FLO67P: a multi-block version of FLO67
running within PARAGRID

F. Dellagiacoma, M. Vitaletti
IBM ECSEC; Rome, Italy

A. Jameson, L. Martinelli
Princeton University, MAE Dept.
Princeton, NJ, USA

S. Sibilla, L. Visintini
Aermacchi S.p.A.; Varese, Italy

Abstract

In this paper we describe the implementation of FLO67P, a version
of the FLO67 code which is built upon the PARAGRID parallel multi-
block environment. The emphasis here is on those features of FLO67
which determine the strategy followed to adapt the original code to
the PARAGRID application programming interface. Results are given
for the simulation of supersonic flows around complex configurations.
Parallel speed-up figures and scalability issues are discussed.

Introduction

This paper illustrates the integration of FLO67, a widely known code
for the analysis of aerodynamic flows, within the PARAGRID multi-
block environment. A brief description of the features of the two codes
is given in this section. The subsequent sections are devoted to the
illustration of the following items:

¢ integration design,
e multi-block topology issues,
e accuracy and efficiency tests, and

¢ parallel performance.



FLOG67

FLO67 [?] is a computer code capable of analyzing inviscid, compress-
ible fluid flows by solving the conservation form of the Euler equations
in the subsonic, transonic, and supersonic regimes. FLOG7 uses a cell
vertex discretization suitable for calculations on meshes with sharp cor-
ners between grid lines. The numerical discretization is carried out via
a finite volume formulation using body fitted curvilinear meshes with
hexahedral cells. Integration in time is carried out by a multi-stage
Runge-Kutta method. No upwind bias is introduced in the convective
fluxes at the cell interfaces. Spurious oscillations are filtered by an
adaptive dissipative correction which is of fourth order in smooth flow
regions, while it becomes of second order near discontinuities. This
method guarantees perfect global conservation of the physical quan-
tities such as mass, momentum and energy, and also provides second
order accuracy on smooth meshes.

The code is capable of computing both steady and unsteady flows.
For steady state calculations several acceleration techniques are imple-
mented, including the use of a variable local time step, implicit residual
smoothing and multi-grid (MG). Such techniques provide very fast con-
vergence of the iterative process, and the calculation of a typical steady
state solution requires only about 25 steps.

The original code handles a single-block structured grid. However,
the flow solver and the multigrid modules are essentially independent
of the topological description of the mesh, making it suitable to deal
efficiently with more complex geometries through a multi-block ap-
proach.

This feature has been exploited in the implementation of FLO67P,
a version of the original code which is based upon PARAGRID (7]
and is capable of computing multi-block structured grids in parallel on
clusters of workstations.

PARAGRID

PARAGRID is a parallel multi-block framework developed by the IBM
European Center for Engineering and Scientific Computing (ECSEC).
A program solving the discretized field equations on a single-block
structured grid can be integrated in the proposed environment as a
subdomain solver, so that multiple copies of the code can work con-
currently on different grid blocks and therefore exploit the computing
power of parallel computers.

Each one of the six faces of a block can either be of physical or in-
ternal type. The main topological constraint on admissible multi-block
grids is that internal faces are entirely shared by only two neighboring



blocks. Nodes lying at the interface shared by the two subdomains are
duplicated, being included in both grids. On the other hand, there is
no explicit assumption concerning the number of blocks which share
a given edge or corner. PARAGRID features an automatic analysis
of the grid topology which detects all the adjacency relations between
blocks.

In PARAGRID, an arbitrary number of fields can be associated to
the following grid sites, namely the nodes, the cell centers, and the grid
cell face centers.

The field variables are stored in multi-dimensional arrays and man-
aged according to their type. There are three types of data: static,
dynamic and scratch.

PARAGRID applications access data from two different program
interfaces, one for global operations and one for local operations. The
subprogram designed for global operations usually performs ANALY-
SIS (e.g. post-processing) functions, while the subprogram designed
for local operations is mainly responsible for the UPDATE of the fields
within each individual block.

