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Following van Leer's MUSCL idea, 2 numerical scheme can be regarded as consisting of
two key steps; a reconstruction step followed by a gas evolution step. We present
a gas-kinetic method based on the collisional BGK model which provides an alternative to
Riemann solvers for the gas evolution step, An advanced BGK-scheme is derived under
quite general assumptions on the initiaj conditions. The new formulation uses mterpola-
tion of the characteristic variables in the reconstruction step and a BGK-type flow solver
in the gas evolution step. The scheme satisfies both an entropy condition and a positivity
condition, which guarantees a positive density and temperature at the cell interface during
a complete time step. Numerical results for one-dimensional and two-dimensional test
cases are presented to show the accuracy and robustness of the proposed approach.
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1. INTRODUCTION

Based largely on the mathematical foundation laid
among others by Lax [16] and Godunov [6], many
high resolution shock capturing schemes have been
developed in the past twenty years. Most of them
attempt to resolve wave interactions through up-
wind biasing of the discretization, while other
methods explicitly introduce a numerical viscosity
in just the amount needed to capture discontinuities
[11]. Although great advances have been made in
the area of spatial discretization, grid generation
and solution stralegies, the status of unsteady com-

213

pressible flow solvers is far from satisfactory for
both structured and unstructured grids. Since the
simulation of unsteady flows is emerging as an
important area of practical interest, there is a com-
pelling need for schemes with low dissipation and
dispersion errors. The design principle should be
guided by the “dynamics” of the “computational
fluid” which should mimic, as closely as possible,
those of a real fluid [28]. The simulation of highly
compressible flow with strong shock waves and
extreme expansion rwaves requires a numerical
scheme which is capable of handling both flow
features. BGK -type schemes mimic the real dynami-
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cal process of the gas and could overcome many of
the weakneses of the traditional central difference
and upwind methods. In particular, schemes of this
class may provide a superior resolution of both
shocks and expansion regions as well as contact
discont:nuities.

According to the MUSCL idea [32], 2 high resol-
ution scheme usually consists of two parts, the
reconstruction of the initial data and the dynamical
evolution from the constructed data. These two
stages can be regarded respectively as geometrical
and dynamical correlations for the gas flow around
an artificially defined cell boundary. Currently
available techmques such as Total Variation
Diminishing (TVD), Essentially Nonoscillation
{ENQ} and Local Extremum Diminishing (LED)
[7.8,11] schemes, which are well understood for
scalar conservation laws, can be used in the recon-
struction stage for systems of equations. In the gas
evolution stage, however, the solution is not necess-
arily 2 decreasing function of time and local extrema
can be generated by nonlinear wave interactions.

The development of numerical schemes based on
the gas-kinetic theory started in the 1970s with the
beam scheme [29]. This scheme has been widely
used in the astrophysical community and it is based
on the collisionless Beltzmann equation. In the
beam scheme, the left and right moving particles
generated in each side from the equilibrium state are
allowed to penetrate the opposite side through a cell
interface giving rise to the numerical fluxes. In the
19807, the beam scheme was re-invented, modified
or extended by many authors, such as Reitz [26],
Puliin [24], Deshpande [3] and Perthame [22].
Pullin was the first to use the complete error func-
tion to obtain the numerical fluxes: his scheme is
named Eguilibrium Flux Method (EFM). By ap-
plying the Courant-Isaacson-Reeves (CIR} upwind
technigue directly to the collisionless Boltzmann
equation, Mandal and Deshpande derived a similar
scheme, which is named Kinetic Flux Vector Split-
ting (KFVS} [21]. Perthame simplified these
schemes by using a square or half dome function as
the equilibrium gas distribution function. By com-
bining the KFVS scheme with the multidimensional

upwinding techniques developed by several resear-
chers at the University of Michigan and the von
Karman Institute, Eppard and Grossman for-
mulated several versions of first order multidimen-
sional gas-kinetic schemes [5].

All above schemes are based on the collisionless
Boltzmann equation, which does not account for the
dynamical correlations between the left and right
states. As pointed out by Macrossan [ 197, schemes of
this kind have intrinsically large numerical viscosity
and heat conductivity. In an effort to reduce the
artificial viscosity, Xu and Prendergast in 1991 devel-
oped the Total Thermalized Transport (TTT) scheme
[34], which is based on the physical assumption that
the left and right moving beams collapse instan-
taneously at the cell interface to form an equilibrium
state. The beam scheme and TTT scheme are two
extreme himits describing the real particle motion. In
order to model more accurately the real physical
situation, a scheme called Partial Thermalized
Transport (PTT), which is obtained by using a linear
combination of the beam and the TTT scheme, was
also developed. This hybrid scheme was found to
behave nicely for shock tube simulations. At thesame
time, Macrossan and Oliver independently develop-
ed the so called Equilibrium Interface Method (EIM).
EiM 1s similar to the TTTscheme and is derived
using the same physical considerations [20]. A new
scheme based on the TTT and the beam scheme has
also been developed by the authors and applied to
steady state airfoil calculations [347.

During the same period, new gas-kinetic schemes
based on the collisional BGK model have been
developed [23,35,36] to model the gas evolution
process more precisely. Schemes of this class are
named BGK-type schemes in order to distinguish
them from other Boltzmann-type schemes based on
the collisionless Boltzmann equation. BGK-type
schemes make local use of the full integral solution
of the BGK model. It is then possible to compute
a time-dependent gas distribution function at the
cell interface and to obtain the numerical fluxes.
This approach, also, avoids the ambiguity of adding
ad hoc modelsfor particle collisions designed only to
reduce the numerical viscosity which is intrinsic in
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any of the Boltzmann-type schemes. Moreover, the
BGK-type schemes give Navier-Stokes solutions
which follow directly from the BGK model, and the
gas relaxation from a nonequilibrium state to an
equilibrium state is associated with an increase of
entropy.

