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"ABSTRACT

An asymptotic solution is obtained for the linear regulator problem
with "cheap control". The essential new element is the singular perturba-
tion solution to the matrix Riccati equation.

INTRODUCTION AND OUTLINE OF RESULTS
Consider the optimal control problem where
X =AXx+ Bu, 0 <t <T, x(0) preseribed, (1)

with the scalar performance index
1
1) = %J [x'Qx + €%u'Ruldt ()
0

is to be minimized for € a small, positive parameter (control is "cheap™).
Here, A, B, Q, and R are smooth functions of t, with Q>0 and
R > 0 being symmetric matrices. The state x is an n vector, while
the control u 1s an r vector. Asymptotic solutions of this problem
were previously given by O'Malley and Jameson ([4], [8], [9], [10]) using
singular perturbation techniques for the appropriate canonical equations,
We refer to those papers for discussion of practical control applications
leading to problems like (1)-(2) and interpretation of the results, noting
only that (1)-(2) is a singular problem when € = 0 (cf, Bryson and Ho
[2] and Ho [3]). Here we shall ebtain a matrix Riccati. solution, which
has independent significance due to its feedback interpretation, numerical
implementation, and extendability to the infinite interval problem (cf,
Jameson and O'Malley [5]).

We first transform the problem through a change of variables pre-

viously used by Moylan and Moore (7] for the singular problem. Defining

t
Uy = Jou(s)ds and x; =x - Bu,, 3)
we have the higher dimensional regulator problem
x x x, (D) x(0)
o= ALY s, ul(o) =17 |- (4)
1 1 1
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T [=x, ' [x
3@ =3 o g2 + eFurmaee ®)
of{1 1
where
A B 0 Q@ QB
A= > B = s and Q=
o 0 I B'Q B'QB
for By = AB - .
Using the standard technique (cf. Kalman [6] and e.g., Anderson and
Moore {1]) of a feedback law
NE
| w= - EE 1). )
€ “1/,

the symmetric, positive semi-definite matrix k must satisfy the terminal
value problem
dk

S kA - Ak + TiBRTIBY - 0, k(D) = 0 @)
€
and there remains the initial value problem
“ 0) x(0)
af=<) o 1ot fT1) (%@
dt ul [A ;—Z'BR B k] ul H ul(o) 0 " (8)

Solution of the Riccati equation (7) (as in the singular problem) will
differ considerably in a hierarchy of cases. We shall restrict attention
here to the simplest case when

B'QE > 0, (9)
while further cases will be discussed elsewhere, Note that (9) implies
that @ > 0 since

Q - QB(B'qB) 1B'q = E'QE > 0 10)

for E=1 - B(B'QB)_lB’Q. Putting k 1nto its 2 x 2 block form, equa-
tion (7} can be written as three coupled equations for the independent
elements. Analyzing them, one finds that the unique solution to (7) is of

the form
R k kB .
k = (11)
B'k BR'kB
where the n x n symmetric matrix k 1is the positive semi-definite solu-
tion of the singularly perturbed_Riccati equation

2= Pt ak+ @ + Bk, (D) - 0. (12)
The equations for the other components of ﬂ follow from
? SaB) = -P(kB, + A'KB + QB) + KBR B'kB (13)

and
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Cur principal result will be the asymptotilc solution of the Riccati

(kB) = ~€°(B 'kB,+ B'A'kB + B'QB) + B'kBR 1B 'kB. (14)

equation (12). For B'QB » 0, we will obtain an asymptotic solution of

the form
k(t,() = K(t,€) + “E(Us‘) (15)

where the outer solution K has an asymptotlic expansion

K(t,€) ~ ZKj(v:)eJ (16)
320
and the terminal boundary layer correction £ has an expansion
£(5,€) ~ ):.f_j(cr)cj (17)
320
whose terms decay to zero as the stretched variable
_T-t
o= < {18)

tends to infinity. Such expansions have been obtained for other singularly
perturbed control problems by Yackel and Kokotovic [12] and O'Malley and
Kung [11]. Their direct approach doesn't seem to work here, 80 a more
roundabout procedure {as in [5]) will be employed.