The task of the application UPDATE subprogram is to advance the
computation of the dynamic field variables associated to a given block
by one step. In addition to the status of the field as computed in the
previous step, the information available to the UPDATE subprogram
includes the status of the field over a halo of grid cells. The latter
extends from the block boundaries into the adjacent blocks by a depth
which is specified by the user.

PARAGRID maintains in a transparent fashion those elements of
arrays storing dynamic data which are associated to points falling in
the halo region. This is achieved through the following stages:

e in the export stage data from the core region of one block which
fall within the halo region of other neighbours are copied to the
sequential chunks reserved for each of the target blocks. Chunks
relative to those blocks which are assigned to a remote host are
actually sent through the network.

e In the import stage, chunks containing exported data, are used
to replace elements associated to the halo region.

o Eventually, in the UPDATE stage, the user’s application subpro-
gram is CALLed to advance dynamic field data in time on each
individual block.

More details on the PARAGRID application programming interface
can be found in [?].



FLOG67P: Integration Design

Adapting to the PARAGRID interface did not require any substantial
change of the code kernels. The core of the Runge-Kutta (RK) time
integration is the computation of the net flux entering the control vol-
ume associated to each node, which is formed by the 8 surrounding
cells. Therefore, the computation of convective terms would only re-
quire one extra layer of nodes in the halo region. One additional layer
is required to compute fourth order artificial dissipation terms, giving
a total of two layers of data in the halo region.

Some choices made in the design phase were aimed at increasing the
level of locality in the calculations, in order to achieve a good parallel
efficiency. In practice, this approach was also the one requiring the
minimum recoding efforts, because the original integration scheme is
applied, with minimum variations, to each individual block. In partic-
ular, each step of advancement in time is performed in two PARAGRID
UPDATE steps. The update of the finest grid level is performed at the
odd steps while the even steps are responsible to compute the coarse
grid corrections. This mechanism causes halo data to be exchanged
only before the initial fine grid update (the fine grid relazation in the
MG terminology) and before the the successive collection of residuals
to the first coarser grid:

1. PARAGRID replaces halo data with the most up to date values.
2. 0dd step

e The whole sequence of RK stages is applied to the finest grid
level with frozen halo data;

3. PARAGRID replaces halo data with the most up to date values.
4. Fven step

o Residuals on the finest grid level are computed and injected
to the first coarse grid.

e The whole MG cycle is completed within each block with
frozen halo data on all grid levels.

Block Multi-Grid

This is approach is different compared to the one usually taken in the
implementation of serial multi-block codes. In the latter case, a major
goal is to ensure the identity of results, at each phase of the calcu-
lations, when using different block splittings of the same single-block
grid. In the PARAGRID environment, achieving this goal would re-
quire to exchange halo data among adjacent blocks at each stage of the
RK sequence, with a severe increase of the communication overheads.




The lack of automatic halo management for multiple grid levels, in
the current version of PARAGRID, forces to confine the computation
of coarse grid corrections within each individual block. Moreover, the
halo of coarser grids is managed explicitely by the application. Only
one layer of halo data is needed on coarser grids, where fourth order
dissipation terms are mot computed. As a result, the halo can be
created in the ordinary way only of the first coarse level, while the
doubling of spacings on the successive coarse levels cannot affect the
direction normal to an internal boundary. The situation is depicted in
in Figure 77.

Multi-Block topology Issues

Common grid topologies involve irregular edges, and corners for which
it is not possible to establish a one-to-one correspondence between the
grid points falling in the halo region and the storage elements of a
three-dimensional regular array. In general, the proper treatment of
these irregular points would require to adopt an unstructured storage
format for points in the halo region, which is currently not supported by
PARAGRID. Irregular edges, in particular, can be classified according
to the following four categories:

1. Conflicts on points of the halo region.
This occurs, for example, in C-type grids around isolated wings
with a sharp trailing edge. In this case, the upper and lower
surfaces of the body coincide at the trailing edge. The halo region
of blocks behind the trailing edge has storage elements where one
should store data from both the lower and the upper surface.

