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Abstract.

We present a new implicit algorithm for the solution of un-
steady incompressible flows using the primitive variable for-
mulation. The artificial compressibility approach is coupled
with an implicit A-stable discretization of the time derivatives.
The resulting non-linear system is solved at every time step
by using a very efficient multigrid time stepping technique.

Results for both steady and unsteady test problems are
presented. Calculations of the inviscid steady flow over a
circular cylinder are presented to assess the accuracy of the
spatial discretization, as well as to quantify the numerical
errors introduced by the artificial dissipation. Aninviscid two-
dimensional flow over an accelerating cylinder is used to
validate the numerical method by comparison with analytic
results. Finally, computed results for a NACA0012 airfoil in
pitching motion are found to be in excellent agreement with
experimental data.

1 Nomenclature

a non-dimensionallocation of the pitching axis,
positive aft of midchord
b airfoil semichord
c airfoil chord
L lift force per unit span normal to free stream
D drag force per unit span
C,  lift coefficient
C,;  drag coefficient
Cp  pressure coefficient
R cylinder radius
ey cylinder velacity vector

Cd“w drag coefficient of the accelerating cylinder

. __D
defined as C"c\'l__u?w_R

_ wh

ke reduced frequency, ke =
p  static pressure
Peo static pressure at the far field
P density
R(w;) flux residual for the cell ij
R* modified residual
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time
r pseudo-time
u\y Cartesian velocity components
Uso free stream velocity
Xt.Vt Cartesian components of the mesh velocity
Vi volume of the cell ij
w solution vector
o angle of attack
Aw amplitude of the pitching motion
At implicit time step
Q,0Q  control volume and its boundary

2 Introduction

In the past fifteen years, several fast and accurate algorithms
have been developed for solving the steady Euler and Navier-
Stokes equations [1]. In particular, multigrid schemes have
greatly enhanced the efficiency of both compressible and in-
compressible solvers [2, 3]. Currently, steady solutions to
the three-dimensional Euler equations require only 20 to 50
multigrid steps. These very efficient algorithms are routinely
used in industry for the analysis of steady flows on complex
aerospace configurations. The increase in convergence rate
is generally achieved, however, at the expense of time accu-
racy. On the other hand, unsteady flows are of great practical
interest for a large class of complex engineering problems.
For example, the computational analysis of aeroelastic phe-
nomena requires the coupling of structural analysis with non-
linear time-dependent fiuid dynamics models. Similarly, the
analysis of the “sea-keeping” problem requires the coupling
of non-linear fluid dynamics models comprising the evolution
of free-surfaces with the dynamics of floating bodies. This pa-
per describes a novel approach for computing time-resolved,
incompressible flows using the primitive variable formula-
tion. The method is presented and validated by using the two-
dimensional Euler equations. Nevertheless, the algorithm is
quite general and carries over to both three-dimensional, and
viscous flows.

One of the major difficulties encountered in the calcula-
tion of incompressible flows stems from the time-independent
constraint imposed on the velocity field by the continuity
equation. Several methods have been proposed to enforce



a solenoidal velocity field and to recouple the velocity and
pressure fields. One very efficient approach, which is gener-
ally referred to as the artificial compressibility method, was
introduced by Chorin [4]. Chorin’s method transforms the
incompressible Euler equations to an hyperbolic system by
introducing, in the continuity equation, a pseudo-temporal
evolution term for the pressure. Hence, the same fast algo-
rithms originally developed for compressible flows can be
applied to compute incompressible steady-state solutions. The
artificial compressibility approach has been widely used by
several authors. In particular, it has been succesfully applied
to rotational inviscid flows by Rizzi and Eriksson [5]. More
recently, the artificial compressibility method, coupled with
a multigrid time stepping scheme, enabled the efficient com-
putation of steady three-dimensional flows over ship hulls
comprising free surfaces [6, 7].

In its original form, the artificial compressibility method
sacrifices time accuracy. Rogers and Kwak [8], however,
were able to devise a clever framework and extend the artifi-
cial compressibility approach to time resolved computations.
Firstly, the time derivatives in the momentum equations are
discretized at each mesh point and added to the spatial resid-
uals. Then, an iterative procedure can be devised to solve the
resulting non-linear system of equations. In effect, this iter-
ation process is equivalent to adding pseudo-temporal terms
to both the continuity and the momentum equations and driv-
ing the resulting modified system to a steady state at every
time-step.

