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1. INTRODUCTION

It is a pleasure to offer a contribution to the volume honoring the 60th birthday
of Roland Glowinski. He has had a pervasive influence over the entire field of
computational science and engineering. In the context of this paper it is particularly
appropriate to re-call the work of the INRIA-Dassault group (including Pironneau,
Periaux, Perrier, Poirier and Bristau) under his leadership, which developed new
algorithms for the computation of transonic flow based on control theory. This enabled
the finite element method to be adapted to problems of mixed type, allowing its
exploitation to treat complex geometric configurations. By 1982 the group was able to
carry out the first calculation of transonic potential flow around a complete aircraft
[BPG*85]. This was a major advance that yielded immediate benefits at Dassault in
their development of new aircraft.

Since 1988 much of the author’s research has been focused on the development of
methods for optimizing aerodynamic shapes for transonic and supersonic flow based
on control theory [Jam88]. This work draws on many similar concepts to those used
by the INRIA-Dassault group, though it differs in using a transformation to a fixed
computational domain to simplify the formulation. Pironneau had earlier examined
the problem of shape optimization for systems governed by elliptic equations [Pir84],
and more recently has studied the optimization of lows governed by the incompressible
Navier-Stokes equations. The present paper reviews the current status of the work of
the author and his associates. Our method for aerodynamic shape design has recently
been extended both to treat complex configurations and to optimize aerodynamic
shapes for flows governed by the compressible Navier-Stokes equations. During the
summer of 1996 it was used in a major industrial project: the design of the proposed
McDonnell Douglas MDXX long range transport aircraft, and the paper touches on
some of our experiences in this project.

Traditionally the process of selecting design variations has been carried out by trial
and error, relying on the intuition and experience of the designer. It is not at all likely
that repeated trials in an interactive design and analysis procedure can lead to a truly
optimum design. In order to take full advantage of the possibility of examining a large
design space the numerical simulations need to be combined with automatic search
and optimization procedures. This can lead to automatic design methods which will
fully realize the potential improvements in aerodynamic efficiency.

If the boundary shape is regarded as arbitrary within some requirements of
smoothness, then the full generality of shapes cannot be defined with a finite number

glowinski 29/1/1997 —Page proofs for John Wiley & Sons Ltd (penonum.sty)



of parameters, and one must use the concept of the Frechet derivative of the cost with
respect to a function. Clearly, such a derivative cannot be determined directly by finite
differences of the design parameters because there are now an infinite number of these.
Using techniques of control theory, however, the gradient can be determined indirectly
by solving an adjoint equation which has coefficients defined by the solution of the flow
equations. The cost of solving the adjoint equation is comparable to that of solving the
flow equations. Thus the gradient can be determined with roughly the computational
cost of two flow solutions, independently of the number of design variables, which may
be infinite if the boundary is regarded as a free surface.

Before embarking on a detailed derivation of the adjoint formulation for optimal
Navier-Stokes equations, it is helpful to summarize the general abstract description
of the adjoint approach which has been thoroughly documented in references [Jams88,
JPM97]. The progress of the design procedure is measured in terms of a cost function
I, which could be, for example the drag coefficient or the lift to drag ratio. For flow
about an airfoil or wing, the aerodynamic properties which define the cost function
are functions of the flow-field variables (w) and the physical location of the boundary,
which may be represented by the function F, say. Then

I=1(w,F),
and a change in F results in a change
oI’ 5 oIr
ow |, OF
in the cost function. Here, the subscripts I and II are used to distinguish the
contributions due to the variation dw in the flow solution from the change associated
directly with the modification §F in the shape. This notation is introduced to assist in
grouping the numerous terms that arise during the derivation of the full Navier—Stokes
adjoint operator, so that the basic structure of the approach as it is sketched in the
present section can easily be recognized.

