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SUMMARY

This paper presents a perspective on computa-
tional fluid dynamics as a tool for aircraft design. It
addresses the requirements for effective industrial use,
and trade-offs between modelling accuracy and com-
putational costs. Issues in algorithm design are dis-
cussed in detail, together with a unified approach to
the design of shock capturing algorithms. Finally, the
paper discusses the use of techniques drawn from con-
trol theory to determine optimal aerodynamic shapes.
In the future multidisciplinary analysis and optimiza-
tion should be combined to provide an integrated nu-
merical design environment,

INTRODUCTION

Computational methods first began to have a sig-
nificant impact on aerodynamic analysis and design
in the period of 1965-75. This decade saw the intro-
duction of panel methods which could solve the linear
flow models for arbitrarily complex geometry in both
subsonic and supersonic flow [58, 147, 179]. It also
saw the appearance of the first satisfactory methods
for treating the nonlinear equations of transonic flow
[123, 122, 63, 64, 43, 54|, and the development of the
hodograph method for the design of shock free super-
critical airfoils [15].

Computational Fluid Dynamics (CFD) has now
matured to the point at which it is widely accepted
as a key tool for aerodynamic design. Algorithms
have been the subject of intensive development for the
past two decades. The principles underlying the de-
sign and implementation of robust schemes which can
accurately resolve shock waves and contact disconti-
nuities in compressible flows are now quite well estab-
lished. It is also quite well understood how to design
high order schemes for viscous flow, including com-
pact schemes and spectral methods. Adaptive refine-
ment of the mesh interval (h) and the order of approx-
imations (p) has been successfully exploited both sep-
arately and in combination in the h-p method [126].
A continuing obstacle to the treatment of configura-
tions with complex geometry has been the problem

of mesh generation. Several general techniques have
been developed, including algebraic transformations
and methods based on the solution of elliptic and hy-
perbolic equations. In the last few years methods
using unstructured meshes have also begun to gain
more general acceptance. The Dassault-INRIA group
led the way in developing a finite element method for
transonic potential flow. They obtained a solution
for a complete Falcon 50 as early as 1982 [25]. Euler
methods for unstructured meshes have been the sub-
ject of intensive development by several groups since
1985 [110, 82, 81, 163, 14], and Navier-Stokes methods
on unstructured meshes have also been demonstrated
[117, 118, 11].

Despite the advances that have been made, CFD
is still not being exploited as effectively as one would
like in the design process. This is partly due to the
long set-up and high costs, both human and compu-
tational of complex flow simulations. The essential
requirements for industrial use are:

1. assured accuracy
2. acceptable computational and human costs
3. fast turn around.

Improvements are still needed in all three areas. In
particular, the fidelity of modelling of high Reynolds
number viscous flows continues to be limited by com-
putational costs. Consequently accurate and cost-
effective simulation of viscous flow at Reynolds num-
bers associated with full scale flight, such as the pre-
diction of high lift devices, remains a challenge. Sev-
eral routes are available toward the reduction of com-
putational costs, including the reduction of mesh re-
quirements by the use of higher order schemes, im-
proved convergence to a steady state by sophisticated
acceleration methods, fast inversion methods for im-
plicit schemes, and the exploitation of massively par-
allel computers.

Another factor limiting the effective use of CFD is
the lack of good interfaces to computer aided design
(CAD) systems. The geometry models provided by



existing CAD systems often fail to meet the require-
ments of continuity and smoothness needed for flow
simulation, with the consequence that they must be
modified before they can be used to provide the in-
put for mesh generation. This bottleneck, which im-
pedes the automation of the mesh generation process,
needs to be eliminated, and the CFD software should
be fully integrated in a numerical design environ-
ment. In addition to more accurate and cost-effective
flow prediction methods, better optimizations meth-
ods are also needed, so that not only can designs be
rapidly evaluated, but directions of improvement can
be identified. Possession of techniques which result
in a faster design cycle gives a crucial advantage in a
competitive environment.

A critical issue, examined in the next section, is
the choice of mathematical models. What level of
complexity is needed to provide sufficient accuracy for
aerodynamic design, and what is the impact on cost
and turn-around time? The following two sections
address the design of numerical algorithms for flow
simulation and present the results of some numerical
representative calculations. These require moderate
computer resources, and could be completed with the
fast turn-around required by industrial users. The
last two sections discuss automatic design procedures
which can be used to produce optimum aerodynamic
designs, and offer an outlook for the future.

THE COMPLEXITY OF FLUID FLOW AND
MATHEMATICAL MODELLING

The Hierarchy of Mathematical Models

Many critical phenomena of fluid flow, such as
shock waves and turbulence, are essentially non-
linear. They also exhibit extreme disparities of scales.
While the actual thickness of a shock wave is of the
order of a mean free path of the gas particles, on a
macroscopic scale its thickness is essentially zero. In
turbulent flow energy is transferred from large scale
motions to progressively smaller eddies until the scale
becomes so small that the motion is dissipated by vis-
cosity. The ratio of the length scale of the global flow
to that of the smallest persisting eddies is of the or-
der Re%, where Re is the Reynolds number, typically
in the range of 30 million for an aircraft. In order
to resolve such scales in all three space directions a
computational grid with the order of Re¥ cells would
be required. This is beyond the range of any current
or foreseeable computer. Consequently mathematical
models with varying degrees of simplification have to
be introduced in order to. make computational sim-
ulation of flow feasible, and to produce viable and
cost-effective methods.

Figure 1 (supplied by Pradeep Raj) indicates a
hierarchy of models at different levels of simplifica-
tion which have proved useful in practice. Efficient
flight is generally achieved by the use of smooth and

streamlined shapes which avoid flow separation and
minimize viscous effects, with the consequence that
useful predictions can be made using inviscid mod-
els. Inviscid calculations with boundary layer cor-
rections can provide quite accurate predictions of lift
and drag when the flow remains attached, but itera-
tion between the inviscid outer solution and the inner
boundary layer solution becomes increasingly difficult
with the onset of separation. Procedures for solving
the full viscous equations are likely to be needed for
the simulation of arbitrary complex separated flows,
which may occur at high angles of attack or with
bluff bodies. In order to treat flows at high Reynolds
numbers, one is generally forced to estimate turbu-
lent effects by Reynolds averaging of the fluctuating
components. This requires the introduction of a tur-
bulence model. As the available computing power in-
creases one may also aspire to large eddy simulation
(LES) in which the larger scale eddies are directly
calculated, while the influence of turbulence at scales
smaller than the mesh interval is represented by a
subgrid scale model.
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Figure 1: Hierarchy of Fluid Flow Models

Computational Costs

Computational costs vary drastically with the
choice of mathematical model. Panel methods can
be effectively used to solve the linear potential flow
equation with higher-end personal computers (with
an Intel 80486 microprocessor, for example). Studies
of the dependency of the result on mesh refinement,
performed by this author and others, have demon-
strated that inviscid transonic potential flow or Euler

solutions for an airfoil can be accurately calculated
on a mesh with 160 cells around the section, and 32
cells normal to the section. Using multigrid tech-
niques 10 to 25 cycles are enough to obtain a con-
verged result. Consequently airfoil calculations can
be performed in seconds on a Cray YMP, and can
also be performed on 486-class personal computers.
Correspondingly accurate three-dimensional inviscid
calculations can be performed for a wing on a mesh,
say with 192x32x48 = 294,912 cells, in about 5
minutes on a single processor Cray YMP, or less than
a minute with eight processors, or in 1 or 2 hours on



a workstation such as a Hewlett Packard 735 or an
IBM 560 model.

Viscous simulations at high Reynolds numbers
require vastly greater resources. Careful two-
dimensional studies of mesh requirements have been
carried out at Princeton by Martinelli {114]. He found
that on the order of 32 mesh intervals were needed to
resolve a turbulent boundary layer, in addition to 32
intervals between the boundary layer and the far field,
leading to a total of 64 intervals. In order to prevent
degradations in accuracy and convergence due to ex-
cessively large aspect ratios (in excess of 1,000) in
the surface mesh cells, the chordwise resolution must
also be increased to 512 intervals. Reasonably ac-
curate solutions can be obtained in a 512X64 mesh
in 100 multigrid cycles. Translated to three dimen-
sions, this would imply the need for meshes with 5-10
million cells (for example, 512x64x256 = 8,388,608
cells as shown in Figure 2). When simulations are
performed on less fine meshes with, say, 500,000 to 1
million cells, it is very hard to avoid mesh dependency
in the solutions as well as sensitivity to the turbulence
model.
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Figure 2: Mesh Requirements for a Viscous Simulation

A typical algorithm requires of the order of 5,000
floating point operations per mesh point in one multi-
grid iteration. With 10 million mesh points, the op-
eration count is of the order of 0.5x 10! per cycle.
Given a computer capable of sustaining 10! oper-
ations per second (100 gigaflops), 200 cycles could
then be performed in 100 seconds. Simulations of un-
steady viscous flows (flutter, buffet) would be likely
to require 1,000-10,000 time steps. A further pro-
gression to large eddy simulation of complex config-
urations would require even greater resources. The
following estimate is due to W.H. Jou [90]. Suppose

that a conservative estimate of the size of eddies in a
boundary layer that ought to be resolved is 1/5 of the
boundary layer thickness. Assuming that 10 points
are needed to resolve a single eddy, the mesh interval
should then be 1/50 of the boundary layer thickness.
Moreover, since the eddies are three-dimensional, the
same mesh interval should be used in all three direc-
tions. Now, if the boundary layer thickness is of the
order of 0.01 of the chord length, 5,000 intervals will
be needed in the chordwise direction, and for a wing
with an aspect ratio of 10, 50,000 intervals will be
needed in the spanwise direction. Thus, of the order
of 50 x 5,000 x 50,000 or 12.5 billion mesh points
would be needed in the boundary layer. If the time
dependent behavior of the eddies is to be fully re-
solved using time steps on the order of the time for
a wave to pass through a mesh interval, and one al-
lows for a total time equal to the time required for
waves to travel three times the length of the chord, of
the order of 15,000 time steps would be needed. Per-
formance beyond the teraflop (10'? operations per
second) will be needed to attempt calculations of this
nature, which also have an information content far
beyond what is needed for enginering analysis and
design. The designer does not need to know the de-
tails of the eddies in the boundary layer. The primary
purpose of such calculations is to improve the predic-
tion of averaged quantities such as skin friction, and
the prediction of global behavior such as the onset of
separation. The main current use of Navier-Stokes
and large eddy simulations is to gain an improved in-
sight into the physics of turbulent flow, which may in
turn lead to the development of more comprehensive
and reliable turbulence models.

