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ABSTRACT

Singular perturbation theory is applied to obtain the
asymptotic solution for nearly singular optimal control of a
constant linear system in a finite time interval. In the limit
as the control cost is reduced to zerc, the initial control is
found to have an impulse-like behavior, while the outer solu-
tion yields a singular arc.

INTRODUCTION

O'Malley's paper at these proceedings discusses several
examples of nearly singular optimal control. The cases where
all components of the control are equally 'cheap', and unbound-
ed, can be incorporated within the framework of the theory for
the constant linear regulator sketeched in the following para-
graphs. A more detalled treatment, using a preliminary trans-
formation to canonical form, is given in a forthcoming paper
(O'Malley and Jameson, 197L4).

Consider the constant linear system
x = Ax + Bu ; x(0) specified, (1)

where the n dimensional vector x represents the state, and the
r dimensional vector u is the control. Let u be chosen to
minimize 1 4

J=2 f (xTax + ¢2uTRu) at
0

where Q is a nonnegative definite constant matrix, and R is a
positive definite constant matrix. Then
1 -1.7T )
u:-——2R Bp (3)
€ .
where x and p satisfy the Hamiltonian equations (Bryson and Ho,

11969) )
e?x = e2ax - BRIBTp ,  x(0) speciried }

o

(4)

W p

. We shall examine the asymptotic béhavior of the solution as

€ > 0. The system of equations (4) is singularly perturbed
because its order is reduced from 2n to n when € = 0. T proves
convenient to distinguish the following hilerarchy of cases:

- ex - AT , p@)=o0.
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CASE 0: r=n, Q>0 ;

o .
CASE 1: r <n, BQB >0 ; L

T omom . p Rl k-1
CASE k: r <n , B AT QA™B = 0, mk-1, BA" "QA B>0.

"This list is not exhaustive, but serves to illustrate the

principal variations of behavior. Case 0 is unusual in

practice, so we shall concentrate on CASE 1 and higher cases.
| CASE 1

In CASE 1 let us seek an asymptotic expansion in the form

X

X(t,e) + m(t,e) + ¢ n(&,e)
~ L e

p = P(t,e) +ef(t,e) + eeg(o,e) s

where each term is to be represented by a series in powers Sf
€. Here (X,P) is the outer solution, while (m,ef) and (n,ecg)
are initial and terminal boundary layer corrections in the
stretched time coordinates :
=t = 1=t

T=¢es 077
The boundary layer corrections are required because it is not
possible to satisfy all the boundary conditions using the outer
outer expansion by itself, as will appear. '

Suppose that the outer solution is representéd as

9? o
X(t,e) = } XJej s Plt,e) = ¥ P.ed (6)
. 3=0 - -j=0 Y
Then, equating like powers of €, we find that
B Rf?BTPO =0, B R"lBTPl =0 .

Multiplying on the left by BT, since R is positive definite, it
follows that : :

T T, S
B'P, = o.? B'P, = 0 o (7)
Then we find that .
= AX, + BU
P, = -~ - A°P
3 7 3 | (80)
where
-1,.T - =
UJ = - R "B°P PP U_2 = U__l =0 .
Thus»for each J, UJ must be such that the constraint
. .
B"P, = ~ RU,
J j-2 (9)

is satisfied. This constraint confines the solution of (8) to
a subspace, so that the outer solution cannot satisfy all the
boundary conditions of (4). The unsatisfied conditions are
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eliminated by the boundary layer corrections.