Suppose that the governing equation R which expresses the dependence of w and
F within the flowfield domain D can be written as

oI = { LI §F (1)

R(w,F)=0. (2)
Then dw is determined from the equation ‘
OR OR
OR=|—1 § —| 6F=0. 3
R [awL“’*[afJH F=0 3)
Next, introducing a Lagrange Multiplier v, we have
oI’ oI”

(o 2] ‘
» } dw (6)
T {ﬁ_dff[_@
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Choosing v to satisfy the adjoint equation

orY"  ar
[—6—1;} V== (8)
the first term is eliminated, and we find that
0l = GOF, (9)

where

oOF OF
The advantage is that (9) is independent of éw, with the result that the gradient
of I with respect to an arbitrary number of design variables can be determined
without the need for additional flow-field evaluations. In the case that (2) is a partial
differential equation, the adjoint equation (8) is also a partial differential equation and
determination of the appropriate boundary conditions requires careful mathematical

treatment.
Once equation (3) is established, an improvement can be made with a shape change

§F = —)G,

T
oI d}T{a_R}_

where A is positive, and small enough that the first variation is an accurate estimate
of §I. Then
61 =-XGTG <.

After making such a modification, the gradient can be recalculated and the process
repeated to follow a path of steepest descent until a minimum is reached. In order to
avoid violating constraints, such as a minimum acceptable wing thickness, the gradient
may be projected into an allowable subspace within which the constraints are satisfied.
In this way, procedures can be devised which must necessarily converge at least to a
local minimum.

2. DESIGN USING THE NAVIER-STOKES EQUATIONS

It is convenient to use Cartesian coordinates (z1,22,23) and to adopt the convention
[s¥eM]

of indicial notation where a repeated index “” implies summation over ¢ = 1 to 3.
The three-dimensional Navier-Stokes equations then take the form

dw  8fi  Ofu

ot 8562 8;1:1
where the state vector w, inviscid flux vector f and viscous flux vector f, are described
respectively by

n D, (10)

p pU; 0
pu1 puiuy + poin 0051
w=1< puy p, fi=1< puiuz+pdiz P, fu;= 0052 : (11)
pus puius + poiz ij0j3
pE pu; H U0 + kg—g;
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In these definitions, p is the density, u1, uz, ug are the Cartesian velocity components, £
is the total energy and d;; is the Kronecker delta function. The pressure is determined
by the equation of state

1
p=(v- 1)p{E— 5(%’“1’)},
and the stagnation enthalpy is given by
H=E+2
P

where v is the ratio of the specific heats. The viscous stresses may be written as

_ Ou;  Ouy Ouy
O35 = 14 (8(B_7 + ‘(,E) + )\(Sl]é—a,

where it and A are the first and second coeflicients of viscosity. The coefficient of
thermal conductivity and the temperature are defined by

Tp p
k=1 T=-—r_ 12
Pr (v=1p 12)

For discussion of real applications using a discretization on a body conforming
structured mesh, it is useful to consider a transformation to the computational
coordinates (£1,£2,€3) defined by the metrics
8%’
9¢;
The Navier-Stokes equations can then be written in computational space as

0 (Jw) + 9 (F; — Fy;)
ot 9¢;

J, J =det(K), K= [%}

Ki. - l: ij

=0 inD, (13)

where the inviscid and viscous flux contributions are now defined with respect to the
computational cell faces by F; = S;; f; and Fy; = S;; fo;, and the quantity S;; = JKi;1
is used to represent the projection of the &; cell face along the x; axis. For convenience,
the coordinates &; describing the fixed computational domain are chosen so that each
boundary conforms to a constant value of one of these coordinates. Variations in the
shape then result in corresponding variations in the mapping derivatives defined by
Kz'j.
Suppose that the performance is measured by a cost function

I:/M(w,S)dB§+/P(w,S)dD§,
B D

containing both boundary and field contributions where dB, and dD; are the surface
and volume elements in the computational domain. In general, M and P will depend
on both the flow variables w and the metrics S defining the computational space.
The design problem is now treated as a control problem where the boundary shape
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represents the control function, which is chosen to minimize I subject to the constraints
defined by the flow equations (13). A shape change produces a variation in the flow
solution dw and the metrics 45 which in turn produce a variation in the cost function

51 = / 5M(w, S) dBg + / 5P(w, S) dDs, (14)
B D
with
(5_/\/1 = [-/\/"LU]Idw—*_(SMII?
oP = [Pw][ ow + (57)[], (15)

where we continue to use the subscripts I and Il to distinguish between the
contributions associated with the variation of the flow solution 6w and those associated
with the metric variations 6S. Thus [M,]; and [P,]; represent £ and 92 with the
metrics fixed, while d My and 6P represent the contribution of the metrlc variations
05 to M and 6P.