Turbulence Modelling

It is doubtful whether a universally valid turbu-
lence model, capable of describing all complex flows,
could be devised [52]. Algebraic models [30, 9] have
proved fairly satisfactory for the calculation of at-
tached and slightly separated wing flows. These mod-
els rely on the boundary layer concept, usually incor-
porating separate formulas for the inner and outer
layers, and they require an estimate of a length scale
which depends on the thickness of the boundary layer.
The estimation of this quantity by a search for a max-
imum of the vorticity times a distance to the wall, as
in the Baldwin-Lomax model, can lead to ambigu-
ities in internal flows, and also in complex vortical
flows over slender bodies and highly swept or delta
wings [40, 115]. The Johnson-King model [88], which
allows for non-equilibrium effects through the intro-
duction of an ordinary differential equation for the
maximum shear stress, has improved the prediction
of flows with shock induced separation [148, 91}.

Closure models depending on the solution of trans-
port equations are widely accepted for industrial ap-
plications. These models eliminate the need to es-



timate a length scale by detecting the edge of the
boundary layer. Eddy viscosity models typically use
two equations for the turbulent kinetic energy k and
the dissipation rate €, or a pair of equivalent quan-
tities (89, 178, 160, 1, 121, 35]. Models of this type
generally tend to present difficulties in the region very
close to the wall. They also tend to be badly con-
ditioned for numerical solution. The k — [ model
[154] is designed to alleviate this problem by tak-
ing advantage of the linear behaviour of the length
scale | near the wall. In an alternative approach
to the design of models which are more amenable
to numerical solution, new models requiring the so-
lution of one transport equation have recently been
introduced [10, 159]. The performance of the alge-
braic models remains competitive for wing flows, but
the one- and two-equation models show promise for
broader classes of flows. In order to achieve greater
universality, research is also being pursued on more
complex Reynolds stress transport models, which re-
quire the solution of a larger number of transport
equations.

Another direction of research is the attempt to de-
vise more rational models via renormalization group
(RNG) theory [182, 155]. Both algebraic and two-
equation k — € models devised by this approach have
shown promising results [116].

The selection of sufficiently accurate mathemati-
cal models and a judgment of their cost-effectiveness
ultimately rests with industry. Aircraft and space-
craft designs normally pass through the three phases
of conceptual design, preliminary design, and detailed
design. Correspondingly, the appropriate CFD mod-
els will vary in complexity. In the conceptual and
preliminary design phases, the emphasis will be on
relatively simple models which can give results with
very rapid turn-around and low computer costs, in
order to evaluate alternative configurations and per-
form quick parametric studies. The detailed design
stage requires the most complete simulation that can
be achieved with acceptable cost. In the past, the
low level of confidence that could be placed on nu-
merical predictions has forced the extensive use of
wind tunnel testing at an early stage of the design.
This practice was very expensive. The limited num-
ber of models that could be fabricated also limited
the range of design variations that could be evalu-
ated. It can be anticipated that in the future, the
role of wind tunnel testing in the design process will
be more one of verification. Experimental research to
improve our understanding of the physics of complex
flows will continue, however, to play a vital role.

CFD ALGORITHMS

Difficulties of Flow Simulation

The computational simulation of fluid flow presents
a number of severe challenges for algorithm design.

At the level of inviscid modeling, the inherent nonlin-
earity of the fluid flow equations leads to the forma-
tion of singularities such as shock waves and contact
discontinuities. Moreover, the geometric configura-
tions of interest are extremely complex, and generally
contain sharp edges which lead to the shedding of vor-
tex sheets. Extreme gradients near stagnation points
or wing tips may also lead to numerical errors that can
have global influence. Numerically generated entropy
may be convected from the leading edge, for exam-
ple, causing the formation of a numerically induced
boundary layer which can lead to separation. The
need to treat exterior domains of infinite extent is also
a source of difficulty. Boundary conditions imposed at
artificial outer boundaries may cause reflected waves
which significantly interfere with the low. When vis-
cous effects are also included in the simulation, the
extreme difference of the scales in the viscous bound-
ary layer and the outer flow, which is essentially in-
viscid, is another source of difficulty, forcing the use
of meshes with extreme variations in the mesh inter-
vals. For these reasons, CFD has been a driving force
for the development of numerical algorithms.

Structured and Unstructured Meshes

The algorithm designer faces a number of criti-
cal decisions. The first choice that must be made
is the nature of the mesh used to divide the flow field
into discrete subdomains. The discretization proce-
dure must allow for the treatment of complex con-
figurations. The principal alternatives are Cartesian
meshes, body-fitted curvilinear meshes, and unstruc-
tured tetrahedral meshes. Each of these approaches
has advantages which have led to their use. The
Cartesian mesh minimizes the complexity of the al-
gorithm at interior points and facilitates the use of
high order discretization procedures, at the expense
of greater complexity, and possibly a loss of accuracy,
in the treatment of boundary conditions at curved
surfaces. This difficulty may be alleviated by using
mesh refinement procedures near the surface. With
their aid, schemes which use Cartesian meshes have
recently been developed to treat very complex config-
urations [120, 149, 22, 94].

Body-fitted meshes have been widely used and are
particularly well suited to the treatment of viscous
flow because they readily allow the mesh to be com-
pressed near the body surface. With this approach,
the problem of mesh generation itself has proved to be
a major pacing item. The most commonly used pro-
cedures are algebraic transformations (7, 44, 46, 156],
methods based on the solution of elliptic equations,
pioneered by Thompson [170, 171, 157, 158], and
methods based on the solution of hyperbolic equa-
tions marching out from the body [161]. In or-
der to treat very complex configurations it generally
proves expedient to use a multiblock [177, 150] proce-
dure, with separately generated meshes in each block,



which may then be patched at block faces, or allowed
to overlap, as in the Chimera scheme [19, 20]. While
a number of interactive software systems for grid gen-
eration have been developed, such as EAGLE, GRID-
GEN, and ICEM, the generation of a satisfactory grid
for a very complex configuration may require months
of effort.

The alternative is to use an unstructured mesh
in which the domain is subdivided into tetrahedra.
This in turn requires the development of solution al-
gorithms capable of yielding the required accuracy on
unstructured meshes. This approach has been gain-
ing acceptance, as it is becoming apparent that it can
lead to a speed-up and reduction in the cost of mesh
generation that more than offsets the increased com-
plexity and cost of the flow simulations. Two com-
peting procedures for generating triangulations which
have both proved successful are Delaunay triangula-
tion [41, 11], based on concepts introduced at the
beginning of the century by Voronoi [175], and the
moving front method [111].

Finite Difference, Finite Volume,
and Finite Element Schemes

Associated with choice of mesh type is the formula-
tion of the discretization procedure for the equations
of fluid flow, which can be expressed as differential
conservation laws. In the Cartesian tensor notation,
let z; be the coordinates, p, p, T, and E the pres-
sure, density, temperature, and total energy, and u;
the velocity components. Using the convention that
summation over j = 1,2, 3 is implied by a repeated
subscript j, each conservation equation has the form

ow , of,
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For the mass equation

=0. (1)

w=p, fj=pu;
For the ¢ momentum equation
w; = pui, fij = puivy + pdij — 0ij,
where 0;; is the viscous stress tensor. For the energy
equation
w = pE, fj = (pE +p)uj — OjkUk — ng—z;,

where K is the coefficient of heat conduction. The
pressure is related to the density and energy by the
equation of state

p=(—-1p (E - %Uiui) (2)

in which ~ is the ratio of specific heats. In the Navier-
Stokes equations the viscous stresses are assumed to
be linearly proportional to the rate of strain, or

_  fOui  Ouy ( Ous
oy =i (ge+ got) +a5 (). @

where 4 and A are the coefficients of viscosity and
bulk viscosity, and usually A = —2u/3.

The finite difference method, which requires the use
of a Cartesian or a structured curvilinear mesh, di-
rectly approximates the differential operators appear-
ing in these equations. In the finite volume method
[112], the discretization is accomplished by dividing
the domain of the flow into a large number of small
subdomains, and applying the conservation laws in
the integral form

2 de+/ f-dS=0.
0t Ja o0

Here f is the flux appearing in equation (1) and dS is
the directed surface element of the boundary 9§1 of
the domain ). The use of the integral form has the
advantage that no assumption of the differentiability
of the solutions is implied, with the result that it re-
mains a valid statement for a subdomain containing
a shock wave. In general the subdomains could be
arbitrary, but it is convenient to use either hexahe-
dral cells in a body conforming curvilinear mesh or
tetrahedrons in an unstructured mesh.

Alternative discretization schemes may be ob-
tained by storing flow variables at either the cell cen-
ters or the vertices. These variations are illustrated
in Figure 3 for the two-dimensional case. With a cell-
centered scheme the discrete conservation law takes
the form

3b: Vertex Scheme.