Our method builds upon similar ideas. Following Rogers
and Kwak [8], we adopta second order A-stable discretization
of the time derivatives. However, in the present method, the
iteration process is built upon a multigrid time stepping algo-
rithm originally developed by Jameson [2] for the compress-
ible Euler equations. The net result is a very efficient, implicit
algorithm for simulating unsteady incompressible flows.

3 Governing Equations and Numerical
Discretization

The flow is described by the non-linear time-dependent Eu-
ler equations without body forces. Let p, p, u, v denote the
pressure, density, and Cartesian velocity components, respec-
tively. For a control volume € with boundary 8€2 moving
with Cartesian velocity components x; and yr, the equations
of motion of the fluid can be written for a stationary Cartesian
coordinate system (x.y) in integral vector form as

Im’g}//wdxdy—i-% (fdy—gdx=0. (1)
Q oQ

Here w is the vector of flow variables
14

W= pU s
pv

f and g are the Euler flux vectors

p(n — xr) PV — y1)
f=< pu(u—x)+p p.8= pu(v — yr) .
pv(i — Xp) pv(v —y)+p

and I'™=diag[0,1,1] is a modified identity matrix which an-
nihilates the temporal derivative of the pressure from the con-
tinuity equation.

Equation 1 is discretized using a finite-volume, cell-centered
formulation yielding a set of ordinary differential equations
which can be written as

Here Vj; is the volume of the ij cell and the residual R(w)
approximates the boundary integral of Equation 1. On a regu-
lar Cartesian mesh, the discretization of the convective fluxes
reduces to central differencing in space. Thus a third order
artificial dissipation term is added, in conservation form, to
prevent odd-even decoupling [6].

Dropping the subscript ij for clarity, Equation 2 can be
approximated implicitly as

d

dt
where the superscript 2 + 1 denotes the current time level
(n+ DAt. By approximating further the time derivative witha
second order accurate implicit backwards difference formula,
Equation 3 becomes

[wn-{-l vn+1] + R(W”+])=0, (,;)

3 ntlym+t 2 nysn 1 n—1ym—1
- — Z{w"V — %
v v LA B Vit ]

+ Rw"h=0. @

This time discretization is A-stable [9].
It is convenient at this point to define the modified residual

* _ _}_ 41 _i nym _]_ n—lym—I
R*(w) = ZAI[WV ] At[w V]+2At[w V'

+ R(w).

Clearly, we seek a vector w which is the solution of R*(w)=0.
Thus, we must solve a non-linear system of equations atevery
time step. To enhance computational efficiency the system is
solved by using an iterative method. Also, if the volume of
the computational cell does not change with time, we can
simplify the model by dividing Equation 4 by the cell volume
and by rescaling the modified residuals accordingly.
In general, an iteration process can be constructed starting
from an equation of the form
%:»_v + R*(w)=0, &)
in which t* is a fictitious pseudo-time. Thus, at every time step,
the solution vector w can be obtained by computing a steady-
state solution of Equation 5 through use of a multigrid time
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stepping scheme. This strategy has been successfully applied
to compute time resolved compressible flows [10, 11]. In the
following section we discuss the coupling with the artificial
compressibility method.

3.1 Local Preconditioning

In the limit of incompressible flow, sound waves travel in-
finitely fast in all directions. The disparity in the acoustic
and convective speeds makes the governing system of equa-
tions ill-conditioned. Thus, a preconditioning matrix Pr must
be introduced to render the system of equations suitable for
numerical computation. More precisely, Equation 5 becomes

dw
dr*

The simplest, symmetric form of preconditioning

+ Pr - R*(w)=0. )

Pr:diag[r2,l 1]

is equivalent to the pseudo-compressibility method. The pa-
rameter I” can be chosen to optimize the rate of convergence
of the iteration in pseudo-time. Since the unsteady terms enter
the modified residual as source terms, the form suggested by
Rizzi and Eriksson [5] can be used. In particular, we set

M=max(C,,Cou? + v*)),

where C1=0.25 and Cp=1 [12].

Equation 6 is an explicit set of ordinary differential equa-
tions to be solved at each time-step. Once the iteration has
reached convergence (i.e., a steady-state in pseudo-time #*
has been obtained), the modified residuals R* (w) are identi-
cally zero at each mesh point, yielding the solution vector w at
the next time level (n + 1). Then, the time levels in Equation
4 are shifted and a new steady-state iteration is set up. The
original unsteady problem represented by Equation 2 is thus
converted into a number of steady-state calculations in #*.

