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1 Introduction

Computational fluid dynamics (CFD) has reached a certain level of maturity in the development of robust
algorithms which can accurately treat compressible flows containing shock waves and contact discontinuities.
CFD is still not being exploited as effectively as one would like in the design process, however, because of the
long set up times and high costs, both human and computational, of complex flow simulations. The principal
requirements of effective CFD methods for engineering design are

1. assured accuracy
2. acceptable computational cost
3. fast turn around

Improvements are still needed in all three areas. Effective use of CFD for design is presently limited by
the lack of good interfaces to CAD systems, which prevent full automation of the mesh generation process.
This bottleneck needs to be eliminated and the CFD system should be fully integrated in a numerical design
environment.

The fidelity of mathematical modelling of high Reynolds number flows continues to be limited by computa-
tional costs , thus, accurate and cost-effective simulation of viscous flow at high Reynolds numbers associated
with full scale flight remains a challenge.

In addition to more accurate and cost-effective flow prediction methods, better optimization methods are
also needed, so that not only can designs be rapidly evaluated, but directions of improvement can be identified
which enable the rapid evaluation of a satisfactory design. Possession of techniques which result in a faster
design cycle gives a crucial advantage in a competitive environment.

2 The Design Problem as a Control Problem

Aerodynamic design has traditionally been carried out on a cut and try basis, with the aerodynamic expertise
of the designer guiding the selection of each shape modification. Although considerable gains in aerodynamic
performance have been achieved by this approach, continued improvement will most probably be much more
difficult to attain. The subtlety and complexity of fluid flow is such that it is unlikely that repeated trials in an
interactive analysis and design procedure can lead to a truly optimum design. Automatic design techniques
are therefore needed in order to fully realize the potential improvements in aerodynamic efficiency.

Numerical optimization methods have been applied successfully to some simplified cases, such as two-
dimensional airfoils in viscous flows [12] and wings in inviscid flows. However, this approach requires the
computation of a large number of flow solutions before an optimum point can be located in the design space.

An alternative approach is to cast the design problem as a search for the shape that will generate the
desired pressure distribution. This inverse approach recognizes that the designer usually has an idea of the
the kind of pressure distribution that will lead to the desired performance. Thus, it is useful to consider the
inverse problem of calculating the shape that will lead to a given pressure distribution. The method has the
advantage that, only one flow solution is required to obtain the desired design. Unfortunately, a physically
realizable shape may not necessarily exist, unless the pressure distribution satisfies certain constraints. Thus
the problem must be very carefully formulated.



A particularly attractive way to circumvent the difficulty that the objective may be unattainable is to
regard the design problem as a control problem in which the control is the shape of the boundary. A variety
of alternative formulations of the design problem can then be treated systematically within the framework of
the mathematical theory for control of systems governed by partial differential equations [9]. This approach
to optimal aerodynamic design was introduced by Jameson [4, 5], who examined the design problem for
compressible flow with shock waves, and devised adjoint equations to determine the gradient for both potential
flow and also flows governed by the Euler equations. More recently Ta’asan, Kuruvila, and Salas, implemented
a one shot approach in which the constraint represented by the flow equations is only required to be satisfied
by the final converged solution [15]. Pironneau has studied the use of control theory for optimum shape
design of systems governed by elliptic equations [10], while adjoint methods have also been used by Baysal
and Eleshaky [1].

Suppose that the control is defined by a function F(£) of some independent variable £ or in the discrete
case a vector with componets F;. Also suppose that the desired objective is measured by a cost function
I. This may, for example, measure the deviation from a desired surface pressure distribution, but it can
also represent other measures of performance such as lift and drag. Thus the design problem is recast into
a numerical optimization procedure. This has the advantage that if the objective, say, of a target pressure
distribution, is unattainable, it is still possible to find a minimum of the cost function. Now a variation §F
in the control produces a variation 81 in the cost. Following control theory, 61 can be expressed to first order
as an inner product

61 = (G,57),

where the gradient G is independent of the particular variation 6F, and can be determined by solving an
adjoint equation. For a discrete system of equations

(G,6F) = _GibF;

and for an infinitely dimensional system
(G,6F) = /g (&) 6F d¢.

In either case, if one makes a shape change
6F = —AG, (1)

where A is sufficiently small and positive, then
85I =-X(G,6) <0

assuring a reduction in I.