Figure 3: Structured and Unstructured Discretizations.

d
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where V' is the cell volume, and f is now a numeri-
cal estimate of the flux vector through each face. f
may be evaluated from values of the flow variables in
the cells separated by each face, using upwind bias-
ing to allow for the directions of wave propagation.
With hexahedral cells, equation (4) is very similar to



a finite difference scheme in curvilinear coordinates.
Under a transformation to curvilinear coordinates §;,
equation (1) becomes

0 o (06 .\ _
Zow+ g (152n) =0 @

where J is the Jacobian determinant of the transfor-
mation matrix [-g%lj The transformed flux J%:ffj
corresponds to the dot product of the flux f with a
vector face area J—gé%, while J represents the trans-
formation of the cell volume. The finite volume form
(4) has the advantages that it is valid for both struc-
tured and unstructured meshes, and that it assures
that a uniform flow exactly satisfies the equations,
because Y fy.0s S = 0 for a closed control volume.
Finite difference schemes do not necessarily satisfy
this constraint because of the discretization errors in
evaluating g% and the inversion of the transforma-
tion matrix. A cell-vertex finite volume scheme can be
derived by taking the union of the cells surrounding
a given vertex as the control volume for that vertex
[55, 71, 139]. In equation (4), V is now the sum of the
volumes of the surrounding cells, while the flux bal-
ance is evaluated over the outer faces of the polyhe-
dral control volume. In the absence of upwind biasing
the flux vector is evaluated by averaging over the cor-
ners of each face. This has the advantage of remaining
accurate on an irregular or unstructured mesh. An al-
ternative route to the discrete equations is provided
by the finite element method. Whereas the finite dif-
ference and finite volume methods approximate the
differential and integral operators, the finite element
method proceeds by inserting an approximate solu-
tion into the exact equations. On multiplying by a
test function ¢ and integrating by parts over space,
one obtains the weak form

2 [ = f{ 5w s

which is also valid in the presence of discontinuities
in the flow. In the Galerkin method the approximate
solution is expanded in terms of the same family of
functions as those from which the test functions are
drawn. By choosing test functions with local sup-
port, separate equations are obtained for each node.
For example, if a tetrahedral mesh is used, and ¢ is
piecewise linear, with a nonzero value only at a single
node, the equations at each node have a stencil which
contains only the nearest neighbors. In this case the
finite element approximation corresponds closely to a
finite volume scheme. If a piecewise linear approxi-
mation to the flux f is used in the evaluation of the
integrals on the right hand side of equation (6), these
integrals reduce to formulas which are identical to the
flux balance of the finite volume scheme.

Thus the finite difference and finite volume meth-
ods lead to essentially similar schemes on structured

meshes, while the finite volume method is essentially
equivalent to a finite element method with linear ele-
ments when a tetrahedral mesh is used. Provided that
the flow equations are expressed in the conservation
law form (1), all three methods lead to an exact can-
cellation of the fluxes through interior cell boundaries,
so that the conservative property of the equations is
preserved. The important role of this property in en-
suring correct shock jump conditions was pointed out
by Lax and Wendroff {97].

Non-oscillatory Shock Capturing Schemes
Local Extremum Diminishing (LED) Schemes

The discretization procedures which have been de-
scribed in the last section lead to nondissipative ap-
proximations to the KEuler equations. Dissipative
terms may be needed for two reasons. The first is
the possibility of undamped oscillatory modes. The
second reason is the need for the clean capture of

shock waves and contact discontinuities without un-
desirable oscillations. An extreme overshoot could re-
sult in a negative value of an inherently positive quan-
tity such as the pressure or density. The next sections
summarize a unified approach to the construction of
nonoscillatory schemes via the introduction of con-
trolled diffusive and antidiffusive terms. This is the
line adhered to in the author’s own work.

The development of non-oscillatory schemes has
been a prime focus of algorithm research for com-
pressible flow. Consider a general semi-discrete
scheme of the form

d
d—tvj = chk(vk - Uj). (7)
k#j

A maximum cannot increase and a minimum cannot
decrease if the coefficients ¢;; are non-negative, since
at a maximum v —v; < 0, and at a minimum v; —
vj 2 0. Thus the condition

is sufficient to ensure stability in the maximum
norm. Moreover, if the scheme has a compact sten-
cil, so that ¢;5 = 0 when j and k are not nearest
neighbors, a local maximum cannot increase and lo-
cal minimum cannot decrease. This local extremum
diminishing (LED) property prevents the birth and
growth of oscillations. The one-dimensional conser-

vation law P 5
in
— +5=flu)=0
ot fo( )
provides a useful model for analysis. In this case
waves are propagated with a speed a(u) = g{‘:,

and the solution is constant along the characteristics

%% = a(u). Thus the LED property is satisfied. In
fact the total variation
* 1 du
TV (u) :/ —ldr
oo |0z




of a solution of this equation does not increase, pro-
vided that any discontinuity appearing in the solution
satisfies an entropy condition [96]. Harten proposed
that difference schemes ought to be designed so that
the discrete total variation cannot increase [56]. If
the end values are fixed, the total variation can be
expressed as

TV(u) =2 (Z maxima - Z minima ) .

Thus a LED scheme is also total variation diminishing
(TVD). Positivity conditions of the type expressed in
equations (7) and (8) lead to diagonally dominant
schemes, and are the key to the elimination of im-
proper oscillations. The positivity conditions may be
realized by the introduction of diffusive terms or by
the use of upwind biasing in the discrete scheme. Un-
fortunately, they may also lead to severe restrictions
on accuracy unless the coeflicients have a complex
nonlinear dependence on the solution.

Artificial Diffusion and Upwinding

Following the pioneering work of Godunov [51], a
variety of dissipative and upwind schemes designed
to have good shock capturing properties have been
developed during the past two decades [162, 23, 98,
100, 146, 130, 56, 129, 166, 5, 68, 183, 62, 180, 13, 12,
11]. If the one-dimensional scalar conservation law

ov 0
— + =—flv)=0 9
=3 10) )
is represented by a three point scheme
dv; -
= = Ciay i mv) F ey (vm = vy),
the scheme is LED if
ct . >0, ¢, >0 (10)

ity = Ji—3
A conservative semidiscrete approximation to the
one-dimensional conservation law can be derived by
subdividing the line into cells. Then the evolution of
the value v; in the jth cell is given by
d‘Uj
Aza—{—h’]#%_hj—%: R (11)
where hj+l is an estimate of the flux between cells
J and j + 1. The simplest estimate is the arithmetic
average (fj+1+ f;)/2, but this leads to a scheme that
does not satisfy the positivity conditions. To correct
this, one may add a dissipative term and set

1
hj+% = §(fj+1 +f]') —aj+% (vj+1 —Uj). (12)

In order to estimate the required value of the coeffi-

cient 1, let ajyy be a numerical estimate of the

- of
wave speed 77,

fivi=tj if Uj+1¢vj

S . (13)
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where
Avjyy = Vi1 = Y5,

and the LED condition (10) is satisfied if

v
I
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If one takes 1

aj+% = 2 ’aﬂ-% ’

one obtains the first order upwind scheme

itz T f]'+1 if aj+% <0

This is the least diffusive first order scheme which
satisfies the LED condition. In this sense upwind-
ing is a natural approach to the construction of non-
oscillatory schemes. It may be noted that the success-
ful treatment of transonic potential flow also involved
the use of upwind biasing. This was first introduced
by Murman and Cole to treat the transonic small dis-
turbance equation [123].

Another important requirement of discrete schemes
is that they should exclude nonphysical solutions
which do not satisfy appropriate entropy conditions
[95], which require the convergence of characteristics
towards admissible discontinuities. This places more
stringent bounds on the minimum level of numerical
viscosity [113, 169, 128, 131]. In the case that the
numerical flux function is strictly convex, Aiso has
recently proved [2] that it is sufficient that

€ sign(vj41 — Uj)}

1
aj+% >max{§‘aj+%

for € > 0. Thus the numerical viscosity should be
rounded out and not allowed to reach zero at a point
where the wave speed a(u) = %ﬁ approaches zero.
This justifies, for example, Harten's entropy fix [56].
Higher order schemes can be constructed by intro-
ducing higher order diffusive terms. Unfortunately
these have larger stencils and coefficients of varying
sign which are not compatible with the conditions
(8) for a LED scheme, and it is known that schemes
which satisfy these conditions are at best first or-
der accurate in the neighborhood of an extremum.
It proves useful in the following development to in-
troduce the concept of essentially local extremum di-
minishing (ELED) schemes. These are defined to be
schemes which satisfy the condition that in the limit
as the mesh width Az — 0, local maxima are non-
increasing, and local minima are non-decreasing.



High Resolution Switched Schemes:
Jameson-Schmidt-Turkel (JST) Scheme

Higher order non-oscillatory schemes can be de-
rived by introducing anti-diffusive terms in a con-
trolled manner. An early attempt to produce a high
resolution scheme by this approach is the Jameson-
Schmidt-Turkel (JST) scheme [85]. Suppose that
anti-diffusive terms are introduced by subtracting
neighboring differences to produce a third order dif-
fusive flux

dj+§ =aj+% {Avﬁ% -

% <Avj+% +Av-_%)},
(15)
. . . . 1 3 8%
which is an approximation to §aA1: 773 The pos-
itivity condition (8) is violated by this scheme. It
proves that it generates substantial oscillations in the
vicinity of shock waves, which can be eliminated by
switching locally to the first order scheme. The JST
scheme therefore introduces blended diffusion of the
form

d..1 = +6(2) Av, 1
It+3 i+ Itz
(4; 2 (16)
- €j+% (Avj+% _2Avj+iv +Av]._%) ,
The idea is to use variable coefficients 6(2) , and 6(,4) 1
Jts Jt3

which produce a low level of diffusion in regions where

the solution’is smooth, but prevent oscillations near
(2)

i+3
order Az? where the solution is smooth, while €

is constructed so that it is of
(4)
its
is of order unity, both terms in d]-+% will be of order
Az3.

The JST scheme has proved very effective in prac-
tice in numerous calculations of complex steady flows,
and conditions under which it could be a total varia-
tion diminishing (TVD) scheme have been examined

by Swanson and Turkel [165]. An alternative state-
(2)

it+3
and €' , for the JST scheme to be LED is as follows:

discontinuities. If €

ment of sufficient conditions on the coeflicients €

Theorem 1 (Positivity of the JST scheme)
Suppose that whenever either vj.1 or v; is an ex-
tremum the coefficients of the JST scheme satisfy

2)
+}

> 4 = 0. (17)

5+

B =

6(,
J

Then the JST scheme is local extremum dimin-
ishing (LED).

Proof: We need only consider the rate of
change of v at extremal points. Suppose that v;
is an extremum. Then

@ _ (4 _
ej+%—ej_%-0,

and the semi-discrete scheme (11) reduces to

de (2) 1
AI‘EZ‘ = <€J,+%—'2"CL]-+% AU]'+%

and each coefficient has the required sign. O

In order to construct 6;2__)l and eg.“_)L with the de-
2 2
sired properties define
q
u—v ;
R(U,U): W fo#OOI"U#O (18)
0 fu=v=0,

where ¢ is a positive integer. Then R(u,v) = 1lifu
and v have opposite signs. Otherwise R(u,v) < 1.
Now set

Qj = R(AU]A,%»AU]*—%L Qj-}-% = ma.x(Qj,Qj+1).

and

@ _ @ _1

ej+%-—aj+%Qj+%, ej+§—2aj+%(1—Qj+%).
(19)

Symmetric Limited Positive (SLIP) Scheme

An alternative route to high resolution without os-
cillation is to introduce flux limiters to guarantee the
satisfaction of the positivity condition (8). The use of
limiters dates back to the work of Boris and Book [23].
A particularly simple way to introduce limiters, pro-
posed by the author in 1984 [68], is to use flux limited
dissipation. In this scheme the third order diffusion
defined by equation (15) is modified by the insertion
of limiters which produce an equivalent three point
scheme with positive coefficients. The original scheme
[68] can be improved in the following manner so that
less restrictive flux limiters are required. Let L(u,v)
be a limited average of u and v with the following
properties:

Pl. L(u,v) = L(v,u)

P2. L(ou,av) = al{u,v)
P3. L{u,u) =u

P4. L{u,v) = 0 if u and v have opposite signs: oth-
erwise L(u,v) has the same sign as u and v.