In the steady state, the constraint equation (13) specifies the variation of the state
vector dw by

0
9¢;

Here 6 F; and §F,; can also be split into contributions associated with dw and 65 using
the notation

§(F; — Fy) = 0. (16)

5Fi = [ i ] 5w+5Fm
6Fy = | ’Ulw] ow +0F i (17)
The inviscid contributions are easily evaluated as
Ofs

[Fiwlr = Sij%7 0Fyin = 6Si5 f;-.

The details of the viscous contributions are complicated by the additional level of
derivatives in the stress and heat flux terms.

Multiplying by a co-state vector ¢, which will play an analogous role to the Lagrange
multiplier introduced in equation (7 ) and integrating over the domain produces

T
6 (F; — Fy)=0.
IR )=0 (1s)
If + is differentiable this may be integrated by parts to give
/ nipT 8 (Fy — Fy;) dBe (19)
B
o T
;; 0 (Fi — Fyi) dDe = 0. (20)

Since the left hand expression equals zero, it may be subtracted from the variation in
the cost function (14) to give

0l = / [5./\/1 - ni¢T5 (E — Fm)] dBE
B

A
+ /D[&PJr 2, §(F; — Fy)| dDs. (21)
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Now, since v is an arbitrary differentiable function, it may be chosen in such a way
that 41 no longer depends explicitly on the variation of the state vector dw. The
gradient of the cost function can then be evaluated directly from the metric variations
without having to recompute the variation dw resulting from the perturbation of each
design variable.

Comparing equations (15) and (17), the variation dw may be eliminated from (21)
by equating all field terms with subscript “I” to produce a differential adjoint system
governing 1 .
% [ F;

9¢; bt
The corresponding adjoint boundary condition is produced by equating the subscript
“I” boundary terms in equation (21) to produce

np" [Fj, — Fuj,), = Mo on B. (23)

The remaining terms from equation (21) then yield a simplified expression for the
variation of the cost function which defines the gradient

—Fyjl; + Pu=0 inD. (22)

51 = / {(6Myr — np” (Fs — Fop)} dBe
B

+ [ {0Pu+ BF ~ 0F.] p}ap, (24)
D
Taking the transpose of equation (22), the inviscid adjoint equation may be written
as
0
C}"a—g =0 inD, (25)
where the inviscid Jacobian matrices in the transformed space are given by
of;
C;= Sl]—éﬁ

The derivation of the viscous adjoint terms is simplified by transforming to the

primitive variables
T __ T
W = (p,u1,uz,us,p)",

because the viscous stresses depend on the velocity derivatives g;‘f, while the heat
J

0 (p
kaﬂ% (E) .

The relationship between the conservative and primitive variations are defined by the
expressions

fluxes can be expressed as

dw = Méw, =M 16w,
which make use of the transformation matrices M = —g—;ﬁ;’ and M~1 = %%. The
conservative and primitive adjoint operators L and L corresponding to the variations

dw and 6w are then related by
/ SwT Lep dDe = / swT Ly dDg,
D D
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with B
L=MTL,
where

Ui g

Uup U2 Usg
p 0 0 pu
0 p 0 pus
0 0 p pus
0 0 0 0 Q%T

The details of the derivation of the viscous adjoint operator are provided in [JPM97]

with the simplification that variations in the transport coefficients are ignored.

