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A MULTLGRID LU-SSOR SCHEME FOR APPROXIMATE NEWTON ITERATION
APPLIED TO THE EULER EQUATIONS

Seokkwan Yoon
Sverdrup Technology, Inc.
Lewis Research Center
Cleveland, Ohio 44135

and

Antony Jameson
Princeton University
Princeton, New Jersey 08544

SUMMARY

A new efficient relaxation scheme in conjunction with a multigrid method
is developed for the Euler equations. The LU-SSOR scheme is based on a cen-
tral difference scheme and does not need flux splitting for Newton iteration.
Application to transonic flow shows that the new method surpasses the perform-
ance of the LU implicit scheme.

INTRODUCTION

Recently several implicit schemes have been successfully developed 1in
conjunction with a muitigrid method for steady-state solution of the unsteady
Euler equations (refs. 1 to 3). Although the alternating direction implicit
scheme could be improved to achieve the expected efficiency of the multigrid
method in two-dimensions (ref. 1), its inherent limitations in three-dimensions
suggested alternative approaches (ref. 2). An alternative implicit scheme
which is stable in any number of space dimensions was based on LU factoriza
tion. The LU implicit scheme was proved to be robust and efficient for high
Mach number flows.as well as transonic flows (ref. 4). It was also shown that
a symmetric Gauss-Seidel relaxation method for solving the unfactored implicit
scheme was a variation of the LU implicit scheme.

The Newton iteration method has been a subject of investigation for solu-
tion of the steady Euler equations (refs. 5 to 7). Because of the rapid
growth of the operation count with the number of mesh cells, the system was
solved indirectly. Jespersen (ref. 5) and Hemker and Spekreijse (ref. 6) used
the symmetric Gauss-Seidel method while MacCormack (ref. 7) applied the line
Gauss-Seidel method to the Navier-Stokes equations. In this paper an efficient
relaxation scheme in conjunction with a multigrid method is developed for
approximate Newton iteration. The new LU-SSOR scheme needs scalar diagonal
inversions while the Gauss-Seidel method or the LU implicit scheme require
block matrix inversions. It is desirable that the matrix should be diagonally
dominant to assure the convergence of a relaxation method. The new method
based on a central difference scheme achieves this without flux splitting which
substantially increases the computational work per cycle. -



GOVERNING EQUATIONS

The Euler equations are obtained from the Navier-Stokes equations by
neglecting viscous terms. Let p, u, v, E, H, and p be the density, Car-
tesian velocity components, total enerqgy, total enthalpy, and pressure, and let
x and y be Cartesian coordinates. Then for a two-dimensional flow these
equations can be written as

oW ~oF a6
at T ax Tay = 0 (1)

where W 1is the vector of dependent variables, and F and G are convective
flux vectors

.
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The pressure is obtained from the equation of state

p=elr- D - L d VD) (3)

These equations are to be solved for a steady state aW/at = 0 where t
denotes time.

SEMI-DISCRETE FINITE VOLUME METHOD

A convenient way to assure a steady state solution independent of the time
step is to separate the space and time discretization procedures. 1In semi-
discrete finite volume method one begins by applying a semi-discretization
in which only the spatial derivatives are approximated. The use of a finite
volume method for space discretization allows one to handle arbitrary geom-
etries and helps one to avoid problems with metric singularities that are
usually associated with finite difference methods. The scheme reduces to a
central difference scheme on a Cartesian grid, and is second order accurate in
space provided that the mesh is smooth enough. It also has the property that
uniform flow is an exact solution of the difference equations.