A five-stage scheme is used to advance the solution in
pseudo-time. Since the details of the pseudo-transient evolu-
tion are immaterial, standard convergence acceleration tech-
niques can be employed. In particular, the coefficients of the
multi-stage scheme are optimized for convergence. In addi-
tion, a local pseudo-time step and residual averaging are used.
Moreover, a very efficient multigrid strategy originally devel-
oped by Jameson {2] for compressible flows is implemented.

3.2 Multigrid

The multigrid scheme is a full approximation scheme defined
as follows [2, 3]. Denote the grids by a subscript k. Start with
a time step on the finest grid k=1. Transfer the solution from
a given grid to a coarser grid by a transfer operator Pyy_,, $0
that the initial state on grid & is

_
Wy =Py Wi

Then on grid k the multistage time stepping scheme is refor-
mulated as

G+h_, O @
wlTV=wl’ — anAt (qu +Gy),

where the residual R;(q) is evaluated from current and previous
values as above. The forcing function Gy is defined as the
difference between the aggregated residuals transferred from
grid k — 1 and the residual recalculated on grid k. Thus

Gi=Qis_1R (wiei) = R (W),

where Qy x is another transfer operator. On the first stage the
forcing term Gy simply replaces the coarse grid residual by
the aggregated fine grid residvals. The accumulated correction
on a coarser grid is transferred to the next higher grid by an
interpolation operator I, _ 4 so that the solution on grid k — 1
is updated by the formula

new ()
Wi Wiy Lo p (we — wi")

The whole set of grids is traversed in a W-cycle in which time
steps are only performed when moving down the cycle.

3.3 Boundary Conditions

The Euler formulation only requires the flow tangency condi-
tion at all solid boundaries. Therefore the normal component
of the momentum flux is set to zero at the solid surface. In
a cell-centered formulation the pressure at the wall must be
computed from the values at interior celis. From the conser-
vation equation of normal momentum, we first compute the
pressure gradient normal to the wall ( pn) at the cell-centers
adjacent to the solid surface. This value of py is then used to
extrapolate the pressure at the solid boundary.

The outer boundary of the computational domain is ex-
tended from the body to a distance equal to approximately 200
chord lengths. Approximate, non-reflective far-field bound-
ary conditions, originally used for steady problems in [6],
are reformulated for a moving mesh. Depending on the nor-
mal component of the relative velocity vector at the outer
boundary, either inflow or outflow conditions are imposed.
The variables are assumed to be equal to the free stream val-
ues at the inflow, while they are extrapolated from the interior
at the outflow.

4 Numerical Results

The steady-state solver is the core of our implicit method.
Accordingly, both steady and unsteady flow problems are
considered in order to assess the accuracy and efficiency of
the proposed algorithm. Calculations of the inviscid flow over
astationary and an accelerating cylinder provided a severe test
for the present method.
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4.1 Steady Flow Calculations

A uniform, inviscid, two-dimensional flow over a fixed cylin-
deris calculated using three O-meshes with 80 x 16,160 x 32,
and 320 x 64 grid points. The pressure coefficient distribu-
tion on the surface of the cylinder for the 80 x 16 grid is
presented in Figure 1 and compared with the potential flow
solution. Minor losses of base pressure at the downstream
side are indicated by the value of the drag coefficient, which
is obtained by integrating the pressure coefficient distribution
over the surface of the cylinder. A logarithmic plot of the
computed drag coefficient versus the number of grid points
used is presented in Figure 2. This plot shows that the er-
ror becomes vanishingly small as the grid is refined. Notice
that an eightfold reduction in the computed drag coefficient is
obtained every time the number of points in each coordinate
direction is doubled. This is consistent with the third-order
accurate artificial dissipation model used, and confirms that
the scheme is at least second-order accurate. The computed
C, was found to be less than 0.006 for all grids, and less than
0.0001 for the finest grid used.

A steady inviscid flow over the NACA0012 airfoil atan an-
gle of attack is considered next. The inner part of the 128 x 32
O-mesh used is illustrated in Figure 3. The computed C; — o
curve is shown in Figure 4. It can be seen that the Euler so-
lution is in excellent agreement with potential flow results.
The computed drag coefficient is less than 10 drag counts
for the entire range of angles of attack considered. Figure 5
represents the convergence history of the computed lift coef-
ficient. The corresponding convergence histories for the drag
coefficient, and the maximum §p/8t* residual are shown in
Figure 6. These convergence plots demonstrate that a fully
converged result is obtained in approximately 50 multigrid
cycles.