Properties (P1-P3) are natural properties of an aver-
age. Property (P4) is needed for the construction of
a LED or TVD scheme.

It is convenient to introduce the notation

¢(r) = L(1,7) = L(r, 1),

where according to (P4) ¢(r) > 0. It follows from

(P2) on setting a = % or % that
s = (2w (%)



Also it follows on setting v = 1 and u = 7 that

oy =ro (1)

Thus, if there exists 7 < O for which ¢(r) > 0, then
¢ () < 0. The only way to ensure that ¢(r) > 0 is
to require ¢(r) = 0 for all r < 0, corresponding to
property (P4).

Now one defines the diffusive flux for a scalar con-
servation law as

dj+% =044 {Avj+% —L(AvH%,Av-_%)}.

(20)
Set
- Avj_{_%’ - AUJ_%.
Avj_y Avjyy
and
L(Avﬁ%,Avj_%) = ¢(r+)AvJ_%
L(Av;_g, AU]+%) = d)(r‘)Avﬁ%.
Then,
dv;

1 -
Aa:? = {aﬂ,% ~ 5%+} +aj_%¢(r )}Avj+%

ey + 5oy T oot} duyy. 21

Thus the scheme satisfles the LED condition if
ajiy > %laﬂ_% for all j, and ¢(r) > 0, which
is assured by property (P4) on L. At the same time
it follows from property (P3) that the first order dif-
fusive flux is canceled when Av is smoothly varying
and of constant sign. Schemes constructed by this
formulation will be referred to as symmetric limited
positive (SLIP) schemes. This result may be summa-
rized as

Theorem 2 (Positivity of the SLIP scheme)

Suppose that the discrete conservation law (11)
contains a limited diffusive flur as defined by
equation (20). Then the positivity condition (14),
together with the properties (P1-P{) for limited
averages, are sufficient to ensure satisfaction of
the LED principle that a local mazimum cannot
increase and a local minimum cannot decrease. O

A variety of limiters may be defined which meet
the requirements of properties (P1-P4). Define

S(u,v) = % {sign(w) + sign(v)}

which vanishes is u and v have opposite signs.
Then two limiters which are appropriate are the
following well-known schemes:

1. Minmod:

L(u,v) = S(u,v) min(Jul, jv|)

2. Van Leer:

) ullv]
=SV

L(u,v)
In order to produce a family of limiters which con-
tains these as special cases it is convenient to set

L{u,v) = -;—D(u,v)(u +v),

where D(u,v) is a factor which should deflate the
arithmetic average, and become zero if u and v have
opposite signs. Take

q

u-—-v ’ (22)

D(u,v)=1-Ru,v) =1—- | ——
(u,2) ) e

where R(u,v) is the same function that was intro-
duced in the JST scheme, and ¢ is a positive integer.
Then D(u,v) = 0 if u and v have opposite signs.
Also if ¢ = 1, L(u,v) reduces to minmod, while if
g = 2, L(u,v) is equivalent to Van Leer’s limiter.

_ By increasing ¢ one can generate a sequence of lim-

ited averages which approach a limit defined by the
arithmetic mean truncated to zero when © and v have
opposite signs.

When the terms are regrouped, it can be seen that
with this limiter the SLIP scheme is exactly equiv-
alent to the JST scheme, with the switch is defined
as

Il

Qisy = R(Avj380,,)

@ _

Grp T i@y

@ _

€4y = %ty 1 QH% .

This formulation thus unifies the JST and SLIP
schemes.

Essentially Local Extremum Diminishing (ELED)
Scheme with Soft Limiter

The limiters defined by the formula (22) have the
disadvantage that they are active at a smooth ex-
trema, reducing the local accuracy of the scheme to
first order. In order to prevent this, the SLIP scheme
can be relaxed to give an essentially local extremum
diminishing (ELED) scheme which is second order ac-
curate at smooth extrema by the introduction of a
threshold in the limited average. Therefore redefine

D(u,v) as

U~
max(|u| + |v],eAzT)

D(u,v) =1 , o (23)

where r = %, q > 2. This reduces to the previous
definition if |u| + |v] > eAz".

In any region where the solution is smooth,
Avj+;21 - AUj_% is of order Az%. In fact if there
is a smooth extremum in the neighborhood of v;



or vj4+1, a Taylor series expansion indicates that
Avj+%, Avj+% and Avj_% are each individually
of order Az?, since g—” 0 at the extremum. It
may be verified that second order accuracy is pre-
served at a smooth extremum if ¢ > 2. On the other

or

hand the limiter acts in the usual way if IAUH%

Av;_ 3 ’
in the limit Az — 0 local maxima are non increas-
ing and local minima are non decreasing [79]. Thus
the scheme is essentially local extremum diminishing
(ELED).

The effect of the “soft limiter” is not only to im-
prove the accuracy: the introduction of a threshold
below which extrema of small amplitude are accepted
also usually results in a faster rate of convergence to
a steady state, and decreases the likelyhood of limit
cycles in which the limiter interacts unfavorably with
the corrections produced by the updating scheme.
In a scheme recently proposed by Venkatakrishnan
a threshold is introduced precisely for this purpose
[174].

> e¢Az", and it may also be verified that

Upstream Limited Positive (USLIP) Schemes

By adding the anti-diffusive correction purely from
the upstream side one may derive a family of up-
stream limited positive (USLIP) schemes. Corre-
sponding to the original SLIP scheme defined by
equation (20), a USLIP scheme is obtained by set-
ting

dj+% :aH% {AUH—% —L(AUH_%,AU]'_%>}

lfa]+% > 0, or

Ay = aguy {Bvsy = L (v, 80,4) )

if a1 < 0. aj+%‘ one recovers

a standard high resolution upwind scheme in semi-

discrete form. Consider the case that ajy} > 0 and
1 > 0. If one sets

Y

4 AU]-+% _ Avj_%
T = , T = s

Av-_l AU-_l

1=2 J—32

the scheme reduces to

e = 2 Lo Day + (2~ 667)a

To assure the correct sign to satisfy the LED crite-
rion the flux limiter must now satisfy the additional
constraint that ¢(r) < 2.

The USLIP formulation is essentially equivalent to
standard upwind schemes {130, 166]). Both the SLIP
and USLIP constructions can be implemented on un-
structured meshes [75, 79]. The anti-diffusive terms
are then calculated by taking the scalar product of
the vectors defining an edge with the gradient in the
adjacent upstream and downstream cells.

_%} A‘UJ-__
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Systems of Conservation Laws:
Flux Splitting and Flux-Difference Splitting

Steger and Warming [162] first showed how to gen-
eralize the concept of upwinding to the system of con-

servation laws

ow 0
§+5—z—f(w):0 (24)

by the concept of flux splitting. Suppose that the flux
issplitas f = f*¥+f~ where %‘% and %% have pos-
itive and negative eigenvalues. Then the first order
upwind scheme is produced by taking the numerical
flux to be

hivy = I+ fa
This can be expressed in viscosity form as

1 1
hivy = 2(.7+1+f+) Q(H'l 1)
1 1
+5 Ui+ 7) + 5 - f7)

= %(fj+1+fj)—dj+§’

where the diffusive flux is

1 _ -
dj+%=§A(f+—f )j+%. (23)
Roe derived the alternative formulation of flux dif-
ference splitting [146] by distributing the corrections
due to the flux difference in each interval upwind and
downwind to obtain

Az?d? +(firr = f) "+ (fi = fi-1)T =0,
where now the flux difference f;41 ~ f; is split. The
corresponding diffusive flux is

Ay = (A J+l_AfJ:r%>'

Following Roe’s derivation, let A, 1 be a mean value
Jacobian matrix exactly satisfying the condition

fiv1 = fy = Ajy (wism —wy). (26)

AH_% may be calculated by substituting the weighted
averages

_ VPt t VP

N m+m()
27

into the standard formulas for the Jacobian matrix

V0w Hj + /D H,;

A= EL A splitting according to characteristic fields
is now obtained by decomposing AJ+% as
_ -1

where the columns of T" are the eigenvectors of 4J+
and A is a diagonal matrix of the eigenvalues. Now
the corresponding diffusive flux is

1
3 'AH% (wj+1 = wj),



where

|Aj+%

and |A| is the diagonal matrix containing the absolute
values of the eigenvalues.

=T|A|T™!

Alternative Splittings

Characteristic splitting has the advantages that it
introduces the minimum amount of diffusion to ex-
clude the growth of local extrema of the characteris-
tic variables, and that with the Roe linearization it
allows a discrete shock structure with a single interior
point. To reduce the computational complexity one
may replace |A| by al where if « is at least equal to
the spectral radius max |A(A)|, then the positivity
conditions will still be satisfied. Then the first order
scheme simply has the scalar diffusive flux

=—aj+%ij+%. (29)

The JST scheme with scalar diffusive flux captures
shock waves with about 3 interior points, and it has
been widely used for transonic flow calculations be-
cause it is both robust and computationally inexpen-
sive.

An intermediate class of schemes can be formulated
by defining the first order diffusive flux as a combi-
nation of differences of the state and flux vectors

diyy = %a;+%c(wj+1 —wj) + %5j+% (fixr = fi)s
(30)

where the factor ¢ is included in the first term to

make a;+ , and ﬁj+% dimensionless. Schemes of this

class are fully upwind in supersonic flow if one takes

CXJ+1 =0and f§;;1 = sign(M) when the absolute
value of the Mach number M exceeds 1. The flux
vector f can be decomposed as
f=uw+ fp, (31)
where
0
fr= p (32)
up
Then

fivr=fi = @ (w1 — w;)+@ (i1 — w;)+fo, 00— fr;,
(33)

where 4 and w are the arithmetic averages

o1 -
U= 5 (U +uy;), 0=

5 = (Wi +wy).