Once the expansions (L5) are determined, the state equations (8) will
have the asymptotic solution

%, (6,€) = X, (£,€) + €m) (1,€) + €20, (0,€)
9
ul(tie) = Ul(tst) + vl(Tle) + EWl(U,‘)

consisting of an outer solution (Xl,Ul), a right boundary layer correc-
tion (eznl(o,i), Ewl(o,e)) which tends to zero as o + =, and a left
boundary layer correction (Eml(r,c),vl(T,e)) which tends to zere as the
(left) stretched variable

7= EE (20)

tends to infinity. The transformation (3) then implies that the optimal
contrel u and the corresponding trajectory x will be asymptotically

represented in the form

u(e,€) = 4y = U(t,€) + %-v(r,e) + w(g.€)
21)
x{t,€) = x) + Bu; = X{t,€) + m(t,€) + €n{c,€) .

We note, in particular, that the optimal control will be unbounded at
t=0 as € +0 and that the optimal cost J*(€) will have an asymptotic
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series expangion. Further, the limiting solution within (0,T) will
agree with the singular arc solution given in [3] and elsewhere (cf, [11]).
THE RICCATI GAIN
Since the outer solution K represents the gain k asymptotically
for t <T (¢~ <), K must satisfy equations (12)-(14). When € = 0,
note that {12) implies K
(cf. [2])

OBR_lB'KO = 0, so the singular arc condition

B'KO = KOB =0 (22)
follows, (When B 4s invertible, then, K_ = 0). 8ince B'QB > 0, (14)

0
implies that B'KB = 0(¢) is positive definite and, by (13),

KB = EZ[KBI + QB + é%(xn) + A'KB] (B'kB) IR. (23)

Substituting back into (12), then,
dK 1 = 4a t
qr FEA+ AR+ Q EKBI+QB+dt(KB)+AKB]

« [B'QB + B'é%(KB) + B'KB; + B'A'KB]'l

. [BiK + B'Q + -;—t(B'K) + B'KA]. (24)
Setting € = 0, we finally have the parameter-free Riccati equation
) -1 -1
Y - t t L fn T T
at t Kpla - By (B'QB) "B'Q) + (a QB(B'QB) B1)K,

KoBy (B'0BY B{Ky + (@ - QB(8'am 'B'Q) = 0, K (1) = 0. (25)

By (10), a unigue K0 exists throughout 0 <t < T (ef. [1]). Moreover,
(22) will hold since é%{KOB) = 0 whenever KOB = 0. We observe that (25)
does not follow from setting € = 0 in (12); that only implies (22).
Higher order terms in the outer expansion K are solutions of non-
homogeneous linear equations obtained from equating coefficients of higher

powers of € in (12}-(14). Specifically, for K., (13) and (14) imply

1
that B'KlB > 0 satisfies
(B'KlB)R_l(B'KlB) = B'QB (26)
while
-1
= 1
K B (KOBl + QB) (B Kl‘B) R. z7)

Since Kl(T) cannot then be zero, a boundary layer correction Eo(o) to
Kl is needed to satisfy k(T,€) = 0. Further, the coefficient of € in
(24} implies a problem of the form

K, -1,
—— - ] 1
76 T KA - B (B'qB) T (B'Q + BiK] +
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+ 1A' - @B+ KgB) (BB UBJIK, = @), K (1) = -£,(0) (28)

where @, is determined by K, and EO(O) is, as yet, unspecified.

8ince (27)-(28) is a linearized version of the problem for K its

0!
solution is unigue.

Because the outer solution K satisfies {12), the representation
{15) implies that the boundary layer correction £(v,€) must satisfy

L

Lo %(zma‘ls'x + KBR1B'2) - £8RIB'L + € (LA + A'0) 29)

for ¢ > 0 and it must tend to zeroc as ¢ + =, Introducing C(T,€)
- e_lR_llzB'KBR—llz, L(g,€) = R“UZB'BR"UZ’ and L(o,€) = EBR‘UZ,

and setting € =0 in (29) implies

o, “L,Co(T) ~ C (D)L, - L (30)

do 0™~0 0 0 0

dL0

o - LG + Ly(ad) + Ly (0L (o) (31
and

Efg = L LY + L (L - L (o)L (32)

do 0°0 0 0 0 0

while the initial condition EO(O) = —Kl(T) is unknowm but completely

determines

Lo(0) = =Co(T) < 0 and Ly(0) = RMBME 2(m). (33)
Integrating (30) and (31), then, we have
ZCO(T)G 1
LO(U) = ZLO(O)(I 4+ e )y ~. (34)
Since 20 +0 as o+ =, we have
w d£0 24Ty,
ﬂo(o) = —JG 7@;{S)ds = —ZLO(O)(I+-e ) CO (T)Lé(O). (35)

In particular, note that this completely determines Kl(T). Higher order
terms follow as solutions of linear equations.
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