For flow about an airfoil or wing, the aerodynamic properties which define the cost function are functions
of the flow-field variables (w) and the physical location of the boundary, which may be represented by the
function F, say. Then

I=I(wF),

and a change in F results in a change

oIt oIt
in the cost function. Brute force methods evaluate the gradient by making a small change in each design
variable separately, and then recalculating both the grid and flow-field variables. This requires a number
of additional flow calculations equal to the number of design variables. Using control theory, the governing
equations of the flowfield are introduced as a constraint in such a way that the final expression for the gradient
doas not require reevaluation of the flow field. In order to achieve this §w must be eliminated from (2). The
governing equation R expresses the dependence of w and F within the flowfield domain D,

R(w7-7:) =0,
Thus dw is determined from the equation
OR OR
= | —1 & — =0.
5= [2%] ow+ [ 2] o7 =0 o



Next, introducing a Lagrange Multiplier 1, we have

aIT oIt T (TOR 8R
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Choosing 7 to satisfy the adjoint equation

8R)"T oI
kel = = 4
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the first term is eliminated, and we find that
81 =G6F (5)
where r
g=2L 7|28
OF OF |’

The advantage is that (5) is independent of dw, with the result that the gradient of I with respect to an
arbitrary number of design variables can be determined without the need for additional flow-field evaluations.
The main cost is in solving the adjoint equation (4). In general, the adjoint problem is about as complex as
a flow solution. If the number of design variables is large, the cost differential between one adjoint solution
and the large number of flowfield evaluations required to determine the gradient by brute force becomes
compelling. Instead of introducing a Lagrange multiplier, ¢, one can solve (3) for éw as

e[ 2

Sw OF ] 8%,

and insert the result in (2). This is the implicit gradient approach, which is essentially equivalent to the
control theory approach, as has been pointed out by Shubin and Frank [13, 14]. In any event there is and
advantage in determining the gradient G by the solution of the adjoint equation.

After making such a modification, the gradient can be recalculated and the process repeated to follow a
path of steepest descent (1) until a minimum is reached. In order to avoid violating constraints, such as a
minimum acceptable wing thickness, the gradient may be projected into the allowable subspace within which
the constraints are satisfied. In this way one can devise procedures which must necessarily converge at least
to a local minimum, and which can be accelerated by the use of more sophisticated descent methods such
as conjugate gradient or quasi-Newton algorithms. There is the possibility of more than one local minimum,
but in any case the method will lead to an improvement over the original design. Furthermore, unlike the
traditional inverse algorithms, any measure of performance can be used as the cost function.

In order to illustrate the application of control theory to aerodynamic design problems the next section
presents the method for three-dimensional wing design using the inviscid Euler equations as the mathematical
model for compressible flow.

3 Three Dimensional Design Using the Euler Equations

It proves convenient to denote the Cartesian coordinates and velocity components by z1, z2, z3 and u;,
U9, uz, and to use the convention that summation over ¢ = 1 to 3 is implied by a repeated index ¢. The
three-dimensional Euler equations may be written as

ow  Of; .
-‘é? 03}1 = 0 mn D, (6)
where
p PUq
puy puiug + pdi
w=4q puz ¢, fi=14 puuz+pdi (7
pus puiuz + péi3
pE pu: H



and 6;; is the Kronecker delta function. Also,

and
pH = pE +p (9)

where 7 is the ratio of the specific heats. Consider a transformation to coordinates &1, &2, 3 where

Oz
0¢;

Introduce contravariant velocity components as

], J=det(K), K;'= [8—5]

U1 Ul
Us =K1 U9
U3 Uus
The Euler equations can now be written as
oW  OF;
—+——=0 inD 10
ot T g L (10)
with
4 N\ '4 w
p pUs
pus pUsuy + 52-p
W=JS puy ¢, Fi=Jq pUmz+ gEp ¢ (11)
pU3 pUsug + 35; P
\ pE J \ pUH Y,

Assume now that the new computational coordinate system conforms to the wing in such a way that the wing
surface By is represented by & = 0. Then the flow is determined as the steady state solution of equation
(10) subject to the flow tangency condition

U2 = 0 on Bw. (12)

At the far field boundary Bp, conditions are specified for incoming waves while outgoing waves are determined
by the solution.