2. Only 2 blocks around the edge.
This occurs, for example, in C-type grids around isolated wings
with a sharp tip. In this case, splitting the region beyong the tip
into a lower and a upper part, one sees that there are only two
blocks around the leading edge.

3. Only 3 blocks around the edge.
This configuration is very convenient when covering the region of
space surrounding a convex object.

4. More than 4 blocks around the edge.
This configuration is frequently encountered when covering geo-
metrically complex regions.

The second and third of the above irregular edges are easily handled.
In both cases, no use is done in computational space of the halo points



associated to the edge itself, being all the relevant information already
available from the halo chunks relative to the contiguous block faces.
The first and the last cases are more difficult to treat. Here we only
mention the strategy followed to solve the first problem.

The presence of multiple grid points conflicting on the same storage
element of the block halo causes PARAGRID to store only one of the
values and to flag the occurrence of such condition to the application.
In FLO67, these pathological elements enter in the computation of
the edge boundary grid points. Using the pathological elements as is
would produce different values to be associated to the same edge node
in the four surrounding blocks. The solution implemented in FLO67P
computes the edge values as an average of the neighboring nodes which
occupy the lower and the upper position, respectively, with respect
to the separating body. This directional averaging can be computed
consistently in all the surrounding blocks, since it does not involve the
pathological halo elements. In the case of a wing trailing edge, this
approach is consistent with the enforcement of a Kutta condition.

Accuracy and efficiency tests

3. Efficiency tests and solution quality

The FLO67 multi-block implementation within Paragrid 1.0
has been tested on several geometries. A simple blunt nosed
body has been chosen to check the quality of the solution and
the convergence rate, in comparison with the results obtained
from the original code. Two different multi-block grids have
been tested on the same geometry, in order to study the influence
of non-symmetric topologies and geometric boundary conditions
on the behaviour of the code. Solutions from FLO67P have been
compared with existing single-block solutions on a wing-body-canard
configuration to investigate the effects of extensive block
decompositions. Finally, the code has been tested on the real
geometry of a launch vehicle; in this case, the multiply connected
physical domain is much better described with a multi-block
grid.

3.1. Blunt nosed body test case

3.1.1. Grid topologies

The test geometry consists in a cylindrical body ending with
a spherical cap of unit radius, simulating a simplified aeronautical




shape (like a fuselage or a missile). The length of the cylindrical
section is 8 times the radius of the cap. A single block C-0
grid of 97*41%17 nodes has been used to compare the original
and the modified codes. The grid has been studied for the analysis
of a high supersonic flow with bow-shock wave formation: the
test condition has been set at Mach 2 and zero incidence. The
grid has been also divided into 4 blocks to check, on the same
topology, the effects of block decomposition. One block boundary
lies normal to the surface, dividing the cap from the cylindrical
part; the other lies parallel to the surface, at a distance
suitable to the description of the bow shock wave. Cells in
the direction normal to the surface are equispaced in the first
layer of blocks, while in the second layer they are distributed
with a Vinokur stretching function. The 4 resulting blocks
have 33%25%17, 65%25%17, 33*17%17 and €65%17+%17 nodes. Finally,
a different 3-block grid has been generated in order to avoid
the use of a singular line boundary; this grid allows also to
investigate the effects of a non-symmetric topology in the analysis
of symmetric geometries and flows. The surface grid consists
in a patch of H topology on the nose region connected with a
C-0 description of the cylindrical region identical to the previuosly
described grid; the cell distribution normal to the surface
is also identical to the previous one. The grid is therefore
composed of a nose block of 17%41%17 nodes and two blocks of
81%41%17 nodes.