4.2 Unsteady Test Problems

The unsteady inviscid flow over a cylinder accelerating with
nondimensional velocity

ﬁcylz -t

is considered next. Here T is a unit vector in the x-direction,
and t is the physical time. The fluid in the far ficld is assumed
to be stationary. An analytical solution for this problem exists,
and it can be found in [13]. The drag coefficient of a cylinder
due to the apparent mass effect, nondimensionalized by the
instantaneous cylinder velocity and its diameter, is given by

T

Cd(tyl_ 2

Three of the calculations are performed to establish grid
independent results and to assess time accuracy. Two sets of
calculations are carried out using a 80 x 16 O-mesh rigidly
attached to the cylinder. The time steps are taken as Af=.25,
and Af=.125 respectively. The third calculation is carried out

on a finer 320 x 64 mesh with At=.25. In all cases, full con-
vergence of the iteration in pseudo-time is achieved at each
time-step using approximately 100 multigrid cycles. Figure 7
shows that, for all three cases, the computed drag coefficient
lies on the theoretical curve as the cylinder moves a distance
equal to one diameter in the negative x-direction. Differences
in the fourth significant digit can only be appreciated on a
plot with an extremely magnified scale, which is presented
in Figure 8. Note that even on this scale, the results for the
finest grid are virtually indistinguishable from the theoretical
solution. The pressure coefficient and velocity distributions
on the surface of the moving cylinder are compared with the
theoretical solution in Figures 9 and 10, respectively. Again,
the results correspond to a translation of the cylinder equal
to one diameter. Excellent agreement is achieved even for
the coarsest 80 x 16 grid. Instantaneous streamlines of the
flow field relative to the cylinder are shown in Figure 11. A
detail of the corresponding vector flow field in the vicinity
of the rear stagnation point is presented in Figure 12 for the
80 x 16 grid. Figure 12 indicates that there is no recirculation
pattern induced by the artificial dissipation, and that the flow
stagnates at the theoretical stagnation point.

Results for the flow over the NACA0012 airfoil in pitching
motion are discussed next. A uniform free stream is imping-
ing on the airfoil which is pitching about an axis located at
a= — 0.13 with reduced frequency k.=0.4. The amplitude
of the motion is chosen to be Aa= £ 6.7 degrees. This set
of parameters corresponds to the experimental conditions re-
ported in reference [14]. As before, three Euler calculations
were performed. The two calculations on the 80 x 16 and the
160 x 32 mesh use 24 time-steps per pitching cycle. The last
calculation on 80 x 16 mesh uses 48 time-steps per pitch-
ing cycle. The initial angle of attack is set to zero and, after
the third complete cycle of pitching motion, the coefficient
of lift is found to achieve its limiting behavior. A plot of the
coefficient of lift versus the angle of attack computed during
the third pitching cycle is presented in Figure 13. The theo-
retical predictions are graphed using a solid line, while the
experimental data are shown with a dashed line. Excellent
agreement with the experiment is clearly indicated for all our
calculations. The consistency of the three Euler solutions ob-
tained with different grid and time resolution suggests that 24
steps are sufficient to resolve the complete pitching cycle on
a 80 x 16 grid.

5 Conclusions

The tests performed so far strongly indicate that the new
algorithm yields efficient and accurate solations to unsteady
incompressible flow problems. The fully implicit A-stable
time discretization allows the use of a time-step determined
only by the physical time scale of the problem. Coupling
of the artificial compressibility approach with the multigrid
acceleration technique insures that a fully converged solution
is achieved on each time-step in less than 100 multigrid cycles.
This corresponds to a CPU time of 5 x 1072 sec. per time-
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step per mesh point, on a single processor of a Convex C220
computer. Extensions of the present method to viscous flows
are currently under way.
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Drag Coefficient Normalized by U(t)*2

2-D Cylinder Accelerating in an Inviscid Incompressible Fluid.
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Figure 11. Instantaneous Streamlines of the Flow Field Relative
to the Cylinder.

Figure 12. Relative Velocity Vectors at the Trailing Stagnation
Point of the Cylinder.
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