Collecting together the contributions from the momentum and energy equations, the

viscous adjoint operator in primitive variables can finally be expressed as
- p 0 00 )
vy = ——L2 % (sk
(L (v—=1)p* 04 < " o
io, = 2 [g [, (9% 9% Ok
(L) = 0 {Sl] [# (&L"j + Ox; + A% Oz,

0 00 o0 o0
* g {0 (v, roas) H0ea |

oo
GijSlj a_iL'l

. p 3 (.. 08
L6 = (v—l)b‘&?(S“’“axj)'

The conservative viscous adjoint operator may then be obtained by the transformation

MT =

OO O =

L=M"'"].

The details of the formula for the gradient depend on the way in which the boundary
shape is parameterized as a function of the design variables, and the way in which
the mesh is deformed as the boundary is modified. Using the relationship between
the mesh deformation and the surface modification, the field integral is reduced to a
surface integral by integrating along the coordinate lines emanating from the surface.
Thus the expression (26) for 67 is finally reduced to the form of equation (9)

oI = / GO dBe
B

where F represents the design variables, and G is the gradient, which is a function
defined over the boundary surface.

The boundary conditions satisfied by the flow equations restrict the form of the
left hand side of the adjoint boundary condition (23). Consequently, the boundary
contribution to the cost function M cannot be specified arbitrarily. Instead, it must
be chosen from the class of functions which allow cancellation of all terms containing
dw in the boundary integral of equation (21). On the other hand, there is no such
restriction on the specification of the field contribution to the cost function P, since
these terms may always be absorbed into the adjoint field equation (22) as source
terms.
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3. INDUSTRIAL APPLICATION

Due to the high computational cost of viscous design, a two-stage design strategy
has been adopted. In the first stage, a design calculation is performed with the Euler
equations to minimize the drag at a given lift coefficient by modifying the wing sections
with a fixed planform. In the second stage, the pressure distribution of the Euler
solution is used as the target pressure distribution for inverse design with the Navier-
Stokes equations. Comparatively small modifications are required in the second stage,
so that it can be accomplished with a small number of design cycles.

For verification purposes, this strategy was used for the re-design of a wing
representative of wide body transport aircraft. The results are shown in Figures 1 and
2. The design point was taken as a lift coefficient of .55 at a Mach number of .83. Figure
1 illustrates the Euler redesign, which was performed on a mesh with 192x32x48
cells, displaying both the geometry and the upper surface pressure distribution, with
negative C'p upwards. The initial wing shows a moderately strong shock wave across
most of the top surface, as can be seen in Figure la. Sixty design cycles were needed
to produce the shock free wing shown in Figure 1b, with an indicated drag reduction
of 15 counts from .0196 to .0181. Figure 2 shows the viscous redesign at a Reynolds
number of 12 million. This was performed on a mesh with 192x64x48 cells, with 32
intervals normal to the wing concentrated inside the boundary layer region. In Figure
2a it can be seen that the Euler design produces a weak shock due to the displacement
effects of the boundary layer. Ten design cycles were needed to recover the shock free
wing shown in Figure 2b. It is interesting that the wing section modifications between
the initial wing of Figure la and the final wing of Figure 2b are remarkably small.

These results were sufficiently promising that it was decided by McDonnell Douglas
to evaluate the method for industrial use, and it was used to support design studies
for the MDXX project. Reference [Jam97] provides a more detailed discussion of the
results of this experience. Early in the project it became apparent that the fuselage
effects are too large to be ignored and that optimization at a single design point
could lead to unsatisfactory off-design performance. Therefore we focused on the
optimization of wing-body combinations at three design points. In viscous design it was
also found that there were discrepancies between the results of the design calculations,
which were initially performed on a relatively coarse grid with 192x64x48 cells, and
the results of subsequent analysis calculations performed on finer meshes to verify the
design.

In order to allow the use of finer meshes with overnight turnaround, the code was
therefore modified for parallel computation. Using the parallel implementation, viscous
design calculations have been performed on meshes with 1.8 million mesh points.
Starting from a preliminary inviscid design, 20 design cycles are usually sufficient
for a viscous re-design in inverse mode, with the smoothed inviscid results providing
the target pressure. Such a calculation can be completed in about 7% hours using 48
processors of an IBM SP2.