3.1.2. Convergence rate analysis

Two grid levels have been employed in all four cases, computing
50 multigrid steps for both the coarse and the fine grid with
a CFL number of 6. If the maximum residual is examined, no
real difference in convergence is noted between original FLO67
and the single-block solution obtained with FLO67P : the maximum
residual loses in both cases 3 orders of magnitude. In fact,
a better level of convergence is obtained on the coarse grid
with the new FLO67P; actually, FLO67P provides a slightly different
analysis of the singular line boundary present in the C-0 topology.
FLO67P obtains also a better convergence of the aerodynamic
drag coefficient on the coarse grid. The final value of Cd
is reached in less than 20 iterations; anyway, no real difference
is observed in the convergence on the fine grid, where, within
15 steps, both computations converge to the final value. The
same rate of convergence on aerodynamic coefficients is achieved
if the 4-block decomposition is introduced. On the other hand,
the maximum residual does not diminish more than two orders




of magnitude under its initial value on the fine grid of the

multi-level scheme; in fact, the residual seems not able to

converge to a lower value on some points of the internal block

boundaries. In any case, this does not affect the quality of

the solution, as it will be shown later. A slightly lower rate

of convergence of residuals has been observed also on the 3-block

grid, where such lower rate is expected as a consequence of

the more complex non-symmetric topology; nevertheless, this

fact is counterbalanced by the higher level of accuracy which

can be obtained in the solution at the same number of iterations.
3.1.3. Solution analysis

No difference appears between the single-block and the multi-block
solutions on the 97%49%17 C-0 grid: a pressure iso-curve map
shows identical levels everywhere in the flowfield. The bow-shock
wave is located approximately at x = -1.35; a plot of the pressure
coefficient on the stagnation streamline shows perfect coincidence
between sigle-block and 4-block results. Better resolution
on the shock wave is shown by the 3-block non-symmetric grid:
the pressure discontinuity is described in a lower number of
mesh cells and the solution at the stagnation point (Cp = 1.668)
appears to be closer to the theorical solution Cp = 1.657, while
the other calculations give Cp = 1.637. Actually, original
FLO67, single-block and 4-block FLO67P solutions give all the
same result, showing that no difference is introduced either
by the Paragrid modification of FLO67, or by the block decomposition;
anyway, the 3-block description with a nose patch seems to be
more suitable than a singular line grid for the analysis of
strong shocks. The global drag coefficient is therefore slightly
higher (0.85 the last case:

code grid C
FLO67 1-block, singular line 0.7761
FLO67P 1-block, singular line 0.7764
FLO6B7P 4-blocks, singular line 0.7764
FLO67P 3-blocks, nose patch 0.7830

3.1.4. Time requirements

The use of FLO67 in the Paragrid environment seems to raise
the time requirements of the computation of 20-35 of nodes and
of grid blocks. CPU times of the present computations are given




in the table below; all the cases have been run on a single
machine IBM RISC System/6000 540.

code grid CPU time (s) nodes time * node * iteration (s)
coarse fine coarse fine

FLO87 1-block 255 2439 1345621 2.782 10 3.626 10

FLOB7P 1-block 173 1482 67609 3.736 10 4.384 10

FLO67P 4-blocks 178 1497 67609 3.844 10 4.428 10

FLO67P 3-blocks 339 3101 124763 3.942 10 4.971 10

3.2. Analysis of complex geometries
3.2.1. Wing-body-canard configuration

A wing-body-canard configuration was chosen as an example
of a fairly complex geometry featuring vortex flow and requiring
multiple blocks. Such geometry was defined for the International
Vortex Flow Experiment and a large number of theoretical and
experimental results are available. This geometry consists
in a canard surface with a 60 deg swept sharp leading edge and
a 65 deg swept sharp leading edge wing, both mounted on a simple
fuselage; the wing consists in a biconvex airfoil over the forward
40 NACA 64A005 over the aft 60 A suitable modification in the
boundary conditions allows to employ a single-block 193%33%49
C-H mesh for the analysis of the flow with the original FLO67
code . This mesh has been also divided in 32 computational
blocks to investigate the effects of block decomposition in
the Paragrid environment. The test condition has been chosen
at Mach 0.85 and angle of attack alpha = 10 , to analyse a tranmsonic
vortex flow. The simulation has been run for 100 multigrid
iterations on the coarse grid and 150 on the fine grid, with
a CFL number of 4. Some problems have been met when running
with an higher CFL; actually, while good convergence is achieved
by FLO67 at CFL = 8 on the same test case after 50 multigrid
iterations on the coarse grid and 100 on the fine one, FLO67P
in Paragrid diverges after few steps on the fine grid. Maximum
residual analysis at CFL = 4 shows that the block decomposition
does not affect really the convergence rate, although the residual
converges to a slightly higher value than the simple FLO67 case.
No difference at all is anyway found in the aerodynamic force
coefficients convergence: both the 1ift and drag coefficients




