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1 Introduction

Computational methods first began to have a significant impact on acrodynamics analysis and design in the
period of 1965-75. This decade saw the introduction of panel methods which could solve the linear flow models
for arbitrarily complex geometry in both subsonic and supersonic flow [54, 134, 165]. It also saw the appearance
of the first satisfactory methods for treating the nonlinear equations of transonic flow [113, 112, 58, 59, 40, 50],
and the development of the hodograph method for the design of shock free supercritical airfoils [15].

In a landmark paper of 1975 [31], Chapman, Mark and Pirtle anticipated that “computers should begin to
supplant wind tunnels in the aerodynamic design and testing process”. In effect, computers would ultimately

provide a numerical wind tunnel. They listed threc main objectives of computational acrodynamics:

1. To provide flow simulations that are either impractical or impossible to obtain in wind tunnels or other

ground based experimental test facilities.

2. To lower the time and cost required to obtain acrodynamic flow simulations necessary for the design of

new aerospace vehicles.
3. Eventually, to provide more accurate simulations of flight acrodynamics than wind tunnels can.

Chapman, Mark, and Pirtle also noted that the inherent limitations of computational and wind tunnel
_simulations are complementary. Wind tunnels are limited by the size of the models that can be placed in
( them, and by the density, temperature and velocity of the flow that they can sustain, with the consequence

that flight-Reynolds numbers cannot be realized with complete models. Their accuracy is also limited by wall
and support interference, and by aeroelastic distortion. Computers are not limited in any of these ways, but
they are limited in speed and memory, which in turn limit the attainable complexity and resolution of the
simulations.

Computational Fluid Dynamics (CFD) has now matured to the point at which it is widely accepted as a
key tool for aerodynamic design. Algorithms have been the subject of intensive development for the past two
decades. The principles underlying the design and implementation of robust schemes which can accurately
resolve shock waves and contact discontinuities in compressible flows are now quite well established. It is
also quite well understood how to design high order schemes for viscous flow, including compact schemes and
spectral methods, Adaptive refinement of the mesh interval (h) and the order of approximations (p) has been
successfully exploited both separately and in combination in the h-p method [116]. Despite these advances,
CFD is still not being exploited as effectively as one would like in the design process. This is partially due

to the long set-up times and high costs, both human and computational, of complex flow simulations. A



continuing obstacle to the treatment of configurations with complex geometry has been the problem of mesh
generation. Several general techniques have been developed, including algebraic transformations and methods
based on the solution of elliptic and hyperbolic equations. In the last few years methods using unstructured
meshes have also begun to gain more general acceptance. The Dassault-INRIA group led the way in developing
a finite element method for transonic potential flow. They obtained a solution for a complete Falcon 50 as
early as 1982 [24]. Euler methods for unstructured meshes have been the subject of intensive devclopment by
several groups since 1985 [101, 75, 74, 152, 14], and Navier-Stokes mcthods on unstructured meshes have also
" been demonstrated [108, 109, 11].

The fidelity of mathematical modelling of high Reynolds number flows continues to be limited by computa-
tional costs , thus, accurate and cost-effective simulation of viscous flow at high Reynolds numbers associated

with full scale flight remains a challenge. Improvements are stili needed in a number of areas, including

1. mesh generation techniques to assure proper resolution of boundary layers
2. turbulence modeling for separated flows

3. algorithms to reduce computational costs.

Several routes are available toward the reduction of computational costs, including the reduction of mesh
requirements by the use of higher order schemes, improved convergence to steady state by sophisticated
acceleration methods, and the exploitation of massively parallel computers.

In addition to more accurate and cost-effective flow prediction methods, better optimization methods are
also needed, so that not only can designs be rapidly evaluated, but.directions of improvement can be identified
which enable the rapid evaluation of a satisfactory design. Possession of techniques which result in a faster
design cycle gives a crucial advantage in a competitive environment.

In the next section, this paper discusses steps nceded for the implementation of computational simulation
techniques which could meet industrial needs. A critical issue examined in Scction 3 is the choice of math-
ematical models: what level of complexity is needed to provide sufficient accuracy for aerodynamic design,
and what is the impact on cost and turn-around. Section 4 addresses issucs in the formulation of numerical
algorithms which provide the fundamental building blocks for a numerical wind tunnel. Section 5 presents
the results of some numerical calculations which require moderate computer resources and could be completed
with the fast turn around needed for effective industrial use. Section 6 discusscs automatic design procedures
which can be used to produce optimum aerodynamic designs. Finally, Scction 7 discusses the outlook for

achieving the goal of a numerical wind tunnel.

2 Steps Needed for the Implementation of Simulation Methods

The principal requirements of effective CFD methods for engineering design are
1. assured accuracy
2. acceptable computational cost
3. fast turn around.

Improvements are still needed in all three areas. Effective use of CFD for design is presently limited by
the lack of good interfaces to CAD systems, which prevent full automation of the mesh generation process.
This bottleneck needs to be eliminated and the CFD system should be fully integrated in a numerical design
environment. »

The core requirement for the successful exploitation of CFD is the development of the basic software for
the computational simulation of complex fluid flows. A level of accuracy sufficient to assure confidence in
the aerodynamic design must be achieved with acceptable computational costs and rapid turn around. Five
principal steps can be identified in the development of software for acrodynamic simulation. These are:



1. Choice of a mathematical model appropriate to the requirements.

2. Mathematical analysis of the model to ensure that the problem is properly formulated (for example,

definition of far field boundary conditions, conditions for uniqueness).
3. Formulation of a numerical approximation scheme.
4. Implementation as a computer program.

5. Validation.

All of these steps need to be carefully carried out to produce the reliable, robust, and accurate software that
is needed.

Software which meets the basic requirements for the computational simulation of aerodynamic flows is the
first step towards a numerical simulation system for design, but not by itself sufficient. The simulation software
should also be embedded in a more comprehensive environment to provide user-friendly interfaces and efficient
data management. The transfer of large volumes of data representing the geometries and computational results
can become a major bottleneck. It is essential to develop procedures allowing the easy transfer of geometric
data from computer aided design (CAD) systems. A numerical wind tunnel should also contain automatic
measurement systems capable of determining the geometry of real objects. These interfaces should be general
enough to allow the substitution of alternative CAD systems, and also of alternative aerodynamic simulation
modules. Efficient methods for handling the output data are equally important. These must provide both
for visualization of the results, and for their quantitative evaluation. Visualization is important because it
can provide the designer with the insights needed to make an improvement, while quantitative evaluation is

needed both for verification of the performance, and to allow optimization of the design.

3 Mathematical Models of Fluid Flow and Computational Costs

The choice of a model depends on the complexity of the flow, the level of accuracy required, and the com-
putational cost. The Reynolds number of acrodynainic flows associated with the flight envelopes of full scale
aircraft are very large (of the order of 10 million and up). Correspondingly the flows that need to be predicted
are generally turbulent. The size of the smallest eddies in a turbulent flow may be estimated by dimensional
analysis to be of the order of Re%, where Re is the Reynolds number based on a representative global length
scale. In a three-dimensional simulation, allowing for the need to resolve time scales which correspond to
the smallest length scales, the computational complexity of a full simulation of a turbulent flow, down to the
.smallest scales in space and time, can thercfore be estimated as proportional to the cube of the Reynolds
number. Consequently a direct simulation of the full Navier-Stokes equations is not feasible, forcing the use
of mathematical models with some level of simplification. Figure 1 indicates a hierarchy of models at different
levels of simplification which have proved useful in practice. Efficient flight is generally achieved by the use
of smooth and streamlined shapes which avoid flow separation and minimize viscous effects, with the conse-
quence that useful predictions can be made using inviscid models. Inviscid calculations with boundary layer
corrections can provide quite accurate predictions of lift and drag when the flow remains attached, but itera-
tion between the inviscid outer solution and the inner boundary layer solution becomes increasingly difficult
with the onset of separation. Procedures for solving the full viscous equations are likely to be needed for
the simulation of arbitrary complex separated flows, which may occur at high angles of attack or with bluff
bodies. In order to treat flows at high Reynolds numbers, one is generally forced to estimate turbulent effects
by Reynolds averaging of the fluctuating components. This requires the introduction of a turbulence model.
As the available computing power increases one may also aspire to large eddy simulation (LES) in which the
larger scale eddies are directly calculated, while the influence of turbulence at scales smaller than the mesh

interval is represented by a subgrid scale model.



Unsteady viscous

compressible flow
: 5 "Parabolized
5T 0 n-s egs.
Navier-Stokes No Thin-layer
egs. streamwise N-S egs. s
h '
viscous terms e 0 Boundary
layer eqs.
Viscosity = 0
M Laplace eq.
Vorticity = 0 '

Density = Const. Density = Const.
Small Transonic small L
Perturb. perturb. eq. Linearize

Figure 1: Equations of Fluid Dynamics for Mathematical Models of Varying Complexity (Supplied by Luis
Miranda, Lockheed Corporation).
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Computational costs vary drastically with the choice of mathematical model. Panel methods can be effec-
tively implemented with higher-end personal computers (with an Intel 80486 microprocessor, for example).
Studies of the dependency of the result on mesh refinement, performed by this author and others, have demon-
strated that inviscid transonic potential flow or Euler solutions for an airfoil can be accurately calculated on a
mesh with 160 cells around the section, and 32 cells normal to the section. Using multigrid techniques 10 to 25
cycles are enough to obtain a converged result. Consequently airfoil calculations can be performed in seconds
on a Cray YMP, and can also be performed on 486-class personal computers. Correspondingly accurate three-
dimensional inviscid calculations can be performed for a wing on a mesh, say with 192x32x48 = 294, 912 cells,
in about 5 minutes on a single processor Cray YMP, or less than a minute with eight processors, or in 1 or 2
hours on a workstation such as a Hewlett Packard 735 or an IBM 560 model.

Viscous simulations at high Reynolds numbers require vastly greater resources. Careful two-dimensional
studies of mesh requirements have been carried out at Princeton by Martinelli [105]. He found that on the
order of 32 mesh intervals were needed to resolve a turbulent boundary laycr, in addition to 32 intervals between
.the boundary layer and the far field, leading to a total of 64 intervals. In order to prevent degradations in
accuracy and convergence due to excessively large aspect ratios (in excess of 1,000) in the surface mesh cells,
the chordwise resolution must also be increased to 512 intervals, Reasonably accurate solutions can be obtained
in a 512x64 mesh in 100 multigrid cycles. Figure 2 shows a comparison of experimental data with a calculated
result for the RAE 2822 airfoil at a Mach number of 0.729, an angle of attack of 2.31° and a Reynolds number
of 6 million. Translated to three dimensions, this would imply the need for meshes with 5-10 million cells
(for example, 512x64x256 = 8,388,608 cells). When simulations are performed on less fine meshes with, say,
500,000 to 1 million cells, it is very hard to avoid mesh dependency in the solutions as well as sensitivity to
the turbulence model.