In order to express the constraint (9) in a convenient
manner we define the matrix

E = I - B(BTQB) 1BTQ . (10)
Then : )
it 2
EB=0, BQE=0, E°=E. (11)
We can now set
. T
= EX, + BU P, = E'P, + QBZ 12
Xy = BXy + BUy , Py g+ @B (12)
where
1T T -1 ~
- QX 7. = —(BTqB) gy,
Vs = (B7aB) "BRQX; , j (B"QB) “RU,_,
Multiplying (8b) on the left by BT, it follows from (9) that
: ‘ - T . T T
= BTQBV, + BIATP
RUy-p = BARYy J
whence o
v, = -(87gB) 1 (8TaATETP .+ BTATqBz .- RU, .) (13)
J S J J-2
Substituting in (8) we find that
d A T
9 (EX,) = AEX. - G E'P, - H
at (& %) 3 ;- } (1)
a ,.T n A
g (e'p,) = -0Ex, - ATETP, - K,
at HJ) REXy J J
where
A=EaE , G = EAB(BTQR) 1BTATET |

ETQE >0

O
i}

and the forcing terms are

Hj

Ks

Equations_(14) form a Hamiltonian system which can be solved
for EX, ETP with EX(0), ETP(1) prescribed (Bucy, 1967).

. Then since Vi is determined by (13), it follows from (12)
that Xj satisfies the constraint

]

EAB(BTQB)‘l(BTATQsz- RU; )

ETATQsz

BTQXJ” = BTQBVJ. ' | (15)

It follows from the linearity of the system that the
boundary layer corrections must also satisfy (4). Thus

%% = eAm - BR™IBTp :

: (16)
ar T
dTt

n

- Qm - eA°f s
where m and f + 0 as T + «». Suppose that m and T are expanded

as
7



(-]

m(t,e) = z mJ . o, e) = J rJeJ LA
_J 0 A
. Then, equating like powers of ‘e, we find that
dm - S
:J = - -1,.T o T 8
o BR B7fy + Amy (18a)
ar, . o '
. 3t Q my A fJ-l (l.b)
~ where - : B e
: _ m_l = f-l..- ‘0
Combining (18a) and (18b), we seek decaying solutions of
- . ) 2 ) .
d™m ' , N _
._12 = B g 1T QmJ + hJ_l o (19)
where L -
. - _ 1 -1
thl = A + B R B A fJ 1
Let : y
. ~1/2 : , -
) -m, = Em, + B R M . 20
my = Emy 3 - @eo
where o 4
7 1/2(BTQB)'IBTQmJ :
Then' ' 5
- opp, = (1) ) - (2n)
and . | ' dr2<ﬂ J J-1 T .
2
I S VK A VT r1/2 (pT QB)-lBTQh (22)
dT2 J _ J J-1
Equation (21) has the decaying particular integral
o © _
' Enb =‘f dr ]ﬁhj_l(s) ds , .(23)
o . . T r ce e
Thus E my (0) 1is determined. 1In particular Em,, (0) = 0.
The homogeneous part of equation (22) has the decaylng solution
. : My = e 0T M, (0) | (24)
where- . _

¢ = /ﬁ“leBTQBR“1/2

- from which dncaylng particular 1ntegralé can be constructed by
integratlon for arbitrary M (0).”

Now to matech the initlal conditions of (4) we have

mO(O) + xo(o) = x(0)
whence

EX,(0) = Ex(0)
providing the initial condition for (14). Also



BTQ XO(O) is then determined by (15), so mO(O) must be such
what BYam, (0) = BQ(x(0) - X,(0))
According to (20) this will be the case if

My (0) = B2 (8%am) 28Ta(x(0)-x, (0))

providing the initial condition for the leading term of the
boundary layer. For the higher terms the initial conditions
are split in a similar manner. Since E m,(0) is uniquely
determined by the requirement for a de ayiﬂg boundary layer,
we have ) _

EX, (0) =-Bm(0), J>o0.

Then BTQX.(O) is determined, and hence the initial value M, (0)
for the pért of the boundary layer correction lying in the
range space of B.