In this paper, we coniinue our previous work on
the analysis of BGK-type schemes. By modifying
some of the assumptions we develop a motre general
approximation of the equilibrium state around a cell
boundary. This increases the robustness and accu-
racy of the BGK -type schemes. In Section 2, descrip-
tion of the basic finite volume gas-kinetic scheme in
terms of the reconstruction and evolution ideas is
presented. The section concludes with some useful
and important remarks regarding the positivity and
multidimensionality properties of the scheme. Fi-
nally, Section 3 presents a comprehensive summary
of numerical results used to validate the current
numerical approach.

2, FINITE VOLUME BGK-TYPE SCHEMES

The fundamental task in the construction of a finite-
volume gas-kinetic scheme for compressible flow
simulations is to evaluate the time-dependent gas
distribution function f at a cell interface, from which
the numerical fluxes can be computed. In a finite
volume gas-kinetic scheme, the local solution of the
gas-kinetic equation is used to compute the flux at the
cell interface. Due to the intrinsic complexity of the
collision integral in the full Boltzmann equation,
simplified gas-kinetic models are usually used. In our
approach the integral selution of the BGK model is
used locally to compute the fluxes at the cell interface
{see Fig.(1)). Hence, it replaces an approximate or
exact Riemann solver. Since a single scalar distribu-
tion function f in the gas-kinetic theory includes all
information about the macroscopic flow variables as
well as their transport coefficients, the schemes in
two-dimensions and three-dimensions can be con-
structed in a unified manner.

The BGK relaxation model [1] retains all the
features of the Boltzmann equation which is asso-
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FIGURE 1
scheme.

Interface fuxes by a finite volume gas-kinetic

ciated with the free molecular motion and describes
approximately, in a mean-statistical fashion, the
molecular collisions. The collisional term in the
BGK model is the simplest of all possible formula-
tions which reflect the nature of the particle collision
phenomenon. Since in the continuum regime the
behavior of the fluid depends very little on the
nature of individual particles, the most important
properties are: conservarion, symmerry and dis-
sipation. The BGK model satisfies all these require-
ments [17].

A numerical scheme based on the BGK model is
equivalent to a scheme which approximates the
Navier-Stokes equations [35, 36]. Earlier versions
of the BGK-type schemes were based on the as-
sumptions of a discontinuous nonequilibrium dis-
tribution f; and a coatinwous equilibrium state
g across cach cell interface at the beginning of each
time step. Although these earlier schemes were
found to give good results for a number of standard
test cases, these assumptions car be still modified to
improve the accuracy and reliability of the schemes
for complex flows. In this paper we introduce
a scheme which allows a slope discontinuity in the
equilibrium state g, and alse uses characteristic
variables for the reconstruction.

2.1. Reconstruction Stage

Following van Leer’s MUSCL idea, the present
class of numerical scheme is composed of an initial
reconstruction stage followed by a dynamical evol-
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ution stage. At the beginning of each time step r = 0,
cell averaged mass, momentum and energy densities
are given. For a higher order scheme, interpolation
techniques must be used to capture the subcell
structure. Simple polynomials usually generate spu-
rious oscillations if large gradients in the data are
present. The most successful interpolation tech-
mques known so far are based either on the TVD,
ENO or LED principles [7,8, 11]. These interpola-
tion techniques can be applied to the conservative,
characteristic or primitive flow variables. For
example, some recent upwind schemes use character-
istic variables in the reconstruction stage [8, 12.30].
Unfortunately, depending on the particular test case,
the numerical results may be sensitive to the particu-
lar set of variables used in the reconstruction step. In
earlier BGK-type schemes, the reconstruction has
been applied directly to the conservative variables. In
this work, we try to take advantage of the smoothness
property of the characteristic variables by using this
particular set in the reconstruction step.

Let x;=jk{j=0,1,2...) be a uniform mesh and
hthe mesh size. Let x,. ,,, = (j + 1/2)h be the inter-
face between cellsjand j + 1. The cell averaged value
isdenoted by U, and its interpolated value in cell j is
Ux), witl: two pointwise values U A% 152) and
Ujfx;_ . at the locations Xjiqp and x;_, 5. To
second-orcer accuracy, the interpolated value in the
J-th cell can be written as

ﬁj{x)z U.i_i_L(Uj—!‘-'”’UjJrl)(x —.\'})
for

X2 RXKX; 0 40,

where [ is an integer and 2I + 1 is the extent of the
stencil in the reconstruction process, and L is an
interpolating function. For example, the second-or-
der TVD and LED schemes have /= 1, while sec-
ond-order ENO scheme has [ = 2.