A typical algorithm requires of the order of 5,000 floating point operations per mesh point in one multigrid
iteration. With 10 million mesh points, the operation count is of the order of 0.5x10! per cycle. Given a
computer capable of sustaining 10!! operations per second (100 gigaflops), 200 cycles could then be performed
in 100 seconds. Simulations of unsteady viscous flows (flutter, buffet) would be likely to require 1,000-10,000
time steps. A further progression to large eddy simulation of complex configurations would require even greater

resources. The following estimate is due to W.H. Jou [84]. Suppose that a conservative estimate of the size of
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Figure 2: Comparison of the Calculated Result and Experimental Data for the RAE 2822 Airfoil at
Mach 0.729 and 2.31° Angle of Attack (Supplied by Luigi Martinelli, Princeton University).

eddies in a boundary layer that ought to be resolved is 1/5 of the boundary layer thickness. Assuming that
10 points are needed to resolve a single eddy, the mesh interval should then be 1/50 of the boundary layer
thickness. Moreover, since the eddies are three-dimensional, the same mesh interval should be used in all three
directions. Now, if the boundary laycr thickness is of the order of 0.01 of the chord length, 5,000 intervals will
be needed in the chordwise direction, and for a wing with an aspect ratio of 10, 50,000 intervals will be needed
in the spanwise direction. Thus, of the order of 50 x 5,000 x 50,000 or 12.5 billion mesh points would be
.needed in the boundary layer. If the time dependent behavior of the eddies is to be fully resolved using time
steps on the order of the time for a wave to pass through a mesh interval, and one allows for a total time equal
to the time required for waves to travel three times the length of the chord, of the order of 15,000 time steps
would be needed. Performance beyond the teraflop (10'2 operations per second) will be needed to attempt
calculations of this nature, which also have an information content far beyond what is needed for enginering
analysis and design. The designer does not need to know the details of the eddies in the boundary layer. The
primary purpose of such calculations is to improve the calculation of averaged quantities such as skin friction,
and the prediction of global behavior such as the onset of separation. The current use of Navier-Stokes and
large eddy simulations is to try to gain an improved insight into the physics of turbulent flow, which may in
turn lead to the development of more comprehensive and reliable turbulence models.

It is doubtful whether a universally valid turbulence model, capa;ble of describing all complex flows, could
be devised [48]. Algebraic models [28, 9] have proved fairly satisfactory for the calculation of attached and
slightly separated wing flows. These models rely on the boundary layer concept, usually incorporating separate
formulas for the inner and outer layers, and they require an estimate of a length scale which depends on

the thickness of the boundary layer. The estimation of this quantity by a search for a maximum of the



vorticity times a distance to the wall, as in the Baldwin-Lomax model, can lead to ambiguities in internal
flows, and also in complex vortical flows over slender bodies and highly swept or delta wings [37, 106]. The
Johnson-King model [82], which allows for non-equilibrium cffects through the introduction of an ordinary
differential equation for the maximum shear stress, has improved the prediction of flows with shock induced
separation [135, 85].

Closure models depending on the solution of transport equations are widely accepted for industrial applica-
tions. These models eliminate the need to estimate a length scale by detecting the edge of the boundary layer.
Ecidy viscosity models typically use two equations for the turbulent kinetic energy & and the dissipation rate
€, or a pair of equivalent quantities [83, 164, 149, 1, 111, 33]. Models of this type generally tend to present
difficulties in the region very close to the wall. They also tend to be badly conditioned for numerical solution.
The k — [ model [143] is designed to alleviate this problem by taking advantage of the linear behaviour of
the length scale I near the wall. In an alternative approach to the design of models which are more amenable
to numerical solution, new models requiring the solution of one transport equation have recently been intro-
duced [10, 148]. The performance of the algebraic models remains competitive for wing flows, but the one-
and two-equation models show promise for broader classes of flows. In order to achieve greater universality,
research is also being pursued on more complex Reynolds stress transport models, which require the solution
of a larger number of transport equations.

Another direction of research is the attempt to devise more rational models via renormalization group
(RNG) theory [168, 144]. Both algebraic and two-equation k — ¢ models devised by this approach have shown
promising results {107].

The selection of sufficiently accurate mathematical models and a judgment of their cost effectiveness ul-
timately rests with industry. Aircraft and spacecraft designs normally pass through the three phases of
conceptual design, preliminary design, and detailed design. Correspondingly, the appropriate CFD models
will vary in complexity. In the conceptual and preliminary design phases, the emphasis will be on relatively
simple models which can give results with very rapid turn-around and low computer costs, in order to evaluate
alternative configurations and perform quick parametric studies. The detailed design stage requires the most
complete simulation that can be achieved with acceptable cost. In the past, the low level of confidence that
could be placed on numerical predictions has forced the extensive use of wind tunnel testing at an early stage
of the design. This practice was very expensive. The limited number of modcls that could be fabricated also
limited the range of design variations that could be evaluated. It can be anticipated that in the future, the
role of wind tunnel testing in the design process will be more one of verification. Experimental research to

improve our understanding of the physics of complex flows will continue, however, to play a vital role.

"4 Challenges for CFD Algorithms

The computational simulation of fluid flow presents a number of severe challenges for algorithm design. At
the level of inviscid modeling, the inherent nonlinearity of the fluid flow equations leads to the formation of
singularities such as shock waves and contact discontinuities. Moreover, the geometric configurations of interest
are extremely complex, and gencrally contain sharp edges which lead to the shedding of vortex shects. Extreme
gradients near stagnation points or wing tips may also lead to numecrical errors that can have global influence.
Numerically generated entropy may be convected from the leading edge for example, causing the formation
of a numerically induced boundary layer which can lead to separation. The need to treat exterior domains of
infinite extent is also a source of difficulty. Boundary conditions i;nposed at artificial outer boundaries may
cause reflected waves which significantly interfere with the flow. When viscous effects are also included in the
simulation, the extreme difference of the scales in the viscous boundary layer and the outer flow, which is
essentially inviscid, is another source of difficulty, forcing the use of meshes with extreme variations in mesh

interval. For these reasons CFD, has been a driving force for the development of numerical algorithms.



4.1 Structured and Unstructured Meshes

The algorithm designer faces a number of critical decisions. The first choice that must be made is the nature
of the mesh used to divide the flow field into discrete subdomains. The discretization procedure must allow
for the treatment of complex configurations. The principal alternatives are Cartesian meshes, body-fitted
curvilinear meshes, and unstructured tetrahedral meshes. Each of these approaches has advantages which
have led to their use. The Cartesian mesh minimizes the complexity of the algorithm at interior points and
facilitates the use of high order discretization procedures, at the cxpense of greater complexity, and possibly a
loss of accuracy, in the treatment of boundary conditions at curved surfaces. This difficulty may be alleviated
by using mesh refinement procedures near the surface. With their aid, schemes which use Cartesian meshes
have recently been developed to treat very complex configurations [110, 136, 21, 88].

Body-fitted meshes have been widely used and are particularly well suited to the treatment of viscous flow
because they readily allow the mesh to be compressed near the body surface. With this approach, the problem
of mesh generation itself has proved to be a major pacing item. The most commonly used procedures are
algebraic transformations [7, 41, 43, 145], methods based on the solution of elliptic equations, pioneered by
Thompson [157, 158, 146, 147], and methods based on the solution of hyperbolic equations marching out from
the body [150]. In order to treat very complex configurations it generally proves expedient to use a multiblock
[163, 137] procedure, with separately generated meshes in each block, which may then be patched at block
faces, or allowed to overlap, as in the Chimera scheme [18, 19]. While a number of interactive software systems
for grid generation have been developed, such as EAGLE, GRIDGEN, GRAPE, and ICEM, the generation of
a satisfactory grid for a very complex configuration may require months of effort.

The alternative is to use an unstructured mesh in which the domain is subdivided into tetrahedrons. This in
turn requires the development of solution algorithms capable of yielding the required accuracy on unstructured
meshes. This approach has been gaining acceptance, as it is becoming apparent that it can lead to a speed-up
and reduction in the cost of mesh generation that more than offsets the increased complexity and cost of the
flow simulations. Two competing procedures for generating triangulations which have both proved successful
are Delaunay triangulation [38, 11], based on concepts introduced at the beginning of the century by Voronot
[161], and the moving front method [102].

4.2 Finite Difference, Finite Volume, and Finite Element Schemes

Associated with choice of mesh type is the formulation of the discretization procedure for the equations of
fluid flow, which can be expressed as differential conservation laws. In the Cartesian tensor notation, let z;
be the coordinates, p, p, T, and E the pressure, density, temperature, and total energy, and u; the velocity
components. Each conservation equation has the form
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For the mass equation
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For the ¢ momentum equation
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where ¢y is the viscous stress tensor. For the energy equation
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where & is the coeflicient of heat conduction. The pressure is related to the density and energy by the equation

of state
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in which # is the ratio of specific heats. In the Navier-Stokes equations the viscous stresses are assumed to be

linearly proportional to the rate of strain, or
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where 4 and ) are the coefficients of viscosity and bulk viscosity, and usually A = —24/3.
The finite difference method, which requires the use of a Cartesian or a structured curvilinear mesh, directly
approximates the differential operators appearing in these equations. In the finite volume method (103], the

discretization is accomplished by dividing the domain of the flow into a large number of small subdomains,

and applying the conservation laws in the integral form

i |
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Here F is the flux appearing in equation (1) and dS is the directed surface element of the boundary 0§ of

the domain . The use of the integral form has the advantage that no assumption of the differentiability of

the solutions is implied, with the result that it remains a valid statement for a subdomain containing a shock

wave. In general the subdomains could be arbitrary, but it is convenient to use either hexahedral cells in a
body conforming curvilinear mesh or tetrahedrons in an unstructured mesh.

 Alternative discretization schemes may be obtained by storing flow variables at either the cell centers or

the vertices. These variations are illustrated in Figure 3 for the two-dimensional case. With a cell-centered

scheme the discrete conservation law takes the form

3b: Vertex Scheme.