2
Thus these schemes are closely related to schemes
which introduce separate splittings of the convective
and pressure terms, such as the wave-particle scheme
{141, 8], the advection upwind splitting method
(AUSM) [106, 176), and the convective upwind and
split pressure (CUSP) schemes [76].
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In order to examine the shock capturing properties
of these various schemes, consider the general case of
a first order diffusive flux of the form

d L B
i+§ T 9%+

2

3 (Wi —wy), (34)

where the matrix BH% determines the properties of
the scheme and the scaling factor Qjyy is included
for convenience. All the previous schemes can be ob-
tained by representing Bj+% as a polynomial in the
matrix Aj+% defined by equation (26). Schemes of
this class were considered by Van Leer [99]. According
to the Cayley-Hamilton theorem, a matrix satisfies its
own characteristic equation. Therefore the third and
higher powers of A can be eliminated, and there is no
loss of generality in limiting Bj+% to a polynomial of
degree 2,

2 -

B]+% Zaoj+a1AJ+%+a2AJ+% (33)

The characteristic upwind scheme for which Bj+% =
'Aj+ 1 l is obtained by substituting Aj+ L = TAT ™},
A2+1 = TA?T~!. Then ag, 1, and ay are deter-

mmed from the three equations

Qo + a1 Ak +a2)\2 =1|A], k=123
k

The same representation remains valid for three di-
mensional flow because Aj+% still has only three dis-
tinct eigenvalues u, u + ¢, u — ¢.

Analysis of Stationary Discrete Shocks

j+2

Figure 4: Shock structure for single interior point.

The ideal model of a discrete shock is illustrated
in figure (4). Suppose that wy and wpg are left and
right states which satisfy the jump conditions for a
stationary shock, and that the corresponding fluxes
are fr, = f(wy) and fr = f(wr). Since the shock
is stationary fr = fg. The ideal discrete shock has
constant states wy to the left and wp to the right,
and a single point with an intermediate value w ..
The intermediate value is needed to allow the discrete
solution to correspond to a true solution in which



the shock wave does not coincide with an interface
between two mesh cells.

Schemes corresponding to one, two or three terms
in equation (35) are examined in [80]. The analysis of
these three cases shows that a discrete shock structure
with a single interior point is supported by artificial
diffusion that satisfies the two conditions that

1. it produces an upwind flux if the flow is deter-
mined to be supersonic through the interface

2. it satisfies a generalized eigenvalue problem for
the exit from the shock of the form

(Aar — aarBag) (wp —wa) =0, (36)

where Aag is the linearized Jacobian matrix and
B 4 is the matrix defining the diffusion for the inter-
face AR. This follows from the equilibrium condition
hra = hgg for the cell j + 1 in figure 4. These
two conditions are satisfied by both the characteris-
tic scheme and also the CUSP scheme, provided that
the coefficients of convective diffusion and pressure
differences are correctly balanced. Scalar diffusion
does not satisfy the first condition. In the case of the
CUSP scheme (30) equation (36) reduces to

ate
Apa + ——

< 1+4 (wn

Thus wg — w4 is an eigenvector of the Roe ma-

trix Apa, and — 1+ﬁ is the corresponding eigenvalue.

Since the eigenvalues are u, u + ¢, and u — ¢, the only

choice which leads to positive diffusion when u > 0
is u — ¢, yielding the relationship

—wa) =0

a"c={1+p8)(c—u),0<u<c

Thus there is a one parameter family of schemes
which support the ideal shock structure. The term
B(fr — fa) contributes to the diffusion of the con-
vective terms. Allowing for the split (31), the total
effective coefficient of convective diffusion is ac =
a®c+ BU. A CUSP scheme with low numerical diffu-
sion is then obtained by taking a = |M]|, leading to
the coefficients illustrated in figure 5.

Figure 5: Diffusion Coefficients.
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CUSP_and Characteristic Schemes
Admitting Constant Total Enthalpy in Steady Flow

In steady flow the stagnation enthalpy H is con-
stant, corresponding to the fact that the energy and
mass conservation equations are consistent when the
constant factor H is removed from the energy equa-
tion. Discrete and semi-discrete schemes do not nec-
essarily satisfy this property. In the case of a semi-
discrete scheme expressed in viscosity form, equations
(11) and (12), a solution with constant H is admit-
ted if the viscosity for the energy equation reduces
to the viscosity for the continuity equation with p
replaced by pH. When the standard characteristic
decomposition (28) is used, the viscous fluxes for p
and pH which result from composition of the fluxes
for the characteristic variables do not have this prop-
erty, and H is not constant in the discrete solution.
In practice there is an excursion of H in the discrete
shock structure which represents a local heat source.
In very high speed flows the corresponding error in
the temperature may lead to a wrong prediction of
associated effects such as chemical reactions.

The source of the error in the stagnation enthalpy
is the discrepancy between the convective terms

p
ul pu |,
pH

in the flux vector, which contain pH, and the state
vector which contains pE. This may be remedied by
introducing a modified state vector

p
Wy = puU
pH

Then one introduces the linearization
fr—fr = An(wng — wr,).

Here A;, may be calculated in the same way as the
standard Roe linearization. Introduce the weighted
averages defined by equation (27). Then

0 1 0
Ay = | -2l arl, a-1
h Y 2 ¥ v

-uH H U

The eigenvalues of Ap are u, AT and A~ where

i\/(”lu)u gow g

AT = 7_+1u
2y

2y v

Now both CUSP and characteristic schemes which
preserve constant stagnation enthalpy in steady flow
can be constructed from the modified Jacobian ma-
trix Ay [80]. These schemes also produce a discrete
shock structure with one interior point in steady flow.



Then one arrives at four variations with this property,
which can conveniently be distinguished as the E- and
H-CUSP schemes, and the E- and H-characteristic
schemes.

Multidimensional Schemes

The simplest approach to the treatment of multi-
dimensional problems on structured meshes is to ap-
ply the one-dimensional construction separately in
each mesh direction. On triangulated meshes in
two or three dimensions the SLIP and USLIP con-
structions may also be implemented along the mesh
edges [79]. A substantial body of current research is
directed toward the implementation of truly multi-
dimensional upwind schemes in which the upwind bi-
asing is determined by properties of the flow rather
than the mesh. A thorough review is given by Pail-
liere and Deconinck in reference [132].

Residual distribution schemes are an attractive ap-
proach for triangulated meshes. In these the residual
defined by the space derivatives is evaluated for each
cell, and then distributed to the vertices with weights
which depend on the direction of convection. For a
scalar conservation law the weights can be chosen to
maintain positivity with minimum cross diffusion in
the direction normal to the flow. For the Euler equa-
tions the residual can be linearized by assuming that
the parameter vector with components ,/p,,/pu;, and
/PH varies linearly over the cell. Then

of;j(w)  Ow

= A
8Z‘j ]sz

where the Jacobian matrices 4; = g'f

with Roe averaging of the values of w at the ver-
tices. Waves in the direction n can then be expressed
in terms of the eigenvectors of n;A;, and a positive
distribution scheme is used for waves in preferred di-
rections. The best choice of these directions is the
subject of ongoing research, but preliminary results
indicate the possibility of achieving high resolution
of shocks and contact discontinuities which are not
aligned with mesh lines [132].

Hirsch and Van Ransbeeck adopt an alternative
approach in which they directly construct direc-

are evaluated

tional diffusive terms on structured meshes, with anti-
diffusion controlled by limiters based on comparisons
of slopes in different directions {60]. They also show
promising results in calculations of nozzles with mul-
tiply reflected oblique shocks.

High Order Godunov Schemes, and
Kinetic Flux Splitting

A substantial body of current research is directed
toward the implementation of truly multi-dimensional
upwind schemes [59, 135, 101]. Reference [132] pro-
vides a thorough review of recent developments in this
field. Some of the most impressive simulations of time
dependent flows with strong shock waves have been
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achieved with higher order Godunov schemes [180].
In these schemes the average value in each cell is up-
dated by applying the integral conservation law us-
ing interface fluxes predicted from the exact or ap-
proximate solution of a Riemann problem between
adjacent cells. A higher order estimate of the so-
lution is then reconstructed from the cell averages,
and slope limiters are applied to the reconstruction.
An example is the class of essentially non-oscillatory
(ENO) schemes, which can attain a very high order
of accuracy at the cost of a substantial increase in
computational complexity [32, 153, 151, 152]. Meth-
ods based on reconstruction can also be implemented
on unstructured meshes [13, 12]. Recently there has
been an increasing interest in kinetic flux splitting
schemes, which use solutions of the Boltzmann equa-
tion or the BGK equation to predict the interface
fluxes [42, 36, 45, 136, 181].

Discretization of the Viscous Terms

The discretization of the viscous terms of the
Navier Stokes equations requires an approximation
to the velocity derivatives -g—;: in order to calculate
the tensor 05, defined by equation (3). Then the vis-
cous terms may be included in the flux balance (4).
In order to evaluate the derivatives one may apply
the Gauss formula to a control volume V' with the
boundary S

auidv:/umde,
v 0z; s

where 1 is the outward normal. For a tetrahedral or
hexahedral cell this gives

== }: an; S (38)

faces

where U; is an estimate of the average of u; over the
face. If u varies linearly over a tetrahedral cell this is
exact. Alternatively, assuming a local transformation
to computational coordinates {;, one may apply the
chain rule

Ou [Ou] [86] Ou [0x - 19

Ox {85] [ax} S L%J )
Here the transformation derivatives g—IJL can be eval-
uated by the same ﬁnite difference formulas as the
velocity derivatives FFL In this case gg is exact if u
is a linearly varying function.

For a cell-centered discretization (figure 6a) g—é‘j
is needed at each face. The simplest procedure is to
evaluate %L in each cell, and to average —E* between
the two cells on either side of a face [87]. The result-
ing discretization does not have a compact stencil,
and supports undamped oscillatory modes. In a one-

dimensional calculation, for example, g—l—% would be

. . Ui42—2U;+Ujm2
discretized as ~**—7—7—=%. In order to produce a



compact stencil g—;; may be estimated from a control
volume centered on each face, using formulas (38) or
(39) [144]. This is computationally expensive because
the number of faces is much larger than the number
of cells. In a hexahedral mesh with a large number of
vertices the number of faces approaches three times
the number of cells.