The terminal boundary layer correction cén be determined
in a similar manner. Setting ’

no,e) = [ ned . glo,e) = ] g6 (25)
J:O . ‘ J:O J
we find that
i BR léT ~ An
go > & J-1 - } (26)
g
s T
da an + AT g -1 .
Then - 2
—4d = g B r 8%, + k. (27)
do® J J-1
where . dg ’
T -1
hy_; = A E:l_—-- Qhng
Now we set .
: gy = ETgJ + QB R‘1/2GJ (28)
_Where :
| o - Rl/2(BTQB)—1BTgJ .
Then (27) implies that _
' 2
d T _ T
| A S 29
and d2G ) '
| —L = g1/257q R“I/ZGJ+ rY/2(Tq B)-lBTkj_l (30)
do

F%r a decaying solution ETg.(O)Tis determined, and hence
E*P,(1) is determined. Als® B PJ(l) is determined, providing

j(o).

Thus the complete asymptotic solution can be determined

thelterminal value G

),



* term by term. We observe that the leading term of the outer
.--expansion is just the familiar solution for a singular arc

.which occurs when € = 0 (Moylan and Moore, 1971). We also note
"that near_t = 0 the dominant term of the control is

" (1/e)R™ BTfO s Where an o |
' -1.T _ -1/2 0 _ -1/2 -Ct
N ‘B R B fo = - B R‘ it - B/R Q e _MO(O)
. Thus near t = 0 the control has the form
,% R-l/2C e_C t/e MO(O).'

In the limit as € > 0 this reducés to the impulse which is |
required to make the lnitial transfer to a singular arc.

HIGHER CASES:
in CASE 2 we note that since Q > 0 the condition
| BIQB =0 |
implies that
E QB=20

The appropriate stretching for the initial boundary layer
rcorrection proves to be T = t/u, where u = 1/¥e. . Expanding
~the outer solution as - :

X(t,u) = ] XJuJ', Plt,u) = § P

e o d=0 Y

equations (8) hold, where now
T -= . =

. . . B PJ R Uj_q ] 'UJ' 0 s J <0 .. (31)
Then (8b) gives | S

' T T _ " : T '

BA"P; = R Uy | - (32)

The additional constraint (32) confines the outer solution to
a smaller subspace. Consequently a transfer through the space
* spanned by the columns of B, AB must be accomplished in the

. initial boundary layer. If the corrections to x and p have -

the form
. [}

()

© . .
1 =1 J ‘ - J
5 m(Tu) = 2 Jgo mus s uf(T,g) L ) £yu
we find that . 2 L.
' d™m ‘ . dm,
. ’_Ei = B R-1BTA Ty, + A —d=1
dt "~ dt

a fI 0 AT de_l o
z T - My = dt .
ar o
The leading term satﬁsfies the homogeneous equation
dm '
- = =B RN 4 B g
f' drt

(.



with the decaying solution

~-1/2 pCTf epCr) , 'mO(O) -

my = BR Zi(e
where Z is a constant matrix,
| o = - Ll
V2

and

1/ -
_ /ﬁ 1/2BTA‘I’Q A B R 1/2
Then m (1) lies in the space spanned by the columns of B, AB
and ca% be used to match the boundary conditions at t = 0.
Near t = 0 the dominant term is (1/u)m.. Thus x makes an
- exeursion in the range space of B, wh;gh approaches the form

of a delta function as u =+ 0.

For CASE k we flnd 51mll§rly tﬁat the appropriate expan-
sions are in powers of u = ¢ where the sgregchlnv for the
the initial boundary layer is T = t/u. Now BIAT PJ is

constrained for m < k, confining the outer solutlon to a
progressively smaller subspace with increasing k. The initial
boundary layer correcticn has to meet the boundary conditions
-in the space spanned by the columns of the first k partitions
of the controllability matrix

-

[B,AB, ... AP 1p]

and x makes an excursion in the space spanned by the columns of
the first k-1 partitions. Thus the increasing thickness of

- the boundary layer corresponds to the additional work required
from the initial control. In the limit the cocntrol has

& form corresponding to a delta function and its first k-1
derivatives. . -
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