Figure 3: Structured and Unstructured Discretizations.
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where V is the cell volume, and F is now a numerical estimate of the flux vector through each face. F may
be evaluated from values of the flow variables in the cells separated by cach face, using upwind biasing to
allow for the directions of wave propagation. With hexahedral cells, equation (3) is very similar to a finite

difference scheme in curvilinear coordinates. Under a transformation to curvilinear coordinates X, equation
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where J is the Jacobian determinant of the transformation matrix [%‘J—] The transformed flux J%%Fj
corresponds to the dot product of the flux F with a vector face area J%, while J represents the transformation
of the cell volume. The finite volume form (3) has the advantages that it is valid for both structured and
unstructured meshes, and that it assures that a uniform flow exactly satisfies the cquations, because ) 1, .o S =
0 for a closed control volume. Finite difference schemes do not necessarily satisfy this constraint because of
the discretization errors in evaluating ‘g—fji and the inversion of the transformation matrix. A cell-vertex finite
volume scheme can be derived by taking the union of the cells surrounding a given vertex as the control volume
for that vertex [51, 66, 127]. In equation (3), V is now the sum of the volumes of the surrounding cells, while
the flux balance is evaluated over the outer faces of the polyhedral control volume. In the absence of upwind
biasing the flux vector is evaluated by averaging over the corners of cach face. This has the advantage of
remaining accurate on an irregular or unstructured mesh.

An alternative route to the discrete equations is provided by the finite element method. Whereas the finite
difference and finite volume methods approximate the differential and integral operators, the finite element
method proceeds by inserting an approximate solution into the exact equations. On multiplying by a test

function ¢ and integrating by parts over space, one obtains the weak form
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which is also valid in the presence of discontinuities in the flow. In the Galerkin method the approximate

solution is expanded in terms of the same family of functions as those from which the test functions are
drawn. By choosing test functions with local support, separatc cquations are obtained for each node. For
example, if a tetrahedral mesh is used, and ¢ is piecewise linear, with a nonzcro value only at a single node,
the equations at each node have a stencil which contains only the ncarest neighbors. In this case the finite
element approximation corresponds closely to a finite volume scheme. If a piecewise linear approximation to
the flux F is used in the evaluation of the integrals on the right hand side of equation (4), these integrals
reduce to formulas which are identical to the flux balance of the finite volume scheme.

Thus the finite difference and finite volume methods lead to essentially similar schemes on structured meshes,
while the finite volume method is essentially equivalent to a finite element method with linear elements when
a tetrahedral mesh is used. Provided that the flow equations arc cxpressed in the conservation law form (1),
all three methods lead to an exact cancellation of the fluxes through interior cell boundaries, so that the
conservative property of the equations is preserved. The important role of this property in ensuring correct

shock jump conditions was pointed out by Lax and Wendroff [91].

4.3 Non-oscillatory Shock Capturing Schemes
'4.3.1 Local Extremum Diminishing (LED) Schemes

The discretization procedures which have been described in the last scction lead to nondissipative approxima-
tions to the Euler equations. Dissipative terms may be needed for two reasons. The first is the possibility of
undamped oscillatory modes. The second reason is the need for the clean capture of shock waves and contact
discontinuities without undesirable oscillations. An extreme overshoot could result in a negative value of an
inherently positive quantity such as the pressure or density. The development of non-oscillatory schemes has
been a prime focus of algorithm research for compressible flow. Consider a gencral semi-discrete scheme of the
form

%'Uj = ciulvs —vj). - (5)

k#3j

A maximum cannot increase and a minimumn cannot decrease if the coefficients ¢jx are non-negative, since at

a maximum v — v; < 0, and at a minimum v, — v; > 0. Thus the condition

ci 20, k#j (6)



is sufficient to ensure stability in the maximum norm. Moreover, if the scheme has a compact stencil, so that
cjt = 0 when j and k are not nearest neighbors, a local maximum cannot increase and local minimum cannot
decrease. This local extremum diminishing (LED) property prevents the birth and growth of oscillations. The

one-dimensional conservation law

Ou &8
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provides a useful model for analysis. In this case waves are propagated with a speed a(u) = %5, and the

solution is constant along the characteristics -‘fﬁ = a(u). Thus the LED property is satisfied. In fact the total
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of a solution of this equation does not increase, provided that any discontinuity appearing in the solution

dz

satisfies an entropy condition [90]. Harten proposed that difference schemes ought to be designed so that the
discrete total variation cannot increase [52]. If the end values are fixed, the total variation can be expressed as

TV(u) =2 (Z maxima - Z minima ) .

Thus a LED scheme is also total variation diminishing (TVD). Positivity conditions of the type expressed in
equations (5) and (6) lead to diagonally dominant schemes, and are the key to the elimination of improper
oscillations. The positivity conditions may be realized by the introduction of diffusive terms or by the use of
upwind biasing in the discrete scheme. Unfortunately, they may also lead to severe restrictions on accuracy

unless the coefficients have a complex nonlinear dependence on the solution.

4.3.2 Artificial Diffusion and Upwinding

Following the pioneering work of Godunov [47], a variety of dissipative and upwind schemes designed to have
good shock capturing properties have been developed during the past two decades [151, 22, 92, 93, 133, 120,
52, 119, 154, 5, 63, 169, 57, 166, 13, 12, 11]. If the one-dimensional scalar conservation law

w8
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is represented by a three point scheme

dv; _
.(Ttl = C;:i-% (’Uj+1 o ’Uj) + Cj__% (’Uj_1 - ’U]‘) ;
the scheme is LED if
c;_% >0, cj‘_% >0. (8)

“A conservative semidiscrete approximation to the one-dimensional conservation law can be derived by subdi-

viding the line into cells. Then the evolution of the value v; in the jth cell is given by

dv;

Azd_)fj+’Lj+% --h]-,_% =0, (9)
where hj+% is an estimate of the flux between cells j and j+1. The simplest estimate is the arithmetic average
(f;+1 + f3)/2, but this leads to a scheme that does not satisfy the positivity conditions. To correct this, one
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may add a dissipative term and set

1
hjpy =5 (firr + £5) = ajpy (vier = v5). (10)
In order to estimate the required value of the coefficient Qg s let @yl be a numerical estimate of the wave
speed %5,
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Now
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and similarly

Then

where
Avﬂ_% = Vgl — U
Thus the LED condition (8) is satisfied if
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the diffusive flux becomes
dipy = 'aj+%‘ Avjyy

and one obtains the first order upwind scheme
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This is the least diffusive first order scheme which satisfies the LED condition. In this sense upwinding is a
natural approach to the construction of non-oscillatory schemes.

Another important requirement of discrete schemes is that they should exclude nonphysical solutions which
do not satisfy appropriate entropy conditions [89], which require the convergence of characteristics towards
admissible discontinuities. This places more stringent bounds on the minimum level of numerical viscosity
(104, 156, 118, 121]. In the case that the numerical flux function is strictly convex, Aiso has recently proved
(2] that it is sufficient that

@j,1 > max {% aj+%| yesign{vjpy — vj)}
for € > 0. Thus the numerical viscosity should be rounded out and not allowed to reach zero at a point where
the wave speed a(u) = gﬁ approaches zero. This justifies, for example, Harten’s entropy fix [52].

It may be noted that the successful treatment of transonic potential flow also involved the use of upwind
biasing. This was first introduced by Murman and Cole to treat the transonic small disturbance equation [113].
The author’s rotated difference scheme [58], which extended their technique to treat the general transonic
potential flow equation, proved to be very robust. TVD schemes can yield sharp discrete shock waves without
oscillations, but in this simple form they are at best first order accurate.

Higher order schemes can be constructed by introducing higher order diffusive terms. Unfortunately these
have larger stencils and coefficients of varying sign which are not compatible with the conditions (6) for a
LED scheme, and it is known that schemes which satisfy these conditions are at best first order accurate in
the neighborhood of an extremum. It proves useful in the following development to introduce the concept of
essentially local extremum diminishing (ELED) schemes. These are defined to be schemes which satisfy the
condition that in the limit as the mesh width Az — 0, local maxima are non-increasing, and local minima are

non-decreasing.
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4.3.3 High Resolution Switched Schemes: Jameson-Schmidt-Turkel (JST) Scheme

Higher order non-oscillatory schemes can be derived by introducing anti-diffusive terms in a controlled manner.
An early attempt to produce a high resolution scheme by this approach is the Jameson-Schmidt-Turkel (JST)
scheme [78]. Suppose that anti-diffusive terms are introduced by subtracting neighboring differences to produce

a third order diffusive flux
1
dipy = a1 Avj+%—§(Avj+%+L\vj_%> , (13)

which is an approximation to 2an . The positivity condition (6) is violated by this scheme. It proves
that it generates substantial osc1llat10ns in the vicinity of shock waves, which can be eliminated by switching
locally to the first order scheme. The JST scheme therefore introduces blended diffusion of the form

— (2)
4)
—e§.+% (Avj+% - 2Avj+% + Avj_%) ,

The idea is to use variable coeflicients e( ), and egi) , which produce a low level of diffusion in regions where
2 2 .

the solution is smooth, but prevent oscillations near discontinuitics. If eg'i), is constructed so that it is of order
2

Az? where the solution is smooth, while 6(_31 is of order unity, both terms in d;, 1 will be of order Az3.
2
The JST scheme has proved very effective in practice in numerous calculations of complex steady flows,

and conditions under which it could be a total variation diminishing (TVD) scheme have been examined by

Swanson and Turkel [153]. An alternative statement of sufficient conditions on the coeflicients e( ), and eg.i)l
2 2

for the JST scheme to be LED is as follows:

Theorem 1 (Positivity of the JST scheme)

Suppose that whenever either vjy1 or v; is an eztremum the coefficients of the JST scheme satisfy

RO

L)
€112 3 =0. (15)

! J+2

Then the JST scheme is local extremum diminishing (LED).
Proof: We need only consider the rate of change of v at extremal points. Suppose that v; is an extremum.

Then
4 @ _o

=€,
+] J—g ’

and the semi-discrete scheme (9) reduces to

dvj 2 _1 @ o1
Az 7t =<J+1—§aj+% A’U_H_%— ej_%+§aj_% A'Uj_%,

and cach coefficient has the required sign. O

In order to construct e( )l and e§.4_)l with the desired properties define
2 2

u—u

a ‘
R(u,v) = ul+v fu#Qorv#0 ”
0 ifu=wv=0,

where q is a positive integer. Then R(u,v) = 1 if u and v have opposite signs. Otherwise R(u,v) < 1. Now set

Q; =R(AvJ+1,Av ), Q.H—% = max(Q;, Qj+1)-
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and
— (4) _
fj+% —aj+%Qj+%, €j+% —ﬂj+%(1_Qj+%), (17)

where

1 . .
Qg > 5 ;aH% , ﬂj+%1s proportional to ’(LH%I .

At a extremum ; = 1, since then A'U]-+% and Av i1 have opposite signs. Elsewhere @; < 1 and is of order

(2)

Az if the solution is smooth. Thus the conditions (15) for a LED scheme are satisfied, and if ¢ > 2, €1 is
2

of order Az2 in smooth regions not containing an extremuin.