This motivates the introduction of dual meshes for
the evaluation of the velocity derivatives and the flux
balance as sketched in figure 6. The figure shows

.- hE dualcell 4.
/“(,. o, r,—’ ‘~_0”
L J

6a: Cell-centered scheme. gy,.

"

of the primary mesh ters of the primary mesh

Figure 6: Viscous discretizations for cell-centered and
cell-vertex algorithms.

both cell-centered and cell-vertex schemes. The dual
mesh connects cell centers of the primary mesh. If
there is a kink in the primary mesh, the dual cells
should be formed by assembling contiguous fractions
of the neighboring primary cells. On smooth meshes
comparable results are obtained by either of these for-
mulations [114, 115, 107]. If the mesh has a kink the
cell-vertex scheme has the advantage that the deriva-
tives gf* are calculated in the interior of a regular
cell, with no loss of accuracy.

A desirable property is that a linearly varying ve-
locity distribution, as in a Couette flow, should pro-
duce a constant stress and hence an exact stress bal-
ance. This property is not necessarily satisfied in gen-
eral by finite difference or finite volume schemes on
curvilinear meshes. The characterization k-exact has
been proposed for schemes that are exact for poly-
nomials of degree k. The cell-vertex finite volume
scheme is linearly exact if the derivatives are eval-
uated by equation (39), since then g—;‘? is exactly
evaluated as a constant, leading to constant viscous
stresses 0, and an exact viscous stress balance. This
remains true when there is a kink in the mesh, be-
cause the summation of constant stresses over the
faces of the kinked control volume sketched in figure 6
still yields a perfect balance. The use of equation (39)
to evaluate g%}i, however, requires the additional cal-

culation or storage of the nine metric quantities —g%’-
J
in each cell, whereas equation (38) can be evaluated

! Cell-vertex scheme.
o;; evaluated at vertices o; evaluated at cell cen-
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from the same face areas that are used for the flux
balance.

In the case of an unstructured mesh, the weak form
(6) leads to a natural discretization with linear ele-
ments, in which the piecewise linear approximation
This method
yields a representation which is globally correct when
averaged over the cells, a result that can be proved by
energy estimates for elliptic problems [164]. It should
be noted, however, that it yields formulas that are
not necessarily locally consistent with the differen-
tial equations, if Taylor series expansions are substi-
tuted for the solution at the vertices appearing in the
local stencil. Figure 7 illustrates the discretization
of the Laplacian uzz + Uyy which is obtained with
linear elements. It shows a particular triangulation
such that the approximation is locally consistent with
Ugg + 3Uyy. Thus the use of an irregular triangula-
tion in the boundary layer may significantly degrade
the accuracy.

ylelds a constant stress in each cell.

Coefficients
resulting from
linear clements

Figure 7: Example of discretization Uz + uyy on
a triangular mesh. The discretization is locally equiva-
lent to the approximation Uz, = E“;r‘;l—”g"—ﬂﬂ,fiuyy =

3ug—6u.+3u
7 .

Time Stepping Schemes

If the space discretization procedure is imple-
mented separately, it leads to a set of coupled or-
dinary differential equations, which can be written in

the form
dw

o + R(w) =0,
where W is the vector of the flow variables at the
mesh points, and R(w) is the vector of the resid-
uals, consisting of the flux balances defined by the
space discretization scheme, together with the added
dissipative terms. If the objective is simply to reach
the steady state and details of the transient solution
are immaterial, the time-stepping scheme may be de-
signed solely to maximize the rate of convergence.
The first decision that must be made is whether to
use an explicit scheme, in which the space deriva-

(40)

tives are calculated from known values of the flow
variables at the beginning of the time step, or an



implicit scheme, in which the formulas for the space
derivatives include as yet unknown values of the flow
variables at the end of the time step, leading to the
need to solve coupled equations for the new values.
The permissible time step for an explicit scheme is
limited by the Courant-Friedrichs-Lewy (CFL) con-
dition, which states that a difference scheme cannot
be a convergent and stable approximation unless its
domain of dependence contains the domain of depen-
dence of the corresponding differential equation. One
can anticipate that implicit schemes will yield conver-
gence in a smaller number of time steps, because the
time step is no longer constrained by the CFL condi-
tion. Implicit schemes will be efficient, however, only
if the decrease in the number of time steps outweighs
the increase in the computational effort per time step
consequent upon the need to solve coupled equations.
The prototype implicit scheme can be formulated by
estimating %—Vzl at t + pAt as a linear combination of

R(w™) and R(wn+1). The resulting equation
whtl = wh-At {(1 - ) R (w") + uR (wrth)}

can be linearized as

(I + uAtg—Ivt) dw + AtR (w™) = 0.
If one sets 4 = 1 and lets At — 00 this reduces
to the Newton iteration , which has been successfully
used in two-dimensional calculations [173, 50]. In the
three-dimensional case with, say, an N X N X N mesh,
the bandwidth of the matrix that must be inverted is
of order N2, Direct inversion requires a number of
operations proportional to the number of unknowns
multiplied by the square of the bandwidth of the or-
der of N7. This is prohibitive, and forces recourse
to either an approximate factorization method or an
iterative solution method.

Alternating direction methods, which introduce
factors corresponding to each coordinate, are widely
used for structured meshes [17, 137]. They cannot
be implemented on unstructured tetrahedral meshes
that do not contain identifiable mesh directions, al-
though other decompositions are possible [108]. If one
chooses to adopt the iterative solution technique, the
principal alternatives are variants of the Gauss-Seidel
and Jacobi methods. A symmetric Gauss-Seidel
method with one iteration per time step is essentially
equivalent to an approximate lower-upper (LU) fac-
torization of the implicit scheme [86, 125, 31, 184].
On the other hand, the Jacobi method with a fixed
number of iterations per time step reduces to a multi-
stage explicit scheme, belonging to the general class of
Runge-Kutta schemes [33]. Schemes of this type have
proved very effective for wide variety of problems, and
they have the advantage that they can be applied
equally easily on both structured and unstructured
meshes [84, 67, 69, 145].
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If one reduces the linear model problem corre-
sponding to (40) to an ordinary differential equation
by substituting a Fourier mode @ = e the re-
sulting Fourier symbol has an imaginary part pro-
portional to the wave speed, and a negative real part
proportional to the diffusion. Thus the time stepping
scheme should have a stability region which contains
substantial intervals of both the negative real axis and
the imaginary axis. To achieve this it pays to treat the
convective and dissipative terms in a distinct fashion.
Thus the residual is split as

R(w) = Q(w) + D(w),

where Q(w) is the convective part and D(w) the dis-
sipative part. Denote the time level nAtf by a super-
script . Then the multistage time stepping scheme
is formulated as

w(n+1,0) — w™
wtLE) = g At (Q(k—l) i D(k—l))
wn+l — w(n+1,m)

where the superscript k& denotes the k-th stage, o, =
1, and

QO =

QW =
D& =

Q (w(n+1,k))
BrD (w(n—H,k)) + (1= B)DHD),

The coeflicients « are chosen to maximize the sta-
bility interval along the imaginary axis, and the coef-
ficients 3 are chosen to increase the stability interval
along the negative real axis.

These schemes do not fall within the standard
framework of Runge-Kutta schemes, and they have
much larger stability regions [69]. Two schemes which
have been found to be particularly effective are tab-
ulated below. The first is a four-stage scheme with
two evaluations of dissipation. Its coefficients are

al=%4 31——11
=1 =3 41
a;;:% Ps=0" (1)
Ot4=1 ,34=0

The second is a five-stage scheme with three evalua-
tions of dissipation. Its coeflicients are

041—%‘ B =1

@ =g By =0

a3:—§- (3 =0.56 . (42)
Qg = 3 Bs=0

0521 ﬂ5:044



Multigrid Methods
Acceleration of Steady Flow Calculations

Radical improvements in the rate of convergence
to a steady state can be realized by the multigrid
time-stepping technique. The concept of acceleration
by the introduction of multiple grids was first pro-
posed by Fedorenko [48]. There is by now a fairly
well-developed theory of multigrid methods for el-
liptic equations based on the concept that the up-
dating scheme acts as a smoothing operator on each
grid [24, 53]. This theory does not hold for hyper-
bolic systems. Nevertheless, it seems that it ought
to be possible to accelerate the evolution of a hyper-
bolic system to a steady state by using large time
steps on coarse grids so that disturbances will be
more rapidly expelled through the outer boundary.
Various multigrid time-stepping schemes designed to
take advantage of this effect have been proposed
[124, 65, 55, 71, 29, 6, 57, 83, 93].

One can devise a multigrid scheme using a sequence
of independently generated coarser meshes by elimi-
nating alternate points in each coordinate direction.
In order to give a precise description of the multigrid
scheme, subscripts may be used to indicate the grid.
Several transfer operations need to be defined. First
the solution vector on grid k must be initialized as

0
wi ) = Thp1wi_,

where wg— is the current value on grid £ — 1, and
Ty k-1 is a transfer operator. Next it is necessary
to transfer a residual forcing function such that the
solution grid k is driven by the residuals calculated
on grid £ — 1. This can be accomplished by setting

Py = Qpr—1Rp—1 (wr-1) — By [w,(co)] ,

where Qg k—1 is another transfer operator. Then
Ry (wy,) is replaced by Rg(wg) + Pk in the time-
stepping scheme. Thus, the multistage scheme is re-
formulated as

w) = wf? -aan [RY + R

wl(chrl) = w’(CO) - aQHAtk [Ri_q) + Pk] .

The result w,(cm) then provides the initial data for grid

k + 1. Finally, the accumulated correction on grid k
has to be transferred back to grid £ — 1 with the
aid of an interpolation operator lx_; . With prop-
erly optimized coefficients multistage time-stepping
schemes can be very efficient drivers of the multigrid
process. A W-cycle of the type illustrated in Fig-
ure 8 proves to be a particularly effective strategy for
managing the work split between the meshes. In a
three-dimensional case the number of cells is reduced
by a factor of eight on each coarser grid. On exami-
nation of the figure, it can therefore be seen that the
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Figure 8: Multigrid W-cycle for managing the grid cal-
culation. E, evaluate the change in the flow for one step;
T, transfer the data without updating the solution.

work measured in units corresponding to a step on
the fine grid is of the order of

1+42/8+4/64+ ... <4/3,

and consequently the very large effective time step
of the complete cycle costs only slightly more than a
single time step in the fine grid.