NONLINEAR ADAPTIVE DISSIPATION

In typical calculation of flow with discontinuities by a central differ-
ence scheme, wiggles appear in the neighborhood of shock waves where pressure
gradient is severe. In order to suppress the tendency for spurious odd and
even point oscillations, and to prevent unsightly overshoots near shock waves,
the scheme is augmented by artificial dissipative terms. The dissipative term,
which is constructed so that it is of third order in smooth regions of the
flow, s explicitly added to the residual. For the density equation, for
example, the dissipation has the form ,
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et S be the cell area which is equivalent to the inverse of the determinant
of transformationAJacobian. Both coefficients include a normaliggyg factor
Si+1/2,j/At proportional to the length of the cell side, and €11/2, 7 is

also made proportional to the normalized second difference of the pressure
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in the adjacent cells. The third order terms provide background damping of
high frequency modes. The first order terms are needed to control oscillations
in the neighborhood of shock waves, and are turned on by sensing strong pres
sure gradients in the flow. The dissipative terms for the other equations are
constructed from similar formulas with the exception of the energy equation
where the differences are of pH rather than pFE. The purpose of this is to
allow a steady state solution for which H remains constant. Increasing the
amount of artificial viscosity improves the rate of convergence although too
much dissipation can hurt it. However, it 1is desirable'to make the amount be
as small as possible in order not to degrade the accuracy of solution. Typical
amount of the third order terms is almost negiigible when compared to the
physical viscosity.

LU-SSOR SCHEME

A prototype implicit scheme for a system of nonlinear hyperbolic equations
such as the Fuler equations can be formulated as

MW e e ™) e ) (o) at Fa") v oge™) (6)

where Dy and Dy are difference operators that approximate a/9x and

3/dy. Here n denotes the time level. 1In this form the scheme is too expen
sive, since it calls for the solution of coupled nonlinear equations at each
time step. Let the Jacobian matrices be

F 3G .
o _ (1)

aF _ 3G
A = oW, B Sw

and ltet the correction be

SW o= wnrl . oywn



The scheme can be linearized by setting

F(WH1Y = F(WP) + AsW + O(iSWi2)

G(WNHT) = G(WN) + BSW + O(18WI2)
and dropping terms of the second and higher order.
This yields

[I + B at(DgA + DyB)J8W + At R = 0 » (8)
where R s the residual

R = DyF(WN) + DyG(W")

If B = 1/2 the scheme remains second order accurate in time, while for other
values of B the time accuracy drops to first order.

The unfactored implicit scheme equation (8) produces a large block banded
matrix which is very costly to invert and requires huge storage. If B8 =1 the
scheme reduces to a Newton iteration in the 1imit At » =,

(DxA + DyB)oW + R = 0 (9)

A diagonally dominant form of equation (9)

(D;A+ . D;A' " D;/B+ ' D;B") W+ R =0 (10)

can be written as
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By simulating it with backward and forward relaxation sweeps, we obtain the
symmetric successive over-relaxation (SSOR) method, which can be written in two

steps as

+ * * + . * *
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where D; and D;'.are hackward difference operators and D; and D; are

forward difference operators. Here, two-point operators are used for steady
flow calculations. A*, A-, B*, and B~ are constructed so that the
eigenvalues of "+" matrices are non-negative and those of "-" matrices are

non-positive.

v -1 |
A = > (A + rAI), A = > (A - rAI)
B =L (B +r. 1), B =1 (B-or 1) (14)
=2 B’ 2 B
where
ry > max (F A rg > max Chagh (15)

Here, ap and xg represent eigenvalues of Jacobian matrices.
Subtract equation (12) from equation (13) to get

+ - : + + - +
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= (Aﬁj - Aij)éwij + (B1j - B1j)6w1j (16)
This may be writtén as
_ - - - L *
(DXA+ v Dya+ AT - By eW = (AT v B LA BT aW (17)
where
o - t - + +, -1
SW = (DXA + DyB +r A+ B) (- R) (18)
If we take "+" and "-" matrices as given in equation (14), then
A oA =1, BT B -l

Thus equation (17) becomes the LuU-SSOR scheme for approximate Newton iteration
-+ - ¥ - - + - ¥ - + + o )
(DxA + DyB - A - B) (DXA + DyB + A+ B ) W = - (rA + rB) R (19)
The equation (19) can be inverted in two steps.