4.3.4 Symmetric Limited Positive (SLIP) Scheme

An alternative route to high resolution without oscillation is to introduce flux limiters to guarantee the sat-
isfaction of the positivity condition (6). The use of limiters dates back to the work of Boris and Book [22].
A particularly simple way to introduce limiters, proposed by the author in 1984 [63], is to use flux limited
dissipation. In this scheme the third order diffusion defined by equation (13} is modified by the insertion of
limiters which produce an equivalent three point scheme with positive cocfficients. The original scheme [63]
can be improved in the following manner so that less restrictive flux limiters are required. Let L{u,v) be a

limited average of u and v with the following properties:

P1l. L(u,v) = L{v,u)

P2. L(ou,av) = aL(u,v)

P3. L{u,u) =u

P4. L(u,v) = 0 if u and v have opposite signs: otherwise L(u,v) has the same sign as u and v.

Properties (P1-P3) are natural properties of an average. Property (P4) is needed for the construction of a
LED or TVD scheme.
It is convenient to introduce the notation

¢(r) = L(1,7) = L(r, 1),
where according to (P4) ¢(r) > 0. It follows from (P2) on setting a = L or L that
v u
Lwo) =9 () v=9(;)v

Also it follows on setting v = 1 and u = 7 that
1
¢v>=r¢(;).

Thus, if there exists 7 < 0 for which ¢(r) > 0, then ¢ (£) < 0. The only way to ensure that ¢(r) > 0 is to
require ¢(r) = 0 for all 7 < 0, corresponding to property (P4).
Now one defines the diffusive flux for a scalar conservation law as

dj+%=aj+% {Avj+_2L—L(AUj+%,A1)j_%>}. (18)
Also define
+—-A'U]+% _—_A'Uj__;:_
T o= , T =
A’UJ__% A’UJ-_*_%
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Then, the scalar scheme (9) reduces to

d’l) 5 _ 1

A__.
Td

1

Thus the scheme satisfies the LED condition if @jiL > % ajyt for all j, and ¢(r) > 0, which is assured
by property {(P4) on L. At the same time it follows from property (I’3) that the first order diffusive flux is
canceled when Aw is smoothly varying and of constant sign. Schemes constructed by this formulation will be

referred to as symmetric limited positive (SLIP) schemes. This result may be summarized as

Theorem 2 (Positivity of the SLIP scheme)

Suppose that the discrete conservation law (9) contains a limited diffusive fluz as defined by equation (18).
Then the positivity condition (12), together with the properties (P1-PJ) for limited averages, are sufficient to
ensure satisfaction of the LED principle that a local mazimum cannot increase and a local minimum cannot
decrease. O

A variety of limiters may be defined which meet the requirements of properties (P1-P4). Define

S{u,v) = —;— {sign(u) + sign(v)}

so that
1 fu>0andv >0

S(u,v) = 0 if % and v have opposite sign
-1 ifu<0Oand v <O.

Then two limiters which are appropriate are the following well-known schemes:

1. Minmod:
L(u,v) = S(u,v) min{|ul, |v|)

" 2. Van Leer:
2|ul|v|

L{u,v) = S(u,v)m.

In order to produce a family of limiters which contains these as special cases it is convenient to set

2D, 0)(u +v),

L{u,v) = 3

where D(u,v) is a factor which should deflate the arithmetic average, and become zero if  and v have opposite

signs. Take
q

U=V
ul + [v]
where R(u,v) is the same function that was introduced in the JST scheme, and q is a positive integer. Then
D(u,v) = 0 if v and v have opposite signs. Also if ¢ = 1, L(u,v) reduces to minmod, while if ¢ = 2, L(u,v)

D(u,v) =1—- R{u,v) =1-—

is equivalent to Van Leer’s limiter. By increasing ¢ one can generate a scquence of limited averages which

approach a limit defined by the arithmetic mean truncated to zero when w and v have opposite signs.
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When the terms are regrouped, it can be seen that with this limiter the SLIP scheme is exactly equivalent

to the JST scheme, with the switch is defined as

Qjry = R(A”j+%’A”j+%)
@

ey T Qg

W _

Gry = i1 W)

This formulation thus unifies the JST and SLIP schemes.

4.3.5 Essentially Local Extremum Diminishing (ELED) Scheme with Soft Limiter

The limiters defined by the formula (20) have the disadvantage that they are active at a smooth extrema,
reducing the local accuracy of the scheme to first order. In order to prevent this, the SLIP scheme can be
relaxed to give an essentially local extremum diminishing (ELED) scheme which is second order accurate at
smooth extrema by the introduction of a threshold in the limited average. Therefore redefine D(u,v) as

D(u,v)=1~- max(|u| + [v], eAzT) (21)

b

where r = %, g > 2. This reduces to the previous definition if |u| + |v] > eAz”™. Now

1
dj+% =y, {AUH_% —5Dj+% <A1)j+%+A'uj_%)},

where

In any region where the solution is smooth, Avj+% — Av;_3 is of order Az?. In fact if there is a smooth
extremum in the neighborhood of v; or v;41, a Taylor series expausion indicates that Avj+%, AvH% and
Avj_% are each individually of order Az2, since ff;-’ = 0 at the extremum. Then DH% =1— A where 4 is of
order Az#, and

1 1
dj+zi = a1 (Avj+%—§A7)j+%—§Avj_%)

‘where the first term is of order Az® and the second of order Az'*t#. Thercfore taking ¢ > 2 is sufficient to

ensure at least second order accuracy at a smooth extremum.
> eAz”

Consider now the possible growth of the extrema. The limiter acts in the usual way if either iAvﬂ_%

or ‘Avj_% > eAz”. If v; is a maximum, it may then be verified that

Am% < %(aﬂ% +oy_y)eAa’.

Therefore, if v; is a maximum d—}{- < B, and similarly if v; is a minimum %1- > —DB, where B — 0as Az — QO as
long as r > 1. Thus the SLIP scheme with the limiter (21) is esscntially local extremum diminishing (ELED).

The effect of the “soft limiter” is not only to improve the accuracy: the introduction of a threshold below
which extrema of small amplitude are accepted also usually results in a faster rate of convergence to a steady
state, and decreases the likelyhood of limit cycles in which the limiter interacts unfavorably with the corrections
produced by the updating scheme. In a scheme recently proposed by Venkatakrishnan a threshold is introduced
precisely for this purpose [160].
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4.3.6 Upstream Limited Positive (USLIP) Schemes

By adding the anti-diffusive correction purely from the upstrcam side one may derive a family of upstream
limited positive (USLIP) schemes. Corresponding to the original SLIP scheme defined by equation (18), a
USLIP scheme is obtained by setting

dipy =y {AUH% -L (A”ﬂ%’m’j—%)}
ifaH% >0, or
dj+% =aj+;_ {Avj+li —L(Avj+%,AUj+%)}

fa;p0 <0 . Ifoy: = % Iaj*'l} one recovers a standard high resolution upwind scheme in semi-discrete form.
2 2 2

Consider the case that a1 > 0 and a;_1 > 0. If one scts

i~}
7-+ _ Avj+% = Avj_%
- ) - ’
A’Uj__% A'Uj_%
the scheme reduces to p .
’l)j _ + -
Tos =g {qﬁ(r )aj+% + (2 — ¢(r )) aj_%}Avj_%.

To assure the correct sign to satisfy the LED criterion the flux limiter must now satisfy the additional
constraint that ¢(r) < 2.

The USLIP formulation is essentially equivalent to standard upwind schemes [120, 154]. Both the SLIP
and USLIP constructions can be implemented on unstructured meshes [70, 72]. The anti-diffusive terms are
then calculated by taking the scalar product of the vectors defining an edge with the gradient in the adjacent

upstream and downstream cells.

4.3.7 Systems of Conservation Laws: Flux Splitting and Flux-Difference Splitting

Steger and Warming [151] first showed how to generalize the concept of upwinding to the system of conservation

laws 5 8
w
bt =0 22
ALY (22)
by the concept of flux splitting. Suppose that the flux is split as f = f*+ f~ where %% and %%}—— have positive

and negative eigenvalues. Then the first order upwind scheme is produced by taking the numerical flux to be
— rt -
hivy =1+ fip

This can be expressed in viscosity form as

1 1
hj+% = +'2‘ (f]-':rl +f.7%) D) (fJ.'*:i'l N ff)
1, _ 1, _
t5 (F+ f7) + 5 (i — 157
1
= §(fj+l+fj)_dj+%’

where the diffusive flux is

1 -
Roe derived the alternative formulation of flux difference splitting [133] by distributing the corrections due to

the flux difference in each interval upwind and downwind to obtain

dw

Al‘d—tj +(fix1 = F) + (i = fi-)t =0,

where now the flux difference f;41 — f; is split. The corresponding diffusive flux is
1
= + -
diyy = 5 (Afj+% Afj+%>'
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Following Roe’s derivation, let A; +1 be a mean value Jacobian matrix cxactly satisfying the condition
firr = fi = A 1 (g — wj). (24)
AJ-+% may be calculated by substituting the weighted averages

_ VPt + VPit  VPiriHin + /piH; (25)

R VPit1 +/Pj

into the standard formulas for the Jacobian matrix A = gé. A splitting according to characteristic fields is

now obtained by decomposing AJ-+% as
Ajpr = TAT™?, (26)
2

where the columns of T" are the eigenvectors of AH%, and A is a diagonal matrix of the eigenvalues. Then

AfE

— tp—-1
fy = TAST Ay

Now the corresponding diffusive flux is
% ]Aj+%| (wj1 — wj),
where
IAH%l =T|A| T

and |A| is the diagonal matrix containing the absolute values of the cigenvalues.

4.3.8 Alternative Splittings

Characteristic splitting has the advantages that it introduces the minimun amount of diffusion to exclude the

growth of local extrema of the characteristic variables, and that with the Roe linearization it allows a discrete

shock structure with s single interior point. To reducc the computational complexity one may replace |A] by

al where if a is at least equal to the spectral radius max |[A(A)|, then the positivity conditions will still be

satisfied. Then the first order scheme simply has the scalar diffusive flux
J 1

i+t = 50 AWy (27)

The JST scheme with scalar diffusive flux captures shock waves with about 3 interior points, and it has been
widely used for transonic flow calculations because it is both robust and computationally inexpensive.
An intermediate class of schemes can be formulated by defining the first order diffusive flux as a combination
of differences of the state and flux vectors
1 1 _
divy = 50504 (Wi —wi) + 5By (i = fi) - (28)
Schemes of this class are fully upwind in supersonic flow if one takes @1 = 0 and ﬂj+% = sign(M) when the

absolute value of the Mach number M exceeds 1. The flux vector f can be decomposed as

f=ww+ f, (29)
where
0
=1 » |. (30)
up
Then
fiv1 = fi =@ (wipy —w;) + 0 (wipr — uj) + fu = fry (31)
where % and @ are the arithmetic averages

_ 1 1
=g (ujp1 +u;), ©= 3 (wjpr +wy).
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Thus these schemes are closely related to schemes which introduce separate splittings of the convective and
pressure terms, such as the wave-particle scheme [129, 8], the advection upwind splitting method (AUSM)
[98, 162], and the convective upwind and split pressure (CUSP) schemes [71].