Multigrid Implicit Schemes for Unsteady Flow
Time dependent calculations are needed for a num-
ber of important applications, such as flutter analysis,
or the analysis of the flow past a helicopter rotor, in
which the stability limit of an explicit scheme forces
the use of much smaller time steps than would be
needed for an accurate simulation. In this situation
a multigrid explicit scheme can be used in an inner

iteration to solve the equations of a fully implicit time
stepping scheme [74].
Suppose that (40) is approximated as

thn+1 + R(wn—H) =0.

Here D; is a k" order accurate backward difference
operator of the form

k

1
— -\q
D, A7 q§:1 (A7),

o

where
A—wn+1 — wn+1 — wh.

Applied to the linear differential equation

dw

E:aw



the schemes with & = 1, 2 are stable for all At in the
left half plane (A-stable). Dahlquist has shown that
A-stable linear multi-step schemes are at best second
order accurate [38]. Gear however, has shown that
the schemes with k£ < 6 are stiffly stable [49], and
one of the higher order schemes may offer a better
compromise between accuracy and stability, depend-
ing on the application.

Equation (40) is now treated as a modified steady
state problem to be solved by a multigrid scheme us-
ing variable local time steps in a fictitious time t*.
For example, in the case k = 2 one solves

ow
= R
s = R (W)
where
* - 3 2 n 1 n—1
R*(w) = T + R(w) + =~ e

and the last two terms are treated as fixed source
terms. The first term shifts the Fourier symbol of
the equivalent model problem to the left in the com-
plex plane. While this promotes stability, it may also
require a limit to be imposed on the magnitude of
the local time step At* relative to that of the im-
plicit time step At. This may be relieved by a point-
implicit modification of the multi-stage scheme [119].
In the case of problems with moving boundaries the
equations must be modified to allow for movement
and deformation of the mesh.

This method has proved effective for the calcula-
tion of unsteady flows that might be associated with
wing flutter (3, 4] and also in the calculation of un-
steady incompressible flows [18]. It has the advantage
that it can be added as an option to a computer pro-
gram which uses an explicit multigrid scheme, allow-
ing it to be used for the efficient calculation of both
steady and unsteady flows.

Preconditioning

Another way to improve the rate of convergence to
a steady state is to multiply the space derivatives in
equation (1) by a preconditioning matrix P which is
designed to equalize the eigenvalues, so that all the
waves can be advanced with optimal time steps. A
symmetric preconditioner which equalizes the eigen-
values has been proposed by Van Leer [102]. When
the equations are written in stream-aligned coordi-
nates this has the form

LM* —IM 0 0 0
—ﬁM ETQ'+1 0 0 0
P = 0 0 T 0 0
0 0 0 0
0 0 0 01
where
B = t=V1-M? if M<l1
8 = V1I-M?*71= 1-—1\%, if M>1
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Turkel has proposed an asymmetric preconditioner
which has also proved effective, particularly for flow
at low Mach numbers [172]. The use of these precon-
ditioners can lead to instability at stagnation points
where there is a zero eigenvalue which cannot be
equalized with the eigenvalues xc.

The preconditioners of Van Leer and Turkel do not
take account of the effect of differences in the mesh
The
need to resolve the boundary layer generally forces the

intervals in the different coordinate directions.

introduction of mesh cells with very high aspect ra-
tios near the boundary, and these can lead to a severe
reduction in the rate of convergence to a steady state.
Pierce has recently obtained impressive results using
diagonal and block-Jacobi preconditioners which in-
clude the mesh intervals [133].

An alternative approach has recently been pro-
posed by Ta’asan [168], in which the equations are
written in a canonical form which separates the equa-
tions describing acoustic waves from those describing
convection. In terms of the velocity components u, v
and the vorticity w, temperature T, entropy 8 and to-
tal enthalpy H, the equations describing steady two-
dimensional flow can be written as

D, 0 0

D2 0 u
-2 £ -1 0 0 v
0 0 —¢ —yimDs §Ds || w | =0
0] 0 0 TpQ 0 8
0 0 0 0 pQ H
where
P 2 2y 0 9
D, = = - oo T WU
1 = ((c u )82 uvay)
_ P 2 2, 0 9
D2 = C_z ((C —Uu )-é—y-—u’l)a—x>
) 0
D3 = Ua—_.’l,‘ - U—a":l‘j-
0 0
Q = Usa +v8—y

Here the first two equations describe an elliptic sys-
tem if the flow is subsonic, while the remaining equa-
tions are convective. Now separately optimized multi-
grid procedures are used to solve the two sets of equa-
tions, which are essentially decoupled.

High Order Schemes and Mesh Refinement

The need both to improve the accuracy of com-
putational simulations and to assure known levels of
accuracy is the focus of ongoing research. The main
routes to improving the accuracy are to increase the
order of the discrete scheme and to reduce the mesh

interval. High order difference methods are most eas-
ily implemented on Cartesian, or at least extremely
smooth grids. The expansion of the stencil as the or-
der is increased leads to the need for complex bound-
ary conditions. Compact schemes keep the stencil as
small as possible [140, 104, 28]. On simple domains,



spectral methods are particularly effective, especially
in the case of periodic boundary conditions, and can
be used to produce exponentially fast convergence of
the error as the mesh interval is decreased [127, 27].
A compromise is to divide the field into subdomains
and introduce high order elements. This approach is
used in the spectral element method [92].

High order difference schemes and spectral meth-
ods have proven particularly useful in direct Navier-
Stokes simulations of transient and turbulent flows.
High order methods are also beneficial in compu-
tational aero-acoustics, where it is desired to track
waves over long distances with minimum error. If the
flow contains shock waves or contact discontinuities,
the ENO method may be used to construct high order
non-oscillatory schemes.

In multi-dimensional flow simulations, global re-
duction of the mesh interval can be prohibitively ex-
pensive, motivating the use of adaptive mesh refine-
ment procedures which reduce the local mesh width
h if there is an indication that the error is too large
[21, 39, 109, 61, 138, 103]. In such h-refinement meth-
ods, simple error indicators such as local solution gra-
dients may be used. Alternatively, the discretization
error may be estimated by comparing quantities cal-
culated with two mesh widths, say on the current
mesh and a coarser mesh with double the mesh in-
terval. Procedures of this kind may also be used to
provide a posteriori estimates of the error once the
calculation is completed. -

This kind of local adaptive control can also be ap-
plied to the local order of a finite element method to
produce a p-refinement method, where p represents
the order of the polynomial basis functions. Finally,
both A- and p- refinement can be combined to pro-
duce an h-p method in which h and p are locally op-
timized to yield a solution with minimum error {126].
Such methods can achieve exponentially fast conver-
gence, and are well established in computational solid
mechanics.

CURRENT STATUS
OF NUMERICAL SIMULATION

This section presents some representative numeri-
cal results which confirm the properties of the algo-
rithms which have been reviewed in the last section.
These have been drawn from the work of the author
and his associates. They also illustrate the kind of
calculation which can be performed in an industrial
environment, where rapid turn around is important
to allow the quick assessment of design changes, and
computational costs must be limited.

One-dimensional Shock

In order to verify the discrete structure of station-
ary shocks, calculations were performed for a one-
dimensional problem with initial data containing left
and right states compatible with the Rankine Hugo-
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niot conditions. An intermediate state consisting of
the arithmetic average of the left and right states
was introduced at a single cell in the center of the
domain. With this intermediate state the system is
not in equilibrium, and the time dependent equations
were solved to find an equilibrium solution with a
stationary shock wave separating the left and right
states. Table 1 shows the result for a shock wave at
Mach 20. This calculation used the H-CUSP scheme,
which allows a solution with constant stagnation en-
thalpy, with the limiter defined by equation (23), and
g = 3. The formulation is described in detail in ref-
erence (80]. The table shows the values of H, p, M
and the entropy S = log ;% ~ log (%Lr) A perfect
one point shock structure is displayed.L The entropy
is zero to 4 decimal places upstream of the shock, ex-
hibits a slight excursion at the interior point, and is
constant to 4 decimal places downstream of the shock.
It may be noted that the mass, momentum and en-
ergy of the initial data are not compatible with the
final equilibrium state. According to conservation ar-
guments the total mass, momentum and energy must
remain constant if the outflow flux fp remains equal
to the inflow flux f;. Therefore fg must be allowed
to vary according to an appropriate outflow bound-
ary condition to allow the total mass, momentum and
energy to be adjusted to values compatible with equi-

librium.
I H P M s
19 | 283.5000 1.0000 20.0000 . 0.0000
20 | 283.5000 1.0000 20.0000  0.0000
21{283.5000 1.0000 20.0000 0.0000

0.7229 40.3353
0.3804 37.6355
0.3804 37.6355
0.3804 37.6355

22 1283.4960 307.4467
231 283.4960 466.4889
24| 283.4960 466.4889
25 | 283.4960 466.4889

Table 1: Shock Wave at Mach 20

Euler Calculations for Airfoils and Wings

The results of transonic flow calculations for two well
known airfoils, the RAE 2822 and the NACA 0012,
are presented in figures (22-25). The H-CUSP scheme
was again used. The limiter defined by equation (23)
was used with ¢ = 3. The 5 stage time stepping
scheme (42) was augmented by the multigrid scheme
described in section 4.2 to accelerate convergence to
a steady state. The equations were discretized on
meshes with O-topology extending out to a radius of
about 100 chords. In each case the calculations were
performed on a sequence of successively finer meshes
from 40x8 to 320x64 cells, while the multigrid cy-
cles on each of these meshes descended to a coarsest
mesh of 10x2 cells. Figure 22 shows the inner parts of
the 160x32 meshes for the two airfoils. Figures 23-25
show the final results on 320x64 meshes for the RAE




2822 airfoil at Mach .75 and 3° angle of attack, and
for the NACA 0012 airfoil at Mach .8 and 1.25° angle
of attack, and also at Mach .85 and 1° angle of attack.
In the pressure distributions the pressure coefficient
Cp = fp—:ﬁz is plotted with the negative (suction)
pressures upward, so that the upper curve represents
the flow over the upper side of a lifting airfoil. The
convergence histories show the mean rate of change
of the density, and also the total number of super-
sonic points in the flow field, which provides a useful
measure of the global convergence of transonic flow
calculations such as these. In each case the conver-
gence history is shown for 100 cycles, while the pres-
sure distribution is displayed after a sufficient number
of cycles for its convergence. The pressure distribu-
tion of the RAE 2822 airfoil converged in only 25
cycles. Convergence was slower for the NACA 0012
airfoil. In the case of flow at Mach .8 and 1.25° angle

of attack, additional cycles were needed to damp out -

a wave downstream of the weak shock wave on the
lower surface.