MULTIGRID METHOD

In order to adapt the LU-SSOR scheme for a multigrid algorithm, auxiliary
meshes are introduced by doubling the mesh spacing. Values of the flow vari-
ables are transferred to a coarser grid by the rule
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where the subscripts denote values of the mesh spacing parameter, S 1is the
cell area, and the sum is over the four cells on the fine grid composing each
cell on the coarser grid. The rule conserves mass, momentum, and enerqgy. The
solution on a coarse grid is updated as follows. '

(1) Calculate the correction and update the solution on the {ine grid

(2) Transfer the values of the variables to the coarse grid

(3) Collect the residual on the fine grid for the coarse grid. A forcing
function is then defined as

o C t
Pon = 2Ry - Ry

2h (21)

where R is the residual. Superscripts ¢ and t mean the collected and the
transferred values respectively. The residual on the coarse grid is given by

t o C :
R2h = R2h + ch = ZRh (22)

(4) Calculate the correction and update the solution on the coarse grid.
For the next coarser grid the residual is recalculated as

u C

» t . u . . t
Ran = Rap * Pap = & (Ryp + Pop) = X (Rpp v 3Ry - Ryp) (23)
Similarly, the residual for the next grid is
u ., u s t t
Rep = 2{(R4h F LRy v BRy - Ry - th} (24)

where the superscript u means the updated value. On the first coarse grid,
R2h is replaced by ZRE with the result that the evolution on the coarse

grid is driven by the residuals on the fine grid. The evolution on the next
coarser grid is driven by an estimate of what the fine grid residuals would
have been as a result of the correction on the first coarse grid. The process
1s repeated on successively coarser grids.

(5) Finally, the correction calculated on each grid is passed back to the
next finer grid by bilinear interpolation.

Since the evolution on a coarse grid is driven by residuals collected from
the next finer grid, the final solution on the fine grid is independent of the
choice of boundary conditions on the coarse grids. The surface boundary con-
dition 1s treated in the same way on every grid, by using the normal pressure
gradient to extrapolate the surface pressure from the pressure in the cells
adjacent to the wall. Values are extrapolated to the fictitious cells inside
the body surface for the second difference dissipation on the coarse grids.

The far field conditions can either be transferred from the fine grid, or
recalculated.



RESULTS

The new LU- SSOR scheme in conjunction with a mu1t1gr1d method is applied
to transonic airfoil calculation. The test case is the NACA 0012 airfoil at
Mach 0.8 and 1.25° angle of attack. Figqures 1 and 2 show the plot of Mach
number contours and the surface pressure distribution respectively. These
solutions are obtained on a 128 by 32 C-mesh. The convergence histories are
shown in figures 4 and 6. A four-Tlevel multigrid is used without grid
sequencing. The Tift history is shown in figure 4 while the density residual
is shown in figure 6.. The results obtained by the LU 4mplicit scheme are pre-
sented in figures 3 and 5 for comparison. As the results show, the convergence
rate of the LU-SSOR scheme is about 30 percent faster than that of the LU
implicit scheme. Moreover, the computational work for. the LU-SSOR scheme 1is
about 30 percent less than that for the LU implicit scheme. The overall com-
putational work is reduced by a factor of two. The convergence for the engi-
neering accuracy is usually achieved in less than 10 CPU seconds with the Cray
XMP computer. »
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GURE 1. - MACH NUMBER CONTOURS FOR TRANSONIC FLOW. MACH 0.8 AND 1.259
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FIGURE 2. - SURFACE PRESSURE DISTRIBUTION.
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FIGURE 3. ~ LIFT HISTORY (LU IMPLICIT SCHEME).
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FIGURE 4, - LIFT HISTORY (PRESENT METHOD).
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FIGURE 5. — CONVERGENCE HISTORY (LU IMPLICIT SCHEME).
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FIGURE 6. - CONVERGENCE HISTORY (PRESENT METHOD).