In order to examine the shock capturing properties of these various schemes, consider the general case of a

first order diffusive flux of the form

1
d].+% = -2—aj+;_Bj+J2_ (’lUj_H —71)]'), (32)

where the matrix Bj+% determines the properties of the scheme and the scaling factor @ty is included
for convenience. All the previous schemes can be obtained by representing Bj+% as a polynomial in the
matrix AJ-+% defined by equation (24). According to the Cayley-Hamilton theorem, a matrix satisfies its own
characteristic equation. Therefore the third and higher powers of A can be eliminated, and there is no loss of

generality in limiting Bj+% to a polynomial of degree 2,

Bjpy =aol +o1d; s +adl . (33)
The characteristic upwind scheme for which Bj_*_% = 'Aj,{_% is obtained by substituting AH% = TAT™?,
A? TA?*T~1, Then ey, oy, and a3 are determined from the three equations

ity
ag + a1 A +agz\2. = l’\kla k=1,2,3.

The same representation remains valid for three dimensional flow because Aj+% still has only three distinct

eigenvalues u, v + ¢, u — c.

4.3.9 Analysis of Stationary Discrete Shocks

w,

2o i1

j+1

j+2

Figure 4: Shock structure for single interior point.

The ideal model of a discrete shock is illustrated in figure (4). Supposc that wy and wp are left and
right states which satisfy the jump conditions for a stationary shock, and that the corresponding fluxes are
fr = f(wr) and fr = f(wp). Since the shock is stationary f;, = fr. The ideal discrete shock has constant
states wy, to the left and wg to the right, and a single point with an intermediate value w4. The intermediate
value is needed to allow the discrete solution to correspond to a true solution in which the shock wave does

not coincide with an interface between two mesh cells. According to equation (22)

/0 ’ w(T)dz = /0 ’ w(0)dz ~ /0 T( o — fn)dt,

where frp and frp are the fluxes at the left and right boundaries. Assuming that the boundary conditions

are compatible with a steady solution containing a stationary shock, the location z, of the shock is fixed by
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this equation, since

L
/ w(T)dz = z,wy + (L — z,)wg.
0

Similarly, in the semi-discrete system
T
Az E wj(T) = Az E wj(O) - / (fRB - fLB)dt. (34)
. . 0
J j

Thus 3, w;(T') has a value which is determined by the initial and boundary conditions. In general it is not
possible for this value to be attained by a discrete solution without an intermediate point, because then the
sum would be quantized, increasing by Az(wp — wy) whenever the shock location is shifted one cell to the
right.

Three diffusion models of varying complexity which belong to the class defined by equation (33) are examined
in Reference {73] to determine their ability to support the ideal shock structure containing a single interior
point. These correspond to one, two or three terms in equation (33). The analysis of these three cases shows
that a discrete shock structure with a single interior point is supported by artificial diffusion that satisfies the

two conditions that
1. it produces an upwind flux if the flow is determined to be supersonic through the interface

2. it satisfies a generalized eigenvalue problem for the exit from the shock of the form
(Aar — @arBaR) (wr —wa) = 0,

where A 4p is the linearized Jacobian matrix and B4p is the matrix defining the diffusion for the interface AR.
These two conditions are satisfied by both the characteristic schemes and also the CUSP scheme, provided
that the coefficients of convective diffusion and pressure differences are correctly balanced. Scalar diffusion

does not satisfy the first condition.

4.3.10 CUSP and Characteristic Schemes Admitting Constant Total Enthalpy in Steady Flow

In steady flow the stagnation enthalpy H is constant, corresponding to the fact that the energy and mass
conservation equations are consistent when the constant factor H is removed from the energy equation. Discrete
and semi-discrete schemes do not necessarily satisfy this property. In the case of a semi-discrete scheme
expressed in viscosity form, equations (9) and (10), a solution with constant H is admitted if the viscosity
for the energy equation reduces to the viscosity for the continuity cquation with p replaced by pH. When
the standard characteristic decomposition (26) is used, the viscous fluxes for p and pH which result from
composition of the fluxes for the characteristic variables do not have this property, and H is not constant in
the discrete solution. In practice there is an excursion of H in the discrete shock structure which represents a
local heat source. In very high speed flows the corresponding error in the temperature may lead to a wrong
prediction of associated effects such as chemical reactions.

The source of the error in the stagnation enthalpy is the discrepancy between the convective terms

p
v| pu |,
pH

in the flux vector, which contain pH, and the state vector which contains pE. This may be remedied by

introducing a modified state vector



Then one introduces the linearization
fR - fL = Ah(wlln - whl.)‘

Here A;, may be calculated in the same way as the standard Roe lincarization. Introduce the weighted averages
defined by equation (25). Then

0 1 0
= | —atre? a1
An v 2 7 ¢ ¥

—uH H i

The cigenvalues of A, are u, At and A~ where

1 2 2
,\i.—_lf_ui\/("’“u)u‘ sl (35)

2y v

Now both CUSP and characteristic schemes which preserve constant stagnation enthalpy in steady flow can
be constructed from the modified Jacobian matrix A, [73]. These schemes also produce a discrete shock
structure with one interior point in steady flow. Then one arrives at four variations with this property, which
can convenicntly be distinguished as the E- and H-CUSP schemes, and the E- and H-characteristic schemes.

4.3.11 Multidimensional Upwinding, High Order Godunov Schemes, and Kinetic Flux Splitting

A substantial body of current research is directed toward the implementation of truly multi-dimensional upwind
schemes [55, 123, 94]. Some of the most impressive simulations of time dependent flows with strong shock
waves have been achieved with higher order Godunov schemes [166]. In these schemes the average value in
each cell is updated by applying the integral conservation law using interface fluxes predicted from the exact
or approximate solution of a Riemann problem between adjacent cells. A higher order estimate of the solution
is then reconstructed from the cell averages, and slope limiters are applied to the reconstruction. An example
is the class of essentially non-oscillatory (ENO) schemes, which can attain a very high order of accuracy at the
cost of a substantial increase in computational complexity [30, 140, 138, 139]. Methods based on reconstruction
can also be implemented on unstructured meshes (13, 12]. Recently there has been an increasing interest in
kinetic flux splitting schemes, which use solutions of the Boltzmann equation to predict the interface fluxes
[39, 34, 42, 124, 167].

4.4 Discretization of the Viscous Terms

The discretization of the viscous terms of the Navier Stokes equations requires an approximation to the velocity
derivatives g’:—‘} in order to calculate the tensor o;;, cquation (2). Then the viscous terms may be included in
the flux balance (3). In order to evaluate the derivatives one may apply the Gauss formula to a control volume

V' with the boundary S.
Gu,-

dv ——/um‘ds
J
\% 3:1:1 S

where n; is the outward normal. For a tetrahedral or hexahedral cell this gives

8u,~ 1 _
92, = .‘Hfz U;ny s (36)

aces

where 7; is an estimate of the average of u; over the face. If u varics lincarly over a tetrahedral cell this is

exact. Alternatively, assuming a local transformation to computational coordinates X;, one may apply the

u_[ou]foX) _oufox)™ (37)
oz ~ 18X | |ox] OX |0X .

chain rule
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Here the transformation derivatives 22i can be evaluated by the same finite difference formulas as the velocity

0X;
derivatives g_;if In this case gg(‘— is exact if u is a linearly varying function.
b
For a cell-centered discretization (figure 5a) g—)“( is needed at each face. The simplest procedure is to

evaluate %‘, in each cell, and to average % between the two cells on either side of a face [81]. The resulting

discretization does not have a compact stencil, and supports undamped oscillatory modes. In a one dimensional

calculation, for example, g%ﬁ would be discretized as &‘%‘i—;ﬂ. In order to produce a compact stencil
2% may be estimated from a control volume centered on each face, using formulas (36) or (37) [131]. This is

computationally expensive because the number of faces is much larger than the number of cells. In a hexahedral
mesh with a large number of vertices the number of faces approaches three times the number of cells.

This motivates the introduction of dual meshes for the evaluation of the velocity derivatives and the flux
balance as sketched in figure 5. The figure shows both cell-centered and cell-vertex schemes. The dual mesh

_4. dualcell

-

Sa: Cell-centered scheme. oy; evaluated at vertices of ~ 5b: Cell-vertex scheme. o;; evaluated at cell centers
the primary mesh of the primary mesh

Figure 5: Viscous discretizations for cell-centered and cell-vertex algorithms.

connects cell centers of the primary mesh. If there is a kink in the primary mesh, the dual cells should be
formed by assembling contiguous fractions of the neighboring primary cells. On smooth meshes comparable
results are obtained by either of these formulations [105, 106, 80]. If the mesh has a kink the cell-vertex
scheme has the advantage that the derivatives %;— are calculated in the interior of a regular cell, with no loss
of accuracy.

A desirable property is that a linearly varying velocity distribution, as in a Couette flow, should produce a
constant stress and hence an exact stress balance. This property is not necessarily satisfied in general by finite
difference or finite volume schemes on curvilinear meshes. The characterization k-exact has been proposed for
schemes that are exact for polynomials of degree k. The cell-vertex finite volume scheme is linearly exact if
the derivatives are evaluated by equation (37), since then g—;‘—;} is exactly evaluated as a constant, leading to
constant viscous stresses ¢;;, and an exact viscous stress balance. This remains true when there is a kink in

the mesh, because the summation of constant stresses over the faces of the kinked control volume sketched in
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figure 5 still yields a perfect balance. The use of equation (37) to evaluate %;}, however, requires the additional
calculation or storage of the nine metric quantities gi% in each cell, whereas equation (36) can be evaluated
from the same face areas that are used for the flux balance.

In the case of an unstructured mesh, the weak form (4) leads to a natural discretization with linear ele-.
ments, in which the piecewise linear approximation yields a constant stress in each cell. This method yields
a representation which is globally correct when averaged over the cells, as is proved by energy estimates for
elliptic problems [15]. It should be noted, however, that it yields formulas that are not necessarily locally
consistent with the differential equations, if Taylor series expansions are substituted for the solution at the
vertices appearing in the local stencil. Figure 6 illustrates the discretization of the Laplacian uzz + uyy which
is obtained with linear elements. It shows a particular triangulation such that the approximation is locally
consistent with %,z + 3uyy. Thus the use of an irregular triangulation in the boundary layer may significantly

degrade the accuracy.

