calculated boundary-layer results
were, however, in reasonable agreement with experimental data, particularly
for the strong shock case (Case 9).

Preliminary, unpublished calculations performed by Drs. Benek and
Jones at AEDC using various full potential and Euler equation calculation
methods, indicate that potential and Luler equation solutions do not give
the same lift and pitching moment coefficients for supercritical flow about
an NACA 0012 airfoil. Therefore, the same Mach and angle of attack cor-
rections may not apply to both potential and Euler equation calculation
methods. Hence, a critical comparison between full potential and Euler
equation solutions needs to be performed.
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