Suppose now that it is desired to control the surface pressure by varying the wing shape. It is convenient
to retain a fixed computational domain. Variations in the shape then result in corresponding variations in
the mapping derivatives defined by H. Introduce the cost function

I= %//BW (p = pa)” d1dés,

where pq is the desired pressure. The design problem is now treated as a control problem where the control
function is the wing shape, which is to be chosen to minimize I subject to the constraints defined by the flow
equations (10-11). A variation in the shape will cause a variation 8p in the pressure and consequently the a
variation in the cost function

61 = / /B (r-pa)tp dards (13)

Since p depends on w through the equation of state (8-9), the variation ép can be determined from the
variation dw. Define the Jacobian matrices

Of

A; = ,
dw

Ci = JK;'A;. (14)



Then the equation for éw in the steady state becomes

0
9

(6F;) =0, (15)

where

9¢;
5F12026w+6( E)fj
Now, multiplying by a vector co-state variable 9 and integrating over the domain

O F;
/D " (8351. ) dé; = 0,

and if ¢ is differentiable this may be integrated by parts to give

W LN e T
/D j ( B m) dg; = /B (et 6F) dé,

where n; are components of a unit vector normal to the boundary. Thus the variation in the cost function
may now be written

6I=//BW (p— p4) 6 d§1d53—/Dj (%‘?6

On the wing surface By, n; = n3 = 0 and it follows from equation (12) that

Fl-) d&; + /B (nipT 6F;) dép. (16)
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Suppose now that v is the steady state solution of the adjoint equation
oY Y .
— —C; =0 D.
at "t B n (18)

At the outer boundary incoming characteristics for 9 correspond to outgoing characteristics for éw. Conse-
quently, one can choose boundary conditions for 4 such that

ninCiéw =0.

Then if the coordinate transformation is such that 6 (JK_l) is negligible in the far field, the only remaining

boundary term is
- [ wtor g,
Bw

Thus by letting 1 satisfy the boundary condition,

(1/,2 082 + 1/)3 852 + s 662 ) = (p—pd4) on Bw, (19)

[ ayT dE;
51_/D agf( )fjng

[ s veg i e
Bw

we find finally that

(20)



la: z,y-Plane.

1b: &, n-Plane.

Figure 1: Sheared Parabolic Mapping.

A convenient way to treat a wing is to introduce sheared parabolic coordinates as shown in figure 1 through
the transformation

2= w0 (0)+30(0{€ - m+5E0)7
v = %w(+a(QEmn+S(0)
z = (.

Here ¢ = x1, ¥ = %3, z — z3 are the Cartesian coordinates, and £ and i + & correspond to parabolic
coordinates generated by the mapping

v iy = a0 +igo + 50 (O {E+i(n+ )Y

at a fixed span station ¢. g ({) and yo (¢) are the coordinates of a singular line which is swept to lie just
inside the leading edge of a swept wing, while & (¢) is a scale factor to allow for spanwise chord variations.
The surface = 0 is a shallow bump corresponding to the wing surface, with a height S (¢, {) determined by

the equation
E+iS=14/2 (xBW + inW),

where 2, (2) and yp,, (2) are coordinates of points lying on the wing surface. We now treat S (,() as the

control.

In this case the transformation matrix 2

x5 b
ecomes
9¢;

alé=m+8)S) -a(n+8) A-a(n+8)S;
K = a(n+S+ES) at B+ a8,
0 0 1
xze xp A+ apSe
= Ye¢ Yy B+y7)SC ;

0 0 1
where
A:agz_xo'l‘wou 5’=a<y_ay0+yo¢-
Now,
J = Teyy — tyye = £+ (1 +8)?
and
Yo —Iq zyB — yy A
JK1=| - e T YeA—wxB-JS
0 0 J
Then under a modification 6§
by = —a(688:+ (n+8)8S5¢)
br, = —adsS
Sye = a(68 +€68¢)
oy, = 0.



Thus
6J = 2a* (n+8)6S

and
0 abS —aBéS
§(JK™) = | —bye 6z D
0 0 6J
where

D = by A — 6B — a<£68 — 6JS — J8S..