Coeflicients
-6 (8 resulting from
linear elements

Figure 6: Example of discretization 1z, + ., on a triangular mesh. The discretization is locally equivalent
i 2u,+ Suy—Gu,+3
3 . . Ug—2uptuc — Jug—0u, 1
to the approximation ugy = *e=575, Juy, = ==

4.5 Time Stepping Schemes

If the space discretization procedure is implemented separately, it leads to a set of coupled ordinary differential

equations, which can be written in the form

dw
Tt +R(w) =0, (38)

where w is the vector of the flow variables at the mesh points, and R(w) is the vector of the residuals,
consisting of the flux balances defined by the space discretization scheme, together with the added dissipative
terms. If the objective is simply to reach the steady state and details of the transient solution are immaterial,
the time-stepping scheme may be designed solely to maximize the rate of convergence. The first decision that
must be made is whether to use an explicit scheme, in which the space derivatives are calculated from known
values of the flow variables at the beginning of the time step, or an implicit scheme, in which the formulas for
the space derivatives include as yet unknown values of the flow variables at the end of the time step, leading
to the need to solve coupled equations for the new values. The permissible time step for an explicit scheme
is limited by the Courant-Friedrichs-Lewy (CFL) condition, which states that a difference scheme cannot be
a convergent and stable approximation unless its domain of dependence contains the domain of dependence

of the corresponding differential equation. One can anticipate that implicit schemes will yield convergence
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in a smaller number of time steps, because the time step is no longer constrained by the CFL condition.
Implicit schemes will be efficient, however, only if the decrcase in the number of time steps outweighs the
increase in the computational effort per time step consequent upon the need to solve coupled equations. The
prototype implicit scheme can be formulated by estimating %"Tv at t + pAt as a linear combination of R(w™)
and R(w™*+1). The resulting equation

wtl = w" — At {(1 - ) R (W?) + pR (w1}

can be linearized as

ow

If one sets y1 = 1 and lets At — oo this reduces to the Newton iteration , which has been successfully used

(I + uAta—R> §w+ AtR(w™) = 0.

in two-dimensional calculations {159, 46]. In the three-dimensional case with, say, an N x N x N mesh, the
bandwidth of the matrix that must be inverted is of order N2. Direct inversion requires a number of operations
proportional to the number of unknowns multiplied by the square of the bandwidth of the order of N7. This is
prohibitive, and forces recourse to either an approximate factorization method or an iterative solution method.

Alternating direction methods, which introduce factors corresponding to each coordinate, are widely used
for structured meshes {17, 125]. They cannot be implemented on unstructured tetrahedral meshes that do
not contain identifiable mesh directions, although other decompositions are possible [99]. If one chooses to
adopt the iterative solution technique, the principal alternatives are variants of the Gauss-Seidel and Jacobi
methods. A symmetric Gauss-Seidel method with one iteration per time step is essentially equivalent to an
approximate lower-upper (LU) factorization of the implicit scheme [79, 115, 29, 170]. On the other hand,
the Jacobi method with a fixed number of iterations per time step reduces to a multistage explicit scheme,
belonging to the general class of Runge-Kutta schemes [32]. Schemes of this type have proved very effective
for wide variety of problems, and they have the advantage that they can be applied equally easily on both
structured and unstructured meshes [77, 62, 64, 132)].

If one reduces the linear model problem corresponding to (38) to an ordinary differential equation by
substituting a Fourier mode w# = €%, the resulting Fourier symbol has an imaginary part proportional to
the wave speed, and a negative real part proportional to the diffusion. Thus the time stepping scheme should
have a stability region which contains a substantial interval of the negative real axis, as well as an interval
along the imaginary axis. To achieve this it pays to treat the convective and dissipative terms in a distinct
fashion. Thus the residual is split as

R(w) = Q(w) + D(w),

where Q(w) is the convective part and D(w) the dissipative part. Denote the time level nAt by a superscript

n. Then the multistage time stepping scheme is formulated as

w(n+1,0) = "
wthE) =y g At (Q(k_l) + D(k"l))
wn+1 w(n+1,1n)
’

where the superscript k& denotes the k-th stage, oy = 1, and

QW = Qm), D =D (w")
Q(k) = Q (,w(n+1,k))
D® = gD (w(n+1,k)) +(1- ﬂk)D(k—l).
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The coefficients a; are chosen to maximize the stability interval along the imaginary axis, and the coeflicients
B are chosen to increase the stability interval along the negative real axis. '

These schemes do not fall within the standard framework of Runge-Kutta schemes, and they have much
larger stability regions [64]. Two schemes which have been found to be particularly effective are tabulated

below. The first is a four-stage scheme with two evaluations of dissipation. Its coefficients are

=3 B[i=1
=1 Pa=3
15 2 (39)
az=5 P3=0
Q4 = 1 ﬁ4 =0
The second is a five-stage scheme with three evaluations of dissipation. Its coefficients are
=% bi=1
op=§ P2=0
oz3=3 B3=056. (40)
s =% B1=0
Oy = 1 ﬂ5 = 0.44

4.6 Multigrid Methods
4.6.1 Acceleration of Steady Flow Calculations

Radical improvements in the rate of convergence to a steady state can be realized by the multigrid time-
stepping technique. The concept of acceleration by the introduction of multiple grids was first proposed by
Fedorenko [44]. There is by now a fairly well-developed theory of multigrid methods for elliptic equations based
on the concept that the updating scheme acting as a smoothing operator on each grid [23, 49]. This theory
does not hold for hyperbolic systems. Nevertheless, it scems that it ought to be possible to accelerate the
evolution of a hyperbolic system to a steady state by using large time steps on coarse grids so that disturbances
will be more rapidly expelled through the outer boundary. Various multigrid time-stepping schemes designed
to take advantage of this effect have been proposed [114, 60, 51, 66, 27, 6, 53, 76, 87].

One can devise a multigrid scheme using a sequence of independently generated coarser meshes by eliminating
alternate points in each coordinate direction. In order to give a precise description of the multigrid scheme,
subscripts may be used to indicate the grid. Several transfer operations need to be defined. First the solution
vector on grid k must be initialized as '

(0) _
wy, ) = T h—1Wr—1,

where wy_1 is the current value on grid k—1, and T -1 is a transfer operator. Next it is necessary to transfer
a residual forcing function such that the solution grid k is driven by the residuals calculated on grid k—-1.

This can be accomplished by setting
Py = Qrp—1Rp—y (wr—1) — Iy, [7"2.0)] )

where Qy ;_1 is another transfer operator. Then Ry (wy) is replaced by Ri(wp) + Py in the time- stepping
scheme. Thus, the multistage scheme is reformulated as

wil) = wio) - aq Aty [RSCO) + Pk]
wi™ = W - ey At [R(k") + Pk] .

The result wi,m) then provides the initial data for grid k + 1. Finally, the accumulated correction on grid
k has to be transferred back to grid k — 1 with the aid of an interpolation operator Ir_yx. With properly
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Figure 7: Multigrid W-cycle for managing the grid calculation. F, evaluate the change in the flow for one
step; T, transfer the data without updating the solution.

optimized coeficients multistage time-stepping schemes can be very efficient drivers of the multigrid process.
A W-cycle of the type illustrated in Figure 7 proves to be a particularly effective strategy for managing the
work split between the meshes. In a three-dimensional case the number of cells is reduced by a factor of eight
on each coarser grid. On examination of the figure, it can therefore be seen that the work measured in units

corresponding to a step on the fine grid is of the order of
14+2/8+4/64+...<4/3,

and consequently the very large effective time step of the complete cycle costs only slightly more than a single

time step in the fine grid.

4.6.2 Multigrid Implicit Schemes for Unsteady Flow

Time dependent calculations are needed for a number of important applications, such as flutter analysis, or
the analysis of the flow past a helicopter rotor, in which the stability limit of an explicit scheme forces the
use of much smaller time steps than would be needed for an accurate simulation. In this situation a multigrid
explicit scheme can be used in an inner iteration to solve the equations of a fully implicit time stepping scheme
[69].

Suppose that (38) is approximated as

Dyw™! 4 R(w™t!) = 0.

Here D, is a k" order accurate backward difference operator of the form

1 1
Dy = — (A7)
t tzq( )7,
g=1
where
A—wn+1 e wn-H — "



Applied to the linear differential equation
dw

= S ov
the schemes with k = 1,2 are stable for all @At in the left half plane (A-stable). Dahlquist has shown that
A-stable linear multi-step schemes are at best second order accurate [35]. Gear however, has shown that the
schemes with k < 6 are stiffly stable [45], and one of the higher order schemes may offer a better compromise
between accuracy and stability, depending on the application.

Equation (38) is now treated as a modified steady state problem to be solved by a multigrid scheme using

variable local time steps in a fictitious time t*. For example, in the case k = 2 one solves

Ow .
Tk R*(w),
where 3 0 .
* _ v L. _ - n—l
R (w) = Y + R(w) + Al T oAt

and the last two terms are treated as fixed source terms. The first term shifts the Fourier symbol of the
equivalent model problem to the left in the complex plane. While this promotes stability, it may also require
a limit to be imposed on the magnitude of the local time step At* relative to that of the implicit time step
At. In the case of problems with moving boundaries the equations must be modified to allow for movement
and deformation of the mesh.

This method has proved effective for the calculation of unstcady flows that might be associated with wing
flutter [3, 4]. It has the advantage that it can be added as an option to a computer program which uses an

explicit multigrid scheme, allowing it to be used for the efficient calculation of both steady and unsteady flows.

4.7 High Order Schemes and Mesh Refinement

The need both to improve the accuracy of computational simulations, and to assure known levels of accuracy
is the focus of ongoing research. The main routes to improving the accuracy are to increase the order of the
discrete scheme, and reduce the mesh interval. High order difference methods are most easily implemented on
Cartesian, or at least extremely smooth grids. The expansion of the stencil as the order is increased leads to
the need for complex boundary conditions. Compact schemes keep the stencil as small as possible [128, 96, 26).
On simple domains, spectral methods are particularly effective, especially in the case of periodic boundary
conditions, and can be used to produce exponentially fast convergence of the error as the mesh interval is
decreased [117, 25]. A compromise is to divide the field into subdomains and introduce high order elements.
This approach is used in the spectral element method [86].

High order difference schemes and spectral methods have proven particularly useful in direct Navier-Stokes
simulations of transient and turbulent flows. High order methods are also beneficial in computational aero-
acoustics, where it is desired to track waves over long distances with minimum error. If the flow contains
shock waves or contact discontinuities, the ENO method may be used to construct high order non-oscillatory
schemes.

In multi-dimensional flow simulations, global reduction of the mesh interval can be prohibitively expensive,
motivating the use of adaptive mesh refinement procedures which reduce the local mesh width h if there is
an indication that the error is too large {20, 36, 100, 56, 126, 95]. In such h-refinement methods, simple
error indicators such as local solution gradients may be used. Alternatively, the discretization error may be
estimated by comparing quantities calculated with two mesh widths, say on the current mesh and a coarser
mesh with double the mesh interval. Procedures of this kind may also be used to provide a posteriori estimates
of the error once the calculation is completed.