Forhigher order (more than second-order) recon-
structions, the interpolating function may be de-
fined recursively. In any case, the value 7 ;{x;}at the
cell center is not necessarily equal to the cell aver-
aged value U, :

Reconstruction using Characteristic Vaviables

Let j be a fixed cell with ceil averaged mass p 7
momentum P; and energy &;. The'conservative vari-
ables are transformed to the primitive variables

- T
Vi={pnu.p;},

where 4, is the velocity and p ; is the pressure. The
sound speed is cj=\/m. For cell j, we nead
three-point stencils for the reconstruction, for
which — | <1< 1. Set the characteristic variables in
neighboring cell ( + 1} as

- {ijf(zc’j)}“jﬂ + [1-”525,‘2)}?}“
Pisr— [}\/C_?:ij-i-l
[pj/(zcj}]uj+l + [1./’(2@}]17;”

where L is the matrix of left eigenvectors at the state
¥, for the Euler equations. For each component of
the characteristic variables, we get s, = {(w, — wo)/h
and s_ = (w, —w_,})/h as the slopes across the cell
interface, and apply the MUSCL Jimiter

Wi=LV,, =

L{uyv)= S(u,v)miﬁ(;[u + v, 2lu, ZM)

to s, and s_ to get the limited slope L. Then, for
each component of the characteristic variable in cell
Jj. we have

i
Wo(xjm 1;2} =Wy —E.l’iL(S+,S_)
and

1
WolX; . 55) = we + EHL(L,S_ ).

Once the interpolated value is obtained for each
characteristic component, the distributions of the
primitive variables in each cell at x ioypand X
can be found from the relation

V= RW
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where the matrix R is

1 1 1
R=| —cjp; 0 ¢jp;)
i 0

Finally, the conservative variables

(Ej{xj— 1;2): P_j(xj— 1,’2)5éj(xj— 1;‘2))
and

(ﬁj(xj-’r 1,-‘2): Fj(xj + 1,’2)3Ej(xj+ 12)

are obtained by the reverse transformation.

2.2, The BGK-Type Flow Solver

The BGK model in one-dimension can be written as

fovuf, =2 M

where f1s the real gas distribution function and ¢ is
the equilibrium state approached by f. Both f and
g are functions of space x, time ¢, particle velocity
u and internal degrees of freedom &. The particle
collision time ¢ depends on the local macroscopic
flow variables, such as temperature and density. The
equilibrium state is usually assumed to be a Max-
wellian, with the formulation

J (K+ 152 s s
g:p i e*/.f(u*U} +& ,
7

where g is the density and U is the macroscopic
velocity. In the one-dimensional case, when the
particle motion in y and z direction is included as
internal degrees of freedom [15], the total number of
degrees of freedom K is equal to (5 — 3y)/(y — 1) + 2.
The relations between mass p, momentum P and
energy densities ¢ with the distribution function
fare

Ju
P =J¢afd5,a:1,2,3, ()
e

where s, 1s the vector of moments

I T
%: (lzubi (uz + 52)) >

and d= = dud is the volume element in the phase
space. Since mass, momentum and energy are con-
served during particle collisions, f and g must
satisfy the conservation constraint

J‘(g — W dE=0,0=1,23 (3)

at any point in space and time.

For alocal equilibrium state with ' = g, the Euler
equations can be obtained by taking the moments of
yr, to Eq.{1). This yields

1
f u
o

w? + &%)

(g, -+ ug, Jdudi =0,

and the corresponding Euler equations are

P pU
ol + pU+£ =0,
pU + 550 \Gp(UP +EL8)
where the pressure termis p = p/2 2.

On the other hand, to the first order of 7, the
Chapman-Enskog expansion [15] gives f=g-
t(g, +ug,). Taking moments of , again to the
BGK equation with the new f, we get

1

1

Y + &)

(g, + ug Jdud

1

*fj u

L+ %)

(9, + 2ug,, +u g, ydudE.

After integrating cut all the moments, the Navier-
Stokes equations with a dynamic viscous coefficient
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7 = tp can be expressed as

pU
pb + pU? + £
St RN o + spany |

/

{ 0
=t e ﬁU
1 2 UU

Fi

4.

The general solution of f at the cell interface
X;yq, and time ¢ is

Lo 1 o
Hx; oy 080, 8) =;j glx, v, E)e UM gy
o

+e TV X, o — ut), 4
where x'=x, ,,-ut—1t) is the trajectory of
a particle motion and f; is the initial nonequilibrium
distribution function f at the beginning of each time
step (r=20) [15]. The two values g and fo must be
specified in Bq.4) in order to obtain the desired
solution for f.

Generally,f, and g around the cell interface x.

F+1/2
are assumed to be
fi= {gi(l +allx — Xivaplh X< X0 0 (5)
o gr{l +a’(xwxj+l",2)), x;xj-i;/z

and

g=go{l +{1—H[x~— X1 (x — Xt

+ H[x—xj+1f2]dr(xkxj+i;’2)+A“t)s (6)
where g', 5" and g, are local Maxweltian distribution
functions, which are located, respectively, to the left,
to the right and in the middle of a cell interface.

a'.a’a'.a” are slopes. H [x] is the Heaviside fanction

defined as
0, x<0
H [)\.} = {I, x ; 0

Notice that in the expansion of g, the possibility of
discontinuous slopes has been retained. This is dif-
ferent from our previous approaches [23.3536,13].
The dependence of d'er’,.. ., 4 on the particle veloc-
ities is obtained from the Taylor expansion of
a Maxwellian and these quantities have the form

I .
a=a +au+ agi(uz +&=aly,

fr4

1 .
@ =da, +adu+ agi(uz + Yy =alyr,,

[um—y

ar=a\ + &;u+&;§(u2 + &Y =ary,,

where all coefficients of a/.al, .., A, are local con-
stants. The idea of interpolating £, separately in the
regions x < Xjs12 and x = x;, . originates from
the following physical consideration: fora non-equi-
iibrium gas flow, since the cell size is usually much
larger than the thickness of 2 discontinuity, the
physical quantities can change dramatically in
space. For example, across a shock front, the up-
stream and downstream gas distribution functions
could be two different Maxwelians. Therefore, we
need a splitting of f,, to capture this physical situ-
ation.