converge with the same rate, and 60 iterations are roughly sufficient
to reach the final value. No real problem in the force evaluation
can be ascribed to the block decomposition, as the final values

do not differ for more than 0.3

code grid C c
FLO67 single-block 0.0865 0.494
FLO67P 32-blocks 0.0868 0.493

The flowfield analysis shows some problem when the block
boundaries cross the vortex region; actually, a slight unnatural
deflection of the isolines is found in the plots of the pressure
coefficient and of the total pressure ratio; anyway, both computations
give the same results in the prediction of the vortex position
and of the pressure distribution on the canard and wing surfaces.
As previously noted, Paragrid implementation raises CPU time
requirements, as shown below (always referring to an IBM RISC
System/6000 540) :

code grid CPU time (s) nodes time * node * iteration (s)
coarse fimne coarse fine

FLO67 1-block 1659 17398 312081 4.024 10 3.717 10

FLO67P 32-blocks 2109 22042 312081 5.116 10 4.709 10

3.2.2. Small satellite launch vehicle

The FLO67P code in the Paragrid environment has been used
in the aerothermal analysis of a small satellite launch vehicle;
the vehicle consists in a core surrounded by 4 boosters. The
computational domain has been limited by a conical boundary
co-axial to the core, with radius varying between 60 and 80
lenghth of the core; the grid has an 0-H topology around the
core and around each booster; two different grid topologies
have been considered: in the first one the 0-H grid is closed
around each nose, generating a singular line boundary; in the
other, "patch blocks" have been used to avoid the presence of
singular line boundaries. The first grid allows the analysis
of an eighth of the launch vehicle (20 blocks, 250.000 cells)
for zero incidence flows, while the second one forces to analyse
at least a quarter of the vehicle (65 blocks, 400.000 cells).
Finally each grid has been enlarged (to 80 and 130 blocks respectively)

10




Figure 1: Performance figures on a cluster of 6 workstations

to surround half missile, in order to study the flow at incidence.
The second grid has proved more effective, especially in the
analysis of high supersonic and hypersonic flows: actually,

the singular line boundary in the first grid imposes the presence
of block boundaries on the noses of core and boosters; the communication
of flow data between upstream and downstream blocks through

this division surface can be difficult at high Mach number and

the resolution of the bow shock wave can be quite poor. Good
results, in a large range of Mach numbers (0.95 - 6.0) were
obtained with the second grid topology, especially in the analysis
of the complex shock-wave reflections and shock-shock interactions
in the core-booster interference region. These computations

were run on IBM RISC System/6000 540, 550 and 53H in parallel;

a speedup of 1.6 was reached when running on the first two machines,
while when running on all three the maximum speedup has been

2.3.

Parallel performance

The parallel speed-up was measured in the computation of a realistic
test case, involving a grid with 228888 points, on a cluster of siz IBM
RISC/6000 workstations mod 560 running at 50 Mhz. Two types of
communication network were experimented: Token Ring adapters ca-
pable of 16 mbits/sec and FDDI adapters capable of 100 mbits/sec.
PARAGRID implements the communication among nodes by TCP /IP
sockets. The grid was made of 2/ blocks of the same size, giving a
good load-balancing on 2, 3, 4 and 6 nodes. The parallel speed-up is
illustrated in figure cite??. The speed-up measured on six nodes is is
about 5 with both Token Ring and FDDI. The larger bandwidth of
the latter gains only a little with respect to Token Ring. The reason
is in the small difference in the workload of the computational nodes,
which is due to the different computational weigth of physical bound-
aries with respect to the internal ones. Although relatively small, this
causes a degradation of the paralle efficiency whenthe number of nodes
is increased.

11