As an illustration of the results that could be obtained, Figure 3 shows a wing-body
design with sweep back of about 38 degrees at the 1/4 chord. Starting from the result
of an Euler design, the viscous optimization produced an essentially shock free wing
at a cruise design point of Mach .86, with a lift coefficient of .6 for the wing body
combination at a Reynolds number of 101 million based on the root chord. Figure
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3 shows the design point, while the evolution of the design is shown in Figure 4,
using software provided by J. Vassberg of Douglas Aircraft. In this case the pressure
contours are for the final design. This wing is quite thick, with a thickness to chord
ratio of more than 14 percent at the root and 9 percent at the tip. The design offers
excellent performance at the nominal cruise point. Figures 5 and 6 show the results
of a Mach number sweep to determine the drag rise. It can be seen that a double
shock pattern forms below the design point, while there is actually a slight increase in
the drag coefficient of about 1 % counts at Mach .85. The tendency to produce double
shocks below the design point is typical of supercritical wings. This wing has a low
drag coefficient, however, over a wide range of conditions.

The final phase of the study, which was truncated by the cancellation of the MDXX,
addressed the performance of the wing-body combination with engines and winglets
included. Using GRIDGEN several weeks were needed to generate a mesh with 234
blocks and more than 5 million mesh cells. RANS calculations could then be performed
in 5 or 6 hours with 48 processors of an IBM SP2. An example of such a calculation is
presented in Figure 7, in which the shading indicates the surface pressure, with darker
shading corresponding to higher pressure. The overall turn-around for mesh generation
and flow analysis is still too slow for really effective use in a design project. Also one
should in the future use optimization in the design of the complete configuration.
A multiblock optimization code to treat complex configurations in which the flow is
modeled by the Euler equations is already operational [Jam97]. A multiblock viscous
design code is clearly needed and we plan to undertake its development. In the long
run unstructured meshes may be needed to treat complete configurations with rapid
turn-around.

Two major lessons of the studies were:

1. Useful simulations in the design of a wing for a commercial transport must treat
at least wing-fuselage combinations and include viscous effects: more complete
simulations ought to treat the engines, and also winglets if they are featured in
the design.

2. To be fully accepted by the design team both CFD and optimization methods need
to be validated before their use in the project.

It is clear, however, that optimization techniques of this type can both substantially
reduce the cost of aerodynamic design, and improve the final results. In this case it
enabled a team of four people (J. Alonso, J. Reuther, L. Martinelli and the author)
to design a highly competitive wing in three months, starting from scratch.
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Initial Wing. Cp on Upper Surface.
Figure la: M = 83,C; = .5498,Cy = .0196, o = 2.410°.

Redisigned wing. Cp on Upper Surface.
Figure 1b: M = .83,C; = .5500,Cy = .0181, « = 1.959°.

Figure 1 Redesign of the wing of a wide transport aircraft. Stage 1 Inviscid design : 60
design cycles in drag reduction mode with forced lift.
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Initial Wing. C)p on Upper Surface.
Figure 2a: M = 0.83,C; = .5506,Cy = .0199, a = 2.317°

Redisigned wing. Cp on Upper Surface.
Figure 2b: M =0.83,C; = .5508,Cy = .0194, v = 2.355°

Figure 2 Redesign of the wing of a wide transport aircraft. Stage 2: Viscous re-design. 10
design cycles in inverse mode.
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COMPARISON OF CHORDWISE PRESSURE DISTRIBUTIONS
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Figure 3 Pressure distribution of the MPX5X at its design point.
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Figure 4 Optimization Sequence in the design of the MPX5X.

glowinski 29/1/1997 —Page proofs for John Wiley & Sons Ltd (penonum.sty)



COMPARISON OF CHORDWISE PRESSURE DISTRIBUTIONS
MPX5X WING-BODY
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Figure 5 Off design performance of the MPX5X below the design point.
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Figure 6 Off design performance of the MPX5X above the design point.
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Figure 7 MPX3R wing-body-nacelle- winglet combination at Mach .85, CL = .6 . View
from above.
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