In the reconstruction stage described in Section
(2.1}, we have obtained p (x), P,(x} and , (x}in each
cellx; ,<x<x;,,, Atthe ceM mterface X,
the left and right side pointwise values are

j+is20

(Ej(xj+1;2)a Ej+1(xj+1,«‘z)))
(P (xj"l 2) jfl{xj*l 2))
(éj(xj+1;2)> éjfl(xj+1;2))'

By using the relation between the gas distribution
function f, and the macroscopic variables (Eq.(2)),
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we get

ﬁj(ijr 12)
Pj(xj+ 1/2) ;

Ej(xj+ 12)

Jg’wgdudcf =

pj(xj+ 1,-‘2) - ﬁj(xj)
Ax~

Pix;a 1) — Piix)
Ax”

X4 150) = BLX)
Ax™

nga’%dud $=

n‘Tj%I(xjvle)
Pj+ 1(xjf 1;2) 5

‘5_j+1(xj+ 1/2)

fgr%dudi =

.aj+ I(xj+ 1) - ﬁj+ 1(xj" i;’2)
Ax*

P, 1(xj+ )= Pj+ 1(xj—, z;z)

Ax”
&ir l(xj+ 1) — Eir l(xj+ 1;2)

Ax~

Jiq’a'lﬁa dudf =

(7

where Ax™ =x,. |, —x;and Ax” = Xjr1 — Xz
With the definition of the Maxwellian distributions

)Z K+1 \
il 2 A UY+ &
g _,O ; € B

Ar K~+1 I
g"—p"() 2 e_fr((u_U)Jr;J,

I

and from Eq.(7), all the parameters in g' and g can
be uniquely determined from

1 U
It 2 i
M= v U™ +az
_%(L;rz_f_KZ}l) %(L7r3+{{(f2-3)U)
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I

U=

'\_!

.(?_,'(xyr 11:'2)
Pj(xj+ 1;2)}”5;(%-} 1/2)
(K+ Dpfx;. )
4(gj(xj+ 12 7%P12'(xj+ z;z),/fﬁj(xj-s— 1;2))
and

pr

Ur =

A

.aj+ 1(xj+if'2}
PJ’+ 10 1:'2)1/-51? 1(xf+ 1"2}

{(K+ 1}Ej71(xj+ 1;’2)
4‘(3j+ l(xj+ 1,’2) *%Pjn_n 1(x_;‘+ 1;z)f=)0j+ 1(xj+ 1,‘2)}

Once ¢" is obtained from the above equations, the
slope of a" can be computed:

Ej+ l(ijr J— Ej+ 1(x;‘+ 1_;2)

prAxT
Pyl =P (Xye0)
prAer
&Tj+1(ij1)_‘§:'+1(xj+lf2)
orAxt
Ap” a;
=\ AP | =M, a, |= M. d), (8)
Ag iy

where the matrix M}, = 1/p"{g" 4, d = is

%(Urz + Kzt"t'l)
J(U + 8520

17y7rd K+ 3)072 K2+ 4K +3)
Z{L’r +( ;:) +( 4377 J)
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From Eq.(8), (a7, a5, a3} can be readily obtained
by observing that M, 1s a symmetric matrix. Thus,
we obtain

ar2

K+1

) Ty
QE =24 (ﬂ -QS‘r )_.
A

. ¥ __ N4 Ffr_ or
aj =Ap" —a, U a3(

r‘..
(13——

(% — 20"/},

U K+1
), )

+ -
2 41
where

oA =AP— UAp,

B=2As — (U'Z LKt I)Ap’.
247
Since the matrix M ;= 1/p' [¢' ,d E has the
same structure as M, (a}, a3, a3)* can be obtained
using a similar procedure.
After determining f,, the corresponding values of
po. Uy and A inn g with

B ;;_0\(1:+ 1)/2
go = Po{ — }

can be determined as follows. Taking the limit 1 =0
in Eq.{4) and substituting its solution into Eq.(3},
the conservation constraint at (x = X400 =10}
gives

{90%45 = J jg’!/fadi
+ w0

~

_:~J jg'wldE,azl,2,3 (10)
u<Q

o Aoty — U+ &9

This equation validates the basic idea of the TTT
scheme. Since 4, can be found from p,, U, and &,

through the relation

. / T
io=(K +1)p, ff (4(80 - 2pobé)),

/

We only need to know {p,,, U, 50)", which can be
expressed as moments of ¢’ and ¢. By introducing
the notation

pf<...>>0__J. (}gl -'_"_.:,
uzQ

p1<"-><@=f (...)g"d 5,
#<(

from Eq.({10) one obtains

po pl<ue>>{3+pr<“u><o
polo = Py o+ pTlut
€0 2Ap u? + 8+ o7 + 85 )

A detailed derivation can be found in the Appen-
dix B. Then, @' and @" of g in Eq. {6} can be obtained
through the relation of

/ﬁj+1(xj+1)_po

patix™
Pj+1{.xj+1)—P0 o £_I'1\ _
potx™ =M a;JzMaﬂa;,
a

5_,‘4— 1{xj+ 1 — %
Vo pghAxt

and

Po - P;(X;)
PoAxT

PO—}_)j(xj) a
polx

eﬁ—gj(xj)
PolAx
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The matrix M}, = 1ip,{go\,¥ ;d= has the same
structure as M, which is

WO, =
Mg
1, K41
] Uy -{ezs
AN 2y
1 1/ (K =3y
Uy U2 e — —( U+
v, PANS 27
1, K+1y 1y K+3U 1y (K+3U2 (K7 +4K 53]
-y [ ETEI ) _('b-a+__m_g+m
AN TR A A g 44N 7 PN LY

Therefore, (a7.d%.a%)" and (a',al.a’)’ can be
found following the procedure used to obtain Eq.(9).