This kind of local adaptive control can also be applied to the local order of a finite element method to
produce a p-refinement method, where p represents the order of the polynomial basis functions. Finally, both

h- and p- refinement can be combined to produce an h-p method in which & and p are locally optimized to
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yield a solution with minimum error [116]. Such methods can achieve exponentially fast convergence, and are

well established in computational solid mechanics.

5 Current Status of Numerical Simulation

This section presents some representative numerical results which confirm the properties of the algorithms
which have been reviewed in the last section. These have been drawn from the work of the author and his
associates. They also illustrate the kind of calculation which can be performed in an industrial environment,
where rapid turn around is important to allow quick assessment of design changes, and computational costs

must be limited.

5.1 One dimensional shock

In order to verify the discrete structure of stationary shocks, calculations were performed for a one dimensional
problem with initial data containing left and right states compatible with the Rankine Hugoniot conditions.
An intermediate state consisting of the arithmetic average of the left and right states was introduced at a single
cell in the center of the domain. With this intermediate state the system is not in equilibrium, and the time
dependent equations were solved to find an equilibrium solution with a stationary shock wave separating the
left and right states. Table 1 shows the result for a shock wave at Mach 20. This calculation used the H-CUSP
scheme, which allows a solution with constant stagnation enthalpy. The SLIP construction was used with the
limiter defined by equation (21), and ¢ = 3. The table shows the values of p, u, H, p, M and the entropy
S = log ;% —log (%) A perfect one point shock structure is displayed. The entropy is zero to 4 decimal
places upstream of the shock, exhibits a slight excursion at the interior point, and is constant to 4 decimal
places downstream of the shock. It may be noted that the mass, momentum and energy of the initial data are
not compatible with the final equilibrium state. According to equation (34) the total mass, momentum and
energy must remain constant if the outflow flux fp remains equal to the inflow flux fi,. Therefore fp must be
allowed to vary according to an appropriate outflow boundary condition to allow the total mass, momentum

and energy to be adjusted to values compatible with equilibrium.

5.2 Airfoil calculations

The results of transonic flow calculations for two well known airfoils, the RAE 2822 and the NACA 0012, are
presented in figures (10-13). The H-CUSP schemc was again used with the SLIP construction. The limiter
defined by equation (21) was used with ¢ = 3. The 5 stage time stepping scheme (40) was augmented by
the multigrid scheme described in section 4.2 to accelerate convergence to a steady state. The equations
were discretized on meshes with O-topology extending out to a radius of about 100 chords. In each case the
calculations were performed on a sequence of successively finer meshes from 40x8 to 320x64 cells, while the
multigrid cycles on each of these meshes descended to a coarsest mesh of 10x2 cells. Figure 10 shows the inner
parts of the 160x32 meshes for the two airfoils. Figures 11-13 show the final results on 320x64 meshes for the
RAE 2822 airfoil at Mach .75 and 3° angle of attack, and for the NACA 0012 airfoil at Mach .8 and 1.25° angle
of attack, and also at Mach .85 and 1° angle of attack. In the pressure distributions the pressure coefficient
Cp = ﬁ is plotted with the negative (suction) pressures upward, so that the upper curve represents the
flow over the upper side of a lifting airfoil. The convergence histories show the mean rate of change of the
density, and also the total number of supersonic points in the flow field, which provides a useful measure of
the global convergence of transonic flow calculations such as these. In cach case the convergence history is
shown for 100 cycles, while the pressure distribution is displayed after a sufficient number of cycles for its
convergence. The pressure distribution of the RAE 2822 airfoil converged in only 25 cycles. Convergence was
slower for the NACA 0012 airfoil. In the case of flow at Mach .8 and 1.25° angle of attack, additional cycles

were needed to damp out a wave downstream of the weak shock wave on the lower surface.
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I P u H P M s
12 | 1.0000 23.6643 283.5000 1.0000 20.0000  0.0000
13 | 1.0000 23.6643 283.5000 1.0000 20.0000  0.0000
14 | 1.0000 23.6643 283.5000 1.0000 20.0000  0.0000
15 | 1.0000 23.6643 283.5000 1.0000 20.0000  0.0000
16 | 1.0000 23.6643 283.5000 1.0000 20.0000  0.0000
17 | 1.0000 23.6643 283.5000 1.0000 20.0000  0.0000
18 | 1.0000 23.6643 283.5000 1.0000 20.0000  0.0000
19 | 1.0000 23.6643 283.5000 1.0000 20.0000  0.0000
20 | 1.0000 23.6643 283.5000 1.0000 20.0000  0.0000
21 | 1.0000 23.6643 283.5000 1.0000 20.0000  0.0000
22 141924  7.3248 283.4960 307.4467 0.7229 40.3353
23 | 59259  3.9935 283.4960 466.4889  0.3804 37.6355
24 | 5.9259  3.9935 283.4960 466.4889  0.3804 37.6355
25 | 5.9259 3.9935 283.4960 466.4889  0.3804 37.6355
26 | 5.9259 3.9935 283.4960 466.4889  0.3804 37.6355
27 |1 5.9259  3.9935 283.4960 466.4889 0.3804 37.6355
28 1 59259  3.9935 283.4960 466.4889  0.3804 37.6355
29 | 5.9259 3.9935 283.4960 466.4889 0.3804 37.6355
30 | 5.9259  3.9935 283.4960 466.4839  0.3804 37.6355
31 | 5.9259 3.9935 283.4960 466.4889  0.3804 37.6355
32 | 5.9259  3.9935 283.4960 466.4889  0.3804 37.6355

Table 1: Shock Wave at Mach 20

As a further check on accuracy the drag coeflicient should be zero in subsonic flow, or in shock free transonic
flow. Table 2 shows the computed drag coefficient on a sequence of threc meshes for three examples. The first
two are subsonic flows over the RAE 2822 and NACA 0012 airfoils at Mach .5 and 3° angle of attack. The
third is the flow over the shock freec Korn airfoil at its design point of Mach .75 and 0° angle of attack. In all

three cases the drag coefficient is calculated to be zero to four digits on a 160x32 mesh.

Mesh RAE 2822 NACA 0012 Korn Airfoil
Mach .50 « 3° Mach .50 « 3° Mach .75 « 0°

40x8 .0062 .0047 .0098
80x16 .0013 .0008 .0017
160x32 .0000 .0000 .0000

Table 2: Drag Coeflicient on a sequence of meshes

5.3 Three dimensional calculations for a swept wing

As a further test of the performance of the H-CUSP scheme, the flow past the ONERA M6 wing was calculated
on a mesh with C-H topology and 192x32x48 = 294912 cells. Figure 14 shows the result at Mach .84 and 3.06°
angle of attack. This again verifies the non-oscillatory character of the solution, and the sharp resolution of

shock waves. In this case 50 cycles were sufficient for convergence of the pressure distributions.
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6 Aerodynamic Design

6.1 The Design Problem as a Control Problem

Aerodynamic design has traditionally been carried out on a cut and try basis, with the aerodynamic expertise
of the designer guiding the selection of cach shape modification. Although considerable gains in aerodynamic
performance have been achieved by this approach, continued improvement will most probably be much more
difficult to attain. The subtlety and complexity of fluid flow is such that it is unlikely that repeated trials in
an interactive analysis and design procedure can lead to a truly optimum design. Automatic design techniques
are therefore needed in order to fully realize the potential improvements in aerodynamic efficiency.

Numerical optimization methods have been applied successfully to some simplified cases, such as two-
dimensional airfoils in viscous flows [130] and wings in inviscid flows. However, this approach requires the
computation of a large number of flow solutions before an optimum point can be located in the design space.

An alternative approach is to cast the design problem as a search for the shape that will generate the desired
pressure distribution. This inverse approach recognizes that the designer usually has an idea of the the kind
of pressure distribution that will lead to the desired performance. Thus, it is useful to consider the inverse
problem of calculating the shape that will lead to a given pressure distribution. The method is advantageous,
since only one flow solution is required to obtain the desired design. Unfortunately, a physically realizable
shape may not necessarily exist, unless the pressure distribution satisfics certain constraints. Thus the problem
must be very carefully formulated.

A particularly attractive way to circumvent the difficulty that the objective may be unattainable is to
regard the design problem as a control problem in which the control is the shape of the boundary. A variety
of alternative formulations of the design problem can then be treated systematically within the framework of
the mathematical theory for control of systems governed by partial differential equations [97]. This approach
to optimal aerodynamic design was introduced by Jameson [67, 68], who examined the design problem for
compressible flow with shock waves, and devised adjoint equations to determine the gradient for both potential
flow and also flows governed by the Euler equations. More recently Ta’asan, Kuruvila, and Salas, implemented
a one shot approach in which the constraint represented by the flow equations is only required to be satisfied
by the final converged solution [155]. Pironnecau has studied the use of control theory for optimum shape
design of systems governed by clliptic cquations [122], while adjoint mecthods have also been used by Baysal
and Eleshaky [16].

Suppose that the control is defined by a function F(€) of some independent variable £ or in the discrete case
a vector with components F;. Also suppose that the desired objective is measured by a cost function I. This
may, for example, measure the deviation from a desired surface pressure distribution, but it can also represent
other measures of performance such as lift and drag. Thus the design problem is recast into a numerical
optimization procedure. This has the advantage that if the objective, say, of a target pressure distribution,
is unattainable, it is still possible to find a minimum of the cost function. Now a variation §F in the control
produces a variation 81 in the cost. Following control theory, 61 can be expressed to first order as an inner
product

§I =(G,8F),
where the gradient G is independent of the particular variation §F, and can be determined by solving an

adjoint equation. For a discrete system of equations
(G,6F) =) GibF;
and for an infinitely dimensional system
(G,6F) = /9(6)5.7:(15.

In either case, if one makes a shape change



where M is sufficiently small and positive, then

5T = —\(G,

Q

) <0

assuring a reduction in I.