Inserting these formulas in equation (20) we find that the volume integral in 61 is

/// ——68f2 d& dn d¢

///—{—5yﬁf1 + Sxefo + Dfs}dE dn d¢

/ / / 3¢T5st dg dny dc,

where S and 8S are independent of . Therefore, integrating over 7, the variation in the cost function can
be reduced to a surface integral of the form

Here
P = a2+ Sebs+Ciha)p

- /6;/)5 LAi+@+S) o+ (EA+(n+8)B) fs}dy

- B s
T
- /'a‘c““"
Q = ales+(n+8)us)p
T
n /6—{£f1+(n+8)fz+(£«4+(n+$) B) s} dn

R = Jyup
/6f3J¢4d17,

where 7
C:2a(n+8)8<—A—BSE+;.

Also the shape change will be confined to a boundary region of the £ — ¢ plane, so we can integrate by parts

to obtain 8Q oR
6I = //BW<P+ 3{)68 d¢ d¢.

- 0Q , R
88 = A<P+ 5+ C)

Thus to reduce I we can choose

where A is sufficiently small and non-negative.
In order to impose a thickness constraint we can define a baseline surface Sy (€, ¢) below which S (¢, ) is
not allowed to fall. Now if we take A = A (§, () as a non-negative function such that

//BW <P+8Q %?) de d¢ < 0.

Then the constraint is satisfied, while



4 Implementation for swept wings

Since three dimensional calculations require substantial computational resources, it is extremely important
for the practical implementation of the method to use fast solution algorithms for the flow and the adjoint
equations. In this case the author’'s FLO87 computer program has been used as the basis of the design
method. FLOS87 solves the three dimensional Euler equations with a cell-centered finite volume scheme, and
uses residual averaging and multigrid acceleration to obtain very rapid steady state solutions, usually in 25
to 50 multigrid cycles [2, 3]. Upwind biasing is used to produce nonoscillatory solutions, and assure the clean
capture of shock waves. This is introduced through the addition of carefully controlled numerical diffusion
terms, with a magnitude of order Az® in smooth parts of the flow. The adjoint equations are treated in the
same way as the flow equations. The fluxes are first estimated by central differences, and then modified by
downwind biasing through numerical diffusive terms which are supplied by the same subroutines that were
used for the flow equations.

The method has been tested for the optimization of a swept wing. The wing planform was fixed while
the sections were free to be changed arbitrarily by the design method, with a restriction on the minimum
thickness. The wing has a unit-semi-span, with 38 degrees leading edge sweep. It has a modified trapezoidal
planform, with straight taper from a root chord of 0.38, and a curved trailing edge in the inboard region
blending into straight taper outboard of the 30 percent span station to a tip chord of 0.10, with an aspect
ration of 9.0. The initial wing sections were based on a section specifically designed by the author’s two
dimensional design method [4] to give shock free flow at Mach 0.78 with a lift coefficient of 0.6. The pressure
distribution is displayed in figure 2. This section, which has a thickness to chord ration of 9.5 percent, was
used at the tip. Similar sections with an increased thickness were used inboard. The variation of thickness
was non-linear with a more rapid increase near the root, where the thickness to chord ratio of the basic
section was multiplied by a factor of 1.47. The inboard sections were rotated upwards to give the initial
wing 3. degrees twist from root to tip. The two dimensional pressure distribution of the basic wing section
at its design point was introduced as a target pressure distribution uniformly across the span. This target
is presumably not realizable, but serves to favor the establishment of relatively benign pressure distribution.
The total inviscid drag coefficient, due to the combination of vortex and shock wave drag, was also included
in the cost function. Calculations were performed with the lift coefficient forced to approach a fixed value by
adjusting the angle of attack every fifth iteration of the flow solution. It was found that the computational
costs can be reduced by using only 15 multigrid cycles in each flow solution, and in each adjoint solution.
Although this is not enough for full convergence, it proves sufficient to provide a shape modification which
leads to an improvement.