Upto this point, we have found two half-Maxwel-
lian and one whole Maxwellian distribution func-
tion at the cell interface x;, ,,, and they represent
the nonequilibrium state f, and equilibrium state g,,.
All the slopes in the expression of @', ¢" in f, and
@', a"in g are determined from the slopes of macro-
scopic variables. Notice that the construction of two
slopes for g proposed in this paper gives more
freedom to describe complicated flow situations.
Notice, also, that for Navier-Stokes solutions, the
stopes of @' and a@" represent the viscosity and heat
conduction effects [36].

After substituting Eq.(5) and Eq. (6} into Eq.(4),
the final gas distribution function at a cell interface
is expressed as

St ) =(1—e"Tg,
+ (T( —14e )+ te”")(diﬁiu]

+a’(1 —H[uD)ug,

+rltit—1+e ") Ag,

+ e (1 — uta}H[ulg'

+ {1 —ura) (1 — H{u])g"). {12)
The only unknown term in the above equation is 4.
Sinoce both f (Eq.(12)) and g (Eq.(6)) contain 4, after

applying the conservation constraint of Eq(3) at
X;. 1, and integrating it over the whole time step T

we get

r
JO j(g—f)wadrda:o,

which gives

M7, A, =1J[:flgo + vyu{a'Hfu]
o
+a'"{l — Hlulhg,
+ 73(H[ulg' + (1 — H[u])g")
+ yau(d Hlulg' + a'(1 — H{ug Ty, 45,
£13)
where

to=T—t(l—e 77,
vi=—(1—e Ty,
72={—T+2(1 - e‘T‘jI}_ Te_Tjr).ﬂ‘f“)’m

73 ={1—e Ty,
ra=(Te™TT—z(l —e" Ty,

All moments of the Maxwellian on the right hand
side of Eq.(13) can be found in Appendix B and the
above equation can be solved for (4,, 4,, 4,)7.

Finally, the time-dependent numerical fluxes in
the x-direction across the cell interface can be com-
puted as

Fp = |u ] f(x0 0 1, 8)dE,
‘ F i1 Hu® + &%)

(14)

where f{x;, | 1.0, u,)is given in Eq.(12). By integra-
ting the above equation to the whole iime step, we
get the total mass, momentum and energy transport.
These fluxes satisfy the consistency condition of
F(U,Uy=ZF(U) for a homogeneous uniform flow,
where #{U} are the corresponding Euler fluxes.
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2.3. Numerical Apalysis

OQne of the obvious improvement in this new version
of the BGK-type schemes is that we have relaxed the
original assumption of a single continuous slope for
the equilibrium state g across a cell interface, and
generalized the initial conditions for the gas-evol-
ution model. This significantly increases the robust-
ness of the BGK-type schemes. The computational
cost of the new scheme is slightly higher than that of
the previous schemes due to additional computa-
tions required by the two slopes in Eq.{6). Neverthe-
less, in our experience, the CPU time required by the
current approach is comparable to that of a second-
order extension of Roe’s approximate Riemann sol-
ver with entrony fixes. '

Remark(l) The construction of g, in term of g’ and
g is a natural consequence of the solution of the
BGK model, which physically validates the assump-
tions of the TTT scheme [34]. This stage is similar to
the use of Roe’s average to construct a common
state at & cell boundary. However, in gas-kinetic
theory, the equilibrium state is formed between the
left and right beams due to particle collisions. In
a previous paper [36], we have proved that g, has
larger entropy than the original nonequilibrium
statef;,. The point that should be emphasized here is
that the density and temperature in Eq. (11), corre-
sponding to the equilibrium distribution g,,, could
possibly be outside the range determined by the left
and right states. For example, the following inequal-
ities could be true under some conditions:

Py > max(pl,p'). e < min{A, A7),

One exampie is that of two shocks collapsing to
form a stronger shock around the cell interface with
larger density and higher temperature. Or, two rare-
faction waves at the left and right sides of a cell
interface which create a lower density region at the
center.

Thus, in the dynamical stage, the maximum or
minimum of density and temperature could be in-
creased or decreased, and our construction of g, is
capable of capturing these phenomena.

Remark(2) As derived in Section{2.2), the BGK
model converges to the Navier-Stokes equations in
its second-order approximation. Also, as we have
shown in [36], the viscous fluxes are related to the
linear slope of g at the cell interface, and the BGK-
type schemes give the Navier-Stokes equations with
dynamijcal viscosity #=1tp and Prandtl number
Pr =] insmooth regions. The smooth regions could
include the boundary or shock layers if the grid size
is small enough to resolve these layers [35]. For
Euler calculations, the final gas distribution func-
tion can be much simplified [37].

Remark(3} In contrast to the Riemann solver, the
BGK-type schemes provide an advanced gas evol-
ution model. From Eq.(11), we know that g, has
positive density and temperature if ¢’ and g" ob-
tained in the reconstruction stage are physical states
with positive density and temperature. Then, g, > 0
is satisfied, which means that all particles have
positive probability. If we ignore all slopes in the
BGK-type schemes, the distribution function f at
the cell interface can be written as

f(xjﬂ;z,t):(i —e*z;‘r)gg +‘3—U;fe-

Since g, > 0.f, > 0and e ™" < 1,f is strictly positive
with f>0. Therefore, f has positive density and
temperature due to the following relations

_W>0_

ffd5>0; jquda [7d=

This 1s a positivity condition for the BGK-type
schemes. Roe’s approximate Riemann solver cannot
guarantee that the solutions of the flow variables at
the cell interface satisfy a positivity condition
[4,27]. Thus, it appears that the BGK-type schemes
provide more realistic solutions.