For flow about an airfoil or wing, the acrodynamic properties which define the cost function are functions
of the flow-field variables (w) and the physical location of the boundary, which may be represented by the
function F, say. Then

I=1(w7),
and a change in F results in a change
oIt oIt
61 = -—8—510 + 79—}:5.7‘. (42)

in the cost function. Brute force methods evaluate the gradient by making a small change in each design
variable separately, and then recalculating both the grid and flow-field variables. This requires a number
of additional flow calculations equal to the number of design variables. Using control theory, the governing
equations of the flowfield are introduced as a constraint in such a way that the final expression for the gradient
does not require reevaluation of the flow field. In order to achieve this, dw must be eliminated from (42). The

governing equation IR expresses the dependence of w and F within the flowfield domain D,

R(w,F) =0,
Thus éw is determined from the equation
OR IR
= Sw = 43
6R [Bw} +[a}_]5f 0. (43)
Next, introducing a Lagrange Multiplier 7, we have
or" oI" OR OR
B = Ggbut pbF = <[3u]6 +[8f-] W)

&l e e )

Choosing % to satisfy the adjoint equation

T
{%] - % (44)
the first term is eliminated, and we find that
61 = G6F (45)
where aIT OR
G=27 ¥ [8}’]

The advantage is that (45) is independent of fw, with the result that the gradient of I with respect to an
arbitrary number of design variables can be determined without the need for additional flow-field evaluations.
The main cost is in solving the adjoint equation (44). In general, the adjoint problem is about as complex as a
flow solution. If the number of design variables is large, the cost differential between one adjoint solution and
the large number of flowfield evaluations required to determine the gradient by brute force becomes compelling,.

Instead of introducing a Lagrange multiplier, 1, one can solve (43) for 6w as

on onr
5w__[.6_5] 5] o

and insert the result in (42). This is the implicit gradient approach, which is essentially equivalent to the
control theory approach, as has been pointed out by Shubin and Frank {141, 142]. In any event there is an

advantage in determining the gradient G by the solution of the adjoint equation.
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After making such a modification, the gradient can be recalculated and the process repeated to follow a
path of steepest descent (41) until a minimum is reached. In order to avoid violating constraints, such as a
minimum acceptable wing thickness, the gradient may be projected into the allowable subspace within which
the constraints are satisfied. In this way one can devise procedures which must necessarily converge at least
to a local minimum, and which can be accelerated by the use of more sophisticated descent methods such
as conjugate gradient or quasi-Newton algorithms. There is the possibility of more than one local minimum,
but in any case the method will lead to an improvement over the original design. Furthermore, unlike the

traditional inverse algorithms, any measure of performance can be used as the cost function.

6.2 Implementation for Swept Wings

In order to illustrate the application of control theory to acrodynamic design problems we present a three-
dimensional wing design using the inviscid Euler equations as the mathematical model for compressible flow.
Since three dimensional calculations require substantial computational resources, it is extremely important
for the practical implementation of the method to use fast solution algorithms for the flow and the adjoint
equations. In this case the author’s FLO87 computer program has been used as the basis of the design
method. FLOB87 solves the three dimensional Euler equations with a cell-centered finite volume scheme, and
uses residual averaging and multigrid acceleration to obtain very rapid steady state solutions, usually in 25 to
50 multigrid cycles [61, 65). Upwind biasing is used to produce non-oscillatory solutions, and assure the clean
capture of shock waves. This is introduced through the addition of carefully controlled numerical diffusion
terms, with a magnitude of order Az® in smooth parts of the flow. The adjoint cquations are treated in the
same way as the flow equations. The fluxes are first estimated by central differcnces, and then modified by
downwind biasing through numerical diffusive terms which arc supplied by the same subroutines that were
used for the flow equations.

The method has been tested for the optimization of a swept wing. The wing planform was fixed while the
sections were free to be changed arbitrarily by the design method, with a restriction on the minimum thickness.
The wing has a unit semi-span, with 38 degrees leading edge sweep. It has a modified trapezoidal planform,
with straight taper from a root chord of 0.38, and a curved trailing edge in the inboard region blending into
straight taper outboard of the 30 percent span station to a tip chord of 0.10, with an aspect ration of 9.0.
The initial wing sections were based on a scction specifically designed by the author’s two dimensional design
method [67] to give shock free flow at Mach 0.78 with a lift coefficient of 0.6. The pressure distribution is
displayed in figure 15. This section, which has a thickness to chord ration of 9.5 percent, was used at the tip.
Similar sections with an increased thickness were used inboard. The variation of thickness was non-linear with
a more rapid increase near the root, where the thickness to chord ratio of the basic section was multiplied by a
factor of 1.47. The inboard sections were rotated upwards to give the initial wing 3.0 degrees twist from root
to tip.

The two dimensional pressure distribution of the basic wing section at its design point was introduced as
a target pressure distribution uniformly across the span. This target is presumably not realizable, but serves
to favor the establishment of relatively benign pressure distribution. The total inviscid drag coefficient, due
to the combination of vortex and shock wave drag, was also included in the cost function. Calculations were
performed with the lift coefficient forced to approach a fixed value by adjusting the angle of attack every
fifth iteration of the flow solution. It was found that the computational costs can be reduced by using only
15 multigrid cycles in each flow solution, and in each adjoint solution. Although this is not enough for full
convergence, it proves sufficient to provide a shape modification which leads to an improvement. Figures 16
and 17 show the result of a calculation at Mach number of 0.85, with the lift coefficient forced to approach a
value of 0.5. This calculation was performed on a mesh with 192 intervals in the £ direction wrapping around
the wing, 32 intervals in the normal 5 direction and 48 intervals in the spanwise ¢ direction, giving a total
of 294912 cells. The wing was specified by 33 sections, cach with 128 points, giving a total of 4224 design
variables. The plots show the initial wing geometry and pressure distribution, and the modified geometry and
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pressure distribution after 10 design cycles. The total inviscid drag was reduced from 0.0209 to 0.0119. The
initial design exhibits a very strong shock wave in the inboard region. It can be seen that this is completely
eliminated, leaving a very weak shock wave in the outboard region. The drag reduction is mainly accomplished
in the first four design cycles but the pressure distribution continues to be adjusted to become more like the
target pressure distribution. To verify the solution, the final geometry, after 10 design cycles, was analyzed
with another method using the computer program FLO67. This program uses a cell-vertex formulation, and
has recently been modified to incorporate a local extremum diminishing algorithm with a very low level of
numerical diffusion [71]. When run to full convergence it was found that the redesigned wing has a drag
coefficient of 0.0096 at Mach 0.85 at a lift coefficient of 0.5, with a corresponding lift to drag ratio of 52. The
result for & = 0.0° and Cr = 0.505 is illustrated in Figure 18: this seems to be the nearest to a shock free
condition. A calculation at Mach 0.500 shows a drag coefficient of 0.0089 for a lift coeflicient of 0.5. Since in
this case the flow is entirely subsonic, this provides an estimate of the vortex drag for this planform and lift
distribution, which is just what one obtains from the standard formula for induced drag, Cp = CL?/em AR,
with an aspect ratio AR = 9, and an efficiency factor ¢ = 0.97. Thus the design method has reduced the shock
wave drag coefficient to about 0.0007 at a lift coefficient of 0.5. For a representative transport aircraft the
parasite drag coefficient of the wing due to skin friction is about 0.0045. Also the fuselage drag coefficient is
about 0.0050, the nacelle drag coefficient is about 0.0015, the empennage drag coeflicient is about 0.0020, and
excrescence drag coefficient is about 0.0010. This would give a total drag cocfficient Cp = 0.0236 for a lift
coefficient of 0.5, corresponding to a lift to drag ratio L/D = 21. This would be a substantial improvement
over the values obtained by currently flying transport aircraft. Thesc results suggest that the method can be a
very useful tool for the design of new airplanes. Even in the case of three dimensional flows, the computational
requirements are so moderate that the calculations can be performed with workstations such as the IBM RISC
6000 series. A design cycle on a 192x32x48 mesh takes about 1% hours on an IBM modecl 530 workstation,

allowing overnight completion of a design calculation for a swept wing.

7 Outlook and Conclusions

Better algorithms and better computer hardware have contributed about ecqually to the progress of compu-
tational science in the last two decades. In 1970 the Control Data 6600 represented the state of the art in
computer hardware with a speed of about 10 operations per second (one megaflop), while in 1990 the 8 pro-
cessor Cray YMP offered a performance of about 10° operations per second (one gigaflop). Correspondingly,
steady-state Euler calculations which required 5,000-10,000 steps prior to 1980 could be performed in 10-50
steps in 1990 using multigrid acceleration. With the advent of massively parallel computers it appears that
~ the progress of computer hardware may even accelerate. Teraflop machines offering further improvement by
a factor of 1,000 are likely to be available within a few years. Parallel architectures will force a reappraisal
of existing algorithms, and their effective utilization will requirc the extensive development of new parallel
software.

In parallel with the transition to more sophisticated algorithms, the present challenge is to extend the
effective use of CFD to more complex applications. A key problem is the treatment of multiple space and time
scales. These arise not only in turbulent flows, but also in many other sitnations such as chemically reacting
flows, combustion, flame fronts and plasma dynamics. Another challenge, is presented by problems with moving
boundaries. Examples include helicopter rotors, and rotor-stator interaction in turbomachinery. Algorithms
for these problems can be significantly improved by innovative concepts, such as the idea of time inclining.
It can be anticipated that interdisciplinary applications in which CFD is coupled with the computational
analysis of other properties of the design will play an increasingly important role. These applications may
include structural, thermal and electromagnetic analysis. Aeroclastic problems and integrated control system
and aerodynamic design are likely target areas.

The development of improved algorithms continues to be important in providing the basic building blocks for
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numerical simulation. In particular, better error estimation procedures must be developed and incorporated
in the simulation software to provide error control. The basic simulation software is only one of the needed
ingredients, however. The flow solver must be embedded in a user-friendly system for geometry modeling,
output analysis, and data management that will provide a complete numerical design environment. These are
the ingredients which are needed for the full realization of the concept of a numerical wind tunnel. Figures 8
and 9 illustrate the way in which a numerical wind tunnel might evolve from current techniques, which involve
massive data handling tasks, to a fully integrated design environment.

In the long run, computational simulation should become the principal tool of the acrodynamic design pro-
cess because of the flexibility it provides for the rapid and comparatively inexpensive evaluation of alternative
designs, and because it can be integrated with a multi-disciplinary optimization (MDO) procedure. Experi-
mental facilities are likely to be used principally for fundamental investigations of the basic physics of fluid
flow, and for final verification of the design prior to flight testing. This is already the acceptéd procedure in

the structural design process.
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Figure 8: Concept for a numerical wind tunnel.
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Figure 9: Advanced numerical wind tunnel.
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Figure 11: RAE-2822 Airfoil at Mach 0.750 and o = 3.0°
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Figure 12: NACA-0012 Airfoil at Mach 0.800 and o = 1.25°
H-CUSP Scheme.
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Figure 13: NACA-0012 Airfoil at Mach 0.850 and o = 1.0°
H-CUSP Scheme.
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16a: Initial Wing 16b: 10 Design Iterations
Cr = 0.5000, C4 = 0.0209, o = —1.349° Ci = 0.5000, Cy = 0.0119, o = 0.033°

Figure 16: Lifting Design Case, M = 0.85, Fixed Lift Mode.
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Figure 18: FLOGY check on redesigned wing.
M =0.85, Cr, = 0.5051, Cp = 0.0099, a = 0.0°.
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