Figures 3 and 4 show the result of a calculation at Mach number of 0.85, with the lift coefficient forced
to approach a value of 0.5. This calculation was performed on a mesh with 192 intervals in the £ direction
wrapping around the wing, 32 intervals in the normal n direction and 48 intervals in the spanwise { direction,
giving a total of 294912 cells. The wing was specified by 33 sections, each with 128 points, giving a total of
4224 design variables. The plots show the initial wing geometry and pressure distribution, and the modified
geometry and pressure distribution after 10 design cycles. The total inviscid drag coefficient was reduced
from 0.0209 to 0.0119. The initial design exhibits a very strong shock wave in the inboard region. It can be
seen that this is completely eliminated, leaving a very weak shock wave in the outboard region. The drag
reduction is mainly accomplished in the first four design cycles but the pressure distribution continues to
be adjusted to become more like the target pressure distribution. To verify the solution, the final geometry,
after 10 design cycles, was analyzed with another method using the computer program FLO67. This program
uses a cell-vertex formulation, and has recently been modified to incorporate a local extremum diminishing
algorithm with a very low level of numerical diffusion [6]. When run to full convergence it was found that the
redesigned wing has a drag coefficient of 0.0096 at Mach 0.85 at a lift coeflicient of 0.5, with a corresponding
lift to drag ratio of 52. The result for @ = 0.0° and Cr = 0.505 is illustrated in Figure 5: this seems to be
the nearest to a shock free condition. A calculation at Mach 0.500 shows a drag coefficient of 0.0089 for a lift
coefficient of 0.5. Since in this case the flow is entirely subsonic, this provides an estimate of the vortex drag
for this planform and lift distribution, which is just what one obtains from the standard formula for induced
drag, Cp = C’L2/67rAR, with an aspect ratio AR = 9, and an efficiency factor € = 0.97. Thus the design
method has reduced the shock wave drag coeflicient to about 0.0007 at a lift coefficient of 0.5.

Figures 6 and 7 show the result of another optimization starting from the same initial geometry, and at
the same mach number of 0.850, but with the lift coefficient increased to 0.55. This produces stronger shock
waves and is therefore a more severe test of the method. In this case the total inviscid drag coefficient was
reduced from 0.0243 to 0.0144. Again the performance of the final design was verified by a calculation with



FLOG67, using a high resolution LED algorithm, and when the result was fully converged the drag coeflicient
was found to be 0.0119. The result is illustrated in figure 8. A subsonic calculation at Mach .500 shows a
drag coefficient of 0.0109 for a lift coefficient of 0.55. Thus in this case the shock wave drag coefficient is
about 0.0010.

For a representative transport aircraft the parasite drag coefficient of the wing due to skin friction is about
0.0045. Also the fuselage drag coefficient is about 0.0050, the nacelle drag coefficient is about 0.0015, the
empennage drag coefficient is about 0.0020, and excrescence drag coefficient is about 0.0010. This would
give a total drag coefficient Cp = 0.0259 for a lift coefficient of 0.55, corresponding to a lift to drag ratio
L/D = 21.2. This would be a substantial improvement over the values obtained by currently flying transport
aircraft.

5 Conclusion

In the period since this approach to optimal shape design was first proposed by the author [4], the method has
been verified by numerical implementation for both potential flow [5, 7, 11]. and flows modeled by the Euler
equations. The results suggest that the method can be a very useful tool for the design of new airplanes. Even
in the case of three dimensional flows, the computational requirements are so moderate that the calculations
can be performed with workstations such as the IBM RISC 6000 series. A design cycle on a 192x32x48 mesh
takes about 1% hours on an IBM model 530 workstation, allowing overnight completion of a design calculation
for a swept wing. The formulation presentd here takes advantage of analytic mesh transormations to simplify
the calculation of derivatives of the metric terms. In order to treat more complex geometric configurations
it may be necessary to generate the mesh for the initial shape by a numerical method. Then the mesh may
be deformed by analytic mesh transformations to accomodate the shape changes in the subsequent design
iterations. This method, which enables easy evaluation of the derivatives of the metric terms, has already
been demonstrated for two dimensional flows modelled by the Euler equations [8].
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6a: Initial Wing 6b: 10 Design Iterations

C; = 0.5500, Cy = 0.0243, o = —0.962° C; =0.5500, Cy = 0.0144, o = 0.274°

Figure 6: Lifting Design Case, M = 0.85, Fixed Lift Mode.
Drag Reduction
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Figure 7: Lifting Design Case, M = 0.85, Fixed Lift Mode.
Drag Reduction
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Figure 8: FLO67 check on redesigned wing.
M =0.85, Cr, = 0.5500, Cp = 0.0119, oo = 0.210°.