Remark(4) From gas-kinetic theory, the collision
time should depend on macroscopic low variables,
such as density and temperature. For BGK-type
numerical schemes, the collision time 1 is composed
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of two parts

] il Fioar

FA fA — p"i 7
=, o+C2T!p;N pi

I lp'/ A+ "/ ]

where T is the time step, C, is chosen according to
the Reynolds number and C, is of order 1 for most
cases. The two terms in the collision time are equiv-
alent to a physical and a numerical viscosity. In
most cases, the mesh size is not small enough to
resolve the discontinuities. Therefore, we have to
regard the thickness of the discontinuity as being, at
least, as large as a few cell sizes, and additional
viscosity 1s necessary to satisfy this requirement. For
all Euler test cases, the results are not very sensitive
to the values of C; and C,, and C, is usually of the
order of 1072 if Ax = 1. The additional term in the
collision time can be regarded as a limiter imposed
in the time domain in the dynamical stage, which is
similar to the conventional limiter imposed in the
space domain during the reconstruction stage when
the order of space accuracy is more than first-order.
Therefore, the concept of limiter should be extended
to both space and time if a numerical scheme coup-
les them and bas uniformly high order accuracy.
One advantage of the BGK-type scheme is that an
explicit expression for the total viscosity can be
computed. This avoids the ambiguity of implicit
viscosities present in most upwind schemes.

Remark(5) In an earher paper [36], we have illus-
trated the entropy condition for BGK-type
schemes. Here one point should be emphasized: the
BGK model itself satisfies the entropy condition
(dissipative property} [157. This is in contrast with
the Euler equations, where the entropy condition
has to be added. Thus, if a scheme uses the BGK
maodei correctly, there would not be any mechanism
to create unphysical phenomena such as expansion
shocks.

Remark{6} For two dimensional flow. the lin-
earized form of the Navier-Stokes equations is

W, + AW, + BW, =S5,

It is well known that the difficulties in the develop-
ment of multidimensional upwind schemes for the
Navier-Stokes equations is due to the fact that the
matrices A and B do not commute: [4, B]= AB—
BA + 0. Physically, it means that an infinite number
of waves are present in the flow. Therefore, the
necessity of wave modeling follows.
However, for the BGK model

fotuf +of, =g 1)

the particle velocities are independent variables and
this difficulty is eliminated.

Thus, in the BGK.-type schemes we can consider
all particles in all directions. Theoretically, there is
not any obvious obstacle to get a multidimensional
BGK-type scheme provided that a traly “multi-
dimensional” initial reconstruction is developed.

Remarlks(7) If higher order terms are included in
the expansion of f;, and g, i.e.

g =go(l +ax + bx* + Bxt + A1 + Ct?).

the BGK model can be still solved numerically using
the generalized conservation constrainis

The higher order BGK schemes wili be developed
for the aeroacoustic probiems in the near future.

3. NUMERICAL EXPERIMENTS

The new numerical scheme has been applied to
several test cases ranging from a simple advection-
diffusion equation to hypersonic flow computa-
tions. Unless otherwise stated, in all of the numerical
examples reported, 7 = 1.4 and the MUSCL limiter
is used.

Case (1) Advection-Diffusion Equation

A previous study of the BGK-type flux function for
the advection equation has shown an interesting
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algorithmic structure i.13]. In particular, it turns out
that the numerical fluxes can be regarded as a non-
linear time-dependent combination of the Lax-
Wendroff type schemes with the Kinetic Flux Vec-
tor Splitting. Details of the numerical discretization
of the BGK-type scheme for the linear advection-
diffusion equation are presented in Appendix A. In
order to compare the results obtained with our
BGK-type scheme with others in the literature,
ENO interpolation is employed in the reconstruc-
tion stage. Figure (2)— Figure (3} show the computed
results of a decaying sinusoidal wave after one
period (t = 2.0) correspondin gto Reynolds numbers
Re( = cL/v) of 400, 2000, respectively. The computa-
tions use 40 cells, and a CFL number of 0.1. A com-
parison with the results of Chiu and Zhong [2]
reveals that our results obtained with higher order
(more than second order) are almost indistinguish-
able from those reported in the literature. However,
first- order and second-order results obtained with
the BGK-type schemes are much better. A grid
refinement study using a second-order MUSCL
limiter also verifies excelient convergence character-
istics of the scheme. Figure (4}-Figure (5) show that
the numerical results obtained with more than 80
cells practically collapse onto the exact solution.

U Wadues
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X Axis

FIGURE?2? Advection-Diffusion Case with ENO Limiter and
BGK Solver (Re = 440).
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ed.} io

X - Axis

FIGURE3 Advection-Diffusion Case with ENO Limiter and
BGK solver (Re = 2000).
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FIGURE4 Advection-Diffusion Case with MUSCL bmiter
and BGK solver (Re = 400),

Case (2) Shock Tube Problems

Two standard shock tube problems are chosen. The
Sod case is a Riemann problem for the one dimen-
sional Euler equations and is taken from reference
[31]. The density distribution computed using 100
cells is shown in Figure (6) and compared with the
exact solution which is plotted as a solid line. The
Lax-Harten case is also a Riemann problem for the
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FIGURE 5 Advection-Diffusion Case withk MUSCL limiter
and BGK Solver (Re = 2000).
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FIGURE ¢ Sod case with MUSCL limiter and BGK Solver
{100 cellsh.

Euler equations [30]. The density distribution com-
puted using 100 cells is shown in Figure (7). The
accuracy of the computed results are comparable to
that obtained with higher order ENO schemes by
other authors [8, 307, although a MUSCL limiter is
used in reconstruction step of the BGK-type
scheme.

050 k1D 1M

DENSITY

0

030

r 13 T 3 T
100 HO0 160 O3 4B FIOS 610T 1100 §LOF 9100

=

FIGURE 7 Lax-Harten case with MUSCL limiter and BGK
Selver {100 cells).

Case (3)Blast Wave Problem

The blast wave problem, first proposed by Wood-
ward and Colella [33], requires the computation of
a head-on collision between two blast waves and the
resulting series of shocks and contact discontinui-
ties. The density distribution computed with the
MUSCL limiter and the BGK flux function using
400 cells is shown by the symbols in Figure (8). The
solid line is obtained with the same scheme and 800
cells. From the results, we can see that the shock and
contact discontinuity waves are well resolved.

It is weli known that several existing schemes,
such as the PPM method, need to be augmented by
a steepening technique in order to improve the
accuracy of the results for this test case. Thus, we
have also investigated the use of steepening tech-
nigues in the reconstruction stage of the BGK-type
method. The density distribution computed using
400 cells and Huynh’s third-order interpolation
[10] scheme with sharpening of the contact discon-
tinuity coupled with our BGK-type flow solver is
shown in Figure (9). This result, which was obtained
using a x = 10, compares extremely well with the
solid line which is again the fine grid solution of
Figure (8). However, as in the case with other
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FIGURE Y9 Blast-wave case with Huynh's limiter and BGK
Solver {400 celis).

schemes, it is observed that steepening techniques
reduce the robusiness of our numerical method.

Case (4) Shu-Osher Problem

The Shu-Osher test case requires the calculation of
a moving shock at Mach number 3 interacting with

sine waves. As observed by Shu and Osher [307,
MUSCL type TVD schemes produce very smeared
results for the density distributions. Figure (10) and
Figure (11} show the densitydistributions computed
on a mesh with 400 cells using the BGK solver
coupled, respectively, with a MUSCL and a 4th-
order ENO [8] interpolation of the pointwise values
at the cell interface. The results confirm that an
accurate calculation of this test case requires higher
order reconstructions.

Case (5) Forward Facing Step with Mach 3

The forward-facing step test is carried out on a uni-
form mesh with 240 x 80 cells. The computed den-
sity and pressure distributions are presented in
Figure (12). Notice that the BGK-type scheme does
not require any special treatment at the corner, and
does not produce any expansion shocks at the corner.

Case (6} Double Mach Reflection

The double Mach reflection problem is calculated
on a computational domain with 360 x 120 ceils.

i
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FIGURE 10 Shu-Osher case with MUSCL limiter and BGK
Solver {400 cells).
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FIGURE 11  Shu-Osher case with 4th-order ENO Limiter and
BGK Solver.

The problem is set up by driving a strong shock
down a tube which contains a wedge. The computed
density and pressure distributions after the collision
between the shock and the wedge are shown on
Figure (13). The carbuncle phenomenon reported in

reference [ 14] was never observed with our BGK-
type scheme.

Case(7) An Impulsively Started Cylinder

Strong shocks, and expansions as well as subsonic
flow regions are presented in both steady and un-
steady hypersonic flows induced by the impulsive
start of a cylinder. A monotonic numerical scheme is
needed to capture, crisply and without spurious
oscillations, the abrupt change of flow variables
across a shock wave. Moreover, a numerical scheme
should be capable of maintaining positivity of the
flow variables, to avoid the occurrence of unphysi-
cal negative values for quantities such as pressure
and/or temperature in regions of low density and
low temperatures created by extreme expansions. In
the present paper initial Mach numbers of
M =2.5,3.5 were chosen as test cases of hypersonic
flows which present all the flow features discussed
above. This problem imposes a particular difficulty
not only for unsteady but also for steady flow
computations because the very high expansion in
the rear part of the cylinder produces a vacuum-like
low pressure and low density region.

FIGURE 12 Density and Pressure Distributions from the Splitting BGK -type Scheme with MEUSCL Bmiter.
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FIGURE 13 Density and Pressure Distributions from the Splitting BGK-type Scheme with MUSCL Limiter.

If the kinetic energy is so large that the difference
between the total energy and the kinetic energy is in
the range of round-off error, one should Limit the
tower bound of the difference with the order of
round-off to avoid meaningless computations. This
problem is solely caused by the finite precision of the
hardware and not by the numerical scheme. The
round-off error is usually of the order (107 '%) ~
O(107*7). The present computations were perfor-
med using a Sificon Graphics INDIGO 2 worksta-
tion with an observed round-off error of order
O{10" %) Thus a lower bound of 107 1% was selec-
ted. Several numerical schemes described in refer-
ence [ 14] have been applied to this problem.

All of the schemes have severe difficulties in main-
taming positive pressure and/or density, and gen-
erally need ad hoc fixes. Most of the second-order
schemes simply fail. Our BGK-type scheme, how-
ever, does not seem to have particular difficulties in
preserving positivity during the whole time integra-
tion. This finding is verified for both first and sec-
ond-order schemes.

Two different grids with 90 x 25, and 180 x 50
celis were used. The coarse grid is shown in Fig-
ure (14). The grid distribution is uniform in the
angular direction {90 or 180 cells) while the cells in

the radial direction grid (25 or 50 cells) are slightly
clustered to the surface. The ratio of inner radius to
ocuter radius is 10, and all the calculations were
carried out using a CFL of 0.5, Figure{15) and
Figure (16) show the computed density, pressure
and Mach number distributions along the symme-
try line and the upper surface of the cylinder at times

T3

FIGURE 14 Gnd Distnbution around the Cylinder (90 x 25
cells).
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FIGURE 15 Density, Pressure and Mach Number Distribu-
tions for M =2.5.

of T=6.0,70,80 corresponding to a free stream
Mach number of M = 2.5, 3.5 respectively. It can be
seen that the results at three different times practi-
cally collapse to a single curve. This indicates that
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FIGURE 16 Density, Pressure and Mach Number Distribu-
tions for M = 3.5,

the computed results at T=46.0 have reached
a steady state. Figure (17) and Figure (18) show the
density, pressure and Mach number distributions at
T'=6.0. Notice that the bow shock wave is captured
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with two interior points. Also, on the finer grid, the higher Mach number than the result in reference
shock profile is sharper and the expansion in the [18]even ona coarser grid. This again indicates that
rear part of cylinder is more extreme, leading to BGK-type schemes may yield a less diffusive sol-
a higher Mach number. Our results show 2 much  ution with a consequent higher accuracy.



BGK SCHEMES FOR COMPRESSIBLE FLOW 231

Figure (19) and Figure (20) show the density,
pressure and Mach contours for M = 2.5, 3.5 Forty
contour levels, equally spaced from the maximum
and minimum values, are used. Both the bow shock
and the V-shape shock induced from the expansion
are captured very well with a relatively coarse grid,

(c)

FIGURE 19 Density, Pressure and Mach Contours for
M =25

FIGURE 192 (Density Contours).

FEGURE 20a (Density Contours).

4. CONCLUSION

Both the initial reconstruction stage and the gas
evolution stage can affect the accuracy and robust-
FEGURE 19b  (Pressure Contours). ness of a numerical scheme, While the reconstruc-
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FIGURE 20 Density, Pressure and Mach Contours for
M=33

tion step is mainly a numerical artifact, the dynams-
cal evelution step should model the physics of the
flow as accurately as possible. The BGK-type
schemes provide an alternative and advanced gas

K. XU eral

evolution model, which has many advantages over
Godunov-type schemes. The initial condition in the
reconstruction step is more flexible and the final gas
distribution function yields the Navier-Stokes equa-
tions. The physical evolution for the BGK-type
schemes is based on the simple fact that
a ponequilibrinm state will approach an equilib-
rium state in both space and time due to particle
collisions. This process is accompanied by an in-
crease of entropy. Also, the BGK-type schemes
eliminate some of the difficulties encountered by
multidimensional upwind schemes and satisfy the
positivity condition. Following earlier papers
[23,35, 36, 13,37], the present paper shows the pro-
gressive development of the BGK-type schemes.
The comprehensive numerical results presented in
this paper validate both the physical and numerical
considerations used in the development, and indi-
cate the level of maturity reached by this class of
schemes.
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APPENDIX A

Linear Advection-Diffusion Equation:
The linear advection-diffusion equation in one-di-
mension is written as

Ut + CUJC -V E])::(:'

where v is the viscosity coefficient. The above equa-
tion can be derived from the BGK model

firuf.={g—fiz,

assuming that
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together with the conservation constraint

J(f“ grdE=0.

The Chapmann-Easkog expansion of the BGK
model gives

f=g— g, +ug,) {15)
The corresponding advection-diffusion equation

T 373
Ur + CUx = -2? Uxx - m Uxxxx

1s obtained by substituting Eq. (15} into the relation
J(f, + uf)du=0 obtained from the conservation
constraint, and by integrating in the particle veloc-
ity space. The 4rh-order derivative in the above
equation has the very nice property of stabilizing the
numerical scheme [9]. Thus, if we take 7 = 2v4, the
advection-diffusion equation is recovered from the
BGK model.

The numerical scheme for the linear advection-
diffusion equation can be obtained from the scheme
presented in this paper by following several simplifi-
cations:

1. Make the number of the internal degrees of
freedom K = 0.

2. Only keep the first moment of y, with s = 1.

3. Both fand g have the same A, which is chosen
mitially, for example A = 1. The collision time  is
determined afterwards by 7=21v, where v is
known.

APPENDIX B

Moments of the Maxwellian Distribution Function:
In the gas-kinetic scheme, we nead to evaluate mo-
ments of the Maxwellian distribution function with
bounded and unbounded integration limits. Here,
we list some general formulas.

Firstly, we assume that the Maxwellian distribu-
tion for one dimensional low is

PANCARTE
- Y — Iz 2
g= P(;) o AMlu—UY ¢ )7

where £ has K degrees of freedom. Then, by intro-
ducing the following notation for the moments of g,

P(--'>-=J(---)gdudi,

the general moment formula becomes
ety = (uy (&,

where r is an integer, and /is an even integer (owing
to the symmetrical property of &). The moments of

{EDare:
pan K
(< >ﬁ(22>

o [ 3K K(K—1)
<g>(ﬂj+——*4;{2 )

The values of {u"> depend on the integration
Hrnats. If the Himits are from — o¢ t0 + oo, we have

u>=1
{ud=U
<un+2>= U(u"“>-§-ﬂ;1(u">
A

When the integral is from 0 to + o as {---)_,, the
error function and the complementary error func-
tion, appear in the formulation. Thus, the moments
for 4" in the half space are,

1 pw-
<u®y., *—-ierfc(* VAU
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1 —AiU?
Uty = Uu®y 2o

2 Jmi

, - +1
<M"T2>>0: Ur<un+1 >>0+_r127<un>

>0

Simitarly,

u®y = %erfc(\/iv)

. 1 —iU*
u'y o =Uu®) =2
’ ’ 2\/Tcﬂ_

n+1
<un+2><a: U<un+1><0+—2—’i_<un><0'
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