As a further check on accuracy the drag coefficient
should be zero in subsonic flow, or in shock free tran-
sonic flow. Table 2 shows the computed drag coeffi-
cient on a sequence of three meshes for three exam-
ples. The first two are subsonic flows over the RAE
2822 and NACA 0012 airfoils at Mach .5 and 3° angle
of attack. The third is the flow over the shock free
Korn airfoil at its design point of Mach .75 and 0° an-
gle of attack. In all three cases the drag coefficient is
calculated to be zero to four digits on a 160x32 mesh.

Mesh | RAE 2822 NACA 0012 Korn Airfoil
Mach .50 Mach .50 Mach .75

a 3° a 3° a 0°

40x8 .0062 .0047 .0098
80x16 .0013 .0008 .0017
160x32 .0000 .0000 .0000

Table 2: Drag Coefficient on a Sequence of Meshes

As a further test of the performance of the H-CUSP
scheme, the flow past the ONERA M6 wing was cal-
culated on a mesh with C-H topology and 192x32x48
= 294912 cells. Figure 26 shows the result at Mach
.84 and 3.06° angle of attack. This again verifies
the non-oscillatory character of the solution, and the
sharp resolution of shock waves. In this case 50 cycles
were sufficient for convergence of the pressure distri-
butions.

Figure 9 shows a calculation of the Northrop YF23
by R.J. Busch, Jr., who used the author’s FLOS7 code
to solve the Euler equations [26]. Although an invis-
cid model of the flow was used, it can be seen that the
simulations are in good agreement with wind tunnel
measurements both at Mach .90, with angles of attack
of 0, 8 and 16 degrees, and at Mach 1.5 with angles
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of attack of 0, 4 and 8 degrees. At a high angle of
attack the flow separates from the leading edge, and
this example shows that in situations where the point
of separation is fixed, an inviscid model may still pro-
duce a useful prediction. Thus valuable information
for the aerodynamic design could be obtained with a
relatively inexpensive computational model.

Figure 9: Comparison of Experimental and Computed

~ Drag Rise Curve for the YF-23 (Supplied by R. J. Bush

Jr)

The next figures show the results of calculations
using the AIRPLANE code developed by T.J. Baker
and the author, to solve the Euler equations on an
unstructured mesh. This provides the flexibility to
treat arbitrarily complex configurations without the
need to spend months developing an acceptable mesh.
Figures 10 and 11 show calculations for supersonic
transport configurations which were performed by Su-
san Cliff. The agreement with experimental data is
quite good, and it has also been possible to predict
the sonic boom signature [34]. Figure 12 shows an
Euler calculation for the McDonnell Douglas MD11
with flow through the engine nacelles, using 348407
mesh points of 2100466 tetrahedra. This calculation
takes 4 hours on an IBM 590 workstation. A parallel
version of the code has been developed in collabora-
tion with W.S. Chen, and the same calculation can
be performed in 20 minutes using 16 processors of
an IBM SP2. The parallel speed-up for the MD11 is
shown in table 3.
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Figure 10: Comparison of Experimental and Calculated
Results for a HSCT Configuration

(No. of Nodes “ Seconds/Cycle ' Speedup ]

1 36.03 1.00
2 18.11 1.99
4 9.11 3.96
8 4.66 7.73
16 2.39 15.08

Table 3: AIRPLANE Parallel Performance on the SP2,
MD-11 Model

Viscous Flow Calculations

The next figures show viscous simulations based on
the solution of the Reynolds averaged Navier Stokes
equations with turbulence models. Figure 13 shows a
two-dimensional calculation for the RAE 2822 airfoil
by L. Martinelli. The vertical axis represents the neg-
ative pressure coefficient, and there is a shock wave
half way along the upper surface. This example con-
firms that in the absence of significant shock induced
separation, simulations performed on a sufficiently
fine mesh (with 512 x 64 cells) can produce excellent
agreement with experimental data. Figure 21 shows a
simulation of the McDonnell-Douglas F18 performed
by R.M. Cummings, Y.M. Rizk, L.B. Schiff and N.M.
Chaderjian at NASA Ames [37]. They used a multi-
block mesh with about 900000 mesh points. While
this is probably not enough for an accurate quantita-
tive prediction, the agreement with both the experi-
mental data and the visualization are quite good.

Figure 14 shows an unsteady flow calculation for
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Figure 11: Pressure Contours and Sconic Boom on a
Representative HSCT Configuration

AIRPLANE MD11
Mach 0.

sdoulation

Figure 12: Computed Pressure Field for a McDonnell
Douglas MD11

a pitching airfoil performed by J. Alonso using the
code UFLO82, which he jointly developed with L.
Martinelli and the author [4]. This uses the multi-
grid implicit scheme described in Section 3.7.2 which
allows the number of time steps to be reduced from
several thousand to 36 per pitching cycle. The agree-
ment with experimental data is quite good.

Ship Wave Resistance Calculations

Figures 15-17 show the results of an application
of the same multigrid finite volume techniques to the
calculation of the flow past a naval frigate, using a
code which was developed by J. Farmer, L. Martinelli
and the author [47]. The mesh was adjusted during
the course of the calculation to conform to the free
surface in order to satisfy the exact non-linear bound-
ary condition, while artificial compressibility was used
to treat the incompressible flow equations.
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Figure 13: Two-Dimensional Turbulent Viscous Calcu-
lation (by Luigi Martinelli)

AERODYNAMIC SHAPE OPTIMIZATION

Optimization and Design

Traditionally the process of selecting design vari-
ations has been carried out by trial and error, rely-
ing on the intuition and experience of the designer.
With currently available equipment the turn around
for numerical simulations is becoming so rapid that it
is feasible to examine an extremely large number of
variations. It is not at all likely that repeated trials in
an interactive design and analysis procedure can lead
to a truly optimum design. In order to take full ad-
vantage of the possibility of examining a large design
space the numerical simulations need to be combined
with automatic search and optimization procedures.
This can lead to automatic design methods which will
fully realize the potential improvements in aerody-
namic efficiency.

The simplest approach to optimization is to de-
fine the geometry through a set of design parameters,
which may, for example, be the weights a; applied
to a set of shape functions b;(z) so that the shape is
represented as

fle) = aibi(z).
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Figure 14: Mach Number Contours. Pitching Airfoil
Case. Re = 1.0 x 10%, M, = 0.796, K, = 0.202.

Then a cost function [ is selected which might, for
example, be the drag coefficient or the lift to drag ra-
tio, and I is regarded as a function of the parameters
«;. The sensitivities % may now be estimated by
making a small variation d¢; in each design param-
eter in turn and recalculating the flow to obtain the

change in I. Then

oI - Ho; +0ay) — I{ay)
da; Sy '

The gradient vector gé may now be used to deter-

mine a direction of improvement. The simplest pro-
cedure is to make a step in the negative gradient di-
rection by setting

a™! =" - Ma,

so that to first order

oIt oIT 81

More sophisticated search procedures may be used
such as quasi-Newton methods, which attempt to es-

2
timate the second derivative i’— of the cost func-
Ba; Oaj

tion from changes in the gradient —g—;— in successive op-
timization steps. These methods also generally intro-
duce line searches to find the minimum in the search
direction which is defined at each step. The main
disadvantage of this approach is the need for a num-
ber of flow calculations proportional to the number of
design variables to estimate the gradient. The com-
putational costs can thus become prohibitive as the
number of design variables is increased.



Figure 15: Contours of Surface Wave Elevation for a
Combatant Ship

Figure 16: Contours of Surface Wave Elevation Near
the Transom Stern

An alternative approach is to cast the design prob-
lemn as a search for the shape that will generate the
desired pressure distribution. This approach recog-
nizes that the designer usually has an idea of the the
kind of pressure distribution that will lead to the de-
sired performance. Thus, it is useful to consider the
inverse problem of calculating the shape that will lead
to a given pressure distribution. The method has the
advantage that only one flow solution is required to
obtain the desired design. Unfortunately, a physi-
cally realizable shape may not necessarily exist, unless
the pressure distribution satisfies certain constraints.
Thus the problem must be very carefully formulated;
otherwise it may be ill posed.

The difficulty that the target pressure may be
unattainable may be circumvented by treating the
inverse problem as a special case of the optimization
problem, with a cost function which measures the er-
ror in the solution of the inverse problem. For exam-

Figure 17: Pressure Contours in the Bow Region

ple, if pg is the desired surface pressure, one may take
the cost function to be an integral over the the body
surface of the square of the pressure error,

1
1= / (p — pa)2dB,
B

or possibly a more general Sobolev norm of the pres-
sure error. This has the advantage of converting a
possibly ill posed problem into a well posed one. It
has the disadvantage that it incurs the computational
costs associated with optimization procedures.

Application of Control Theory

In order to reduce the computational costs, it turns
out that there are advantages in formulating both
the inverse problem and more general aerodynamic
problems within the framework of the mathematical
theory for the control of systems governed by partial
differential equations [105]. A wing, for example, is a
device to produce lift by controlling the flow, and its
design can be regarded as a problem in the optimal
control of the flow equations by variation of the shape
of the boundary. If the boundary shape is regarded
as arbitrary within some requirements of smoothness,
then the full generality of shapes cannot be defined

with a finite number of parameters, and one must use
the concept of the Frechet derivative of the cost with
respect to a function. Clearly, such a derivative can-
not be determined directly by finite differences of the
design parameters because there are now an infinite
number of these. Using techniques of control theory,
however, the gradient can be determined indirectly by
solving an adjoint equation which has coefficients de-
fined by the solution of the flow equations. The cost
of solving the adjoint equation is comparable to that
of solving the flow equations. Thus the gradient can
be determined with roughly the computational costs
of two flow solutions, independently of the number of
design variables, which may be infinite if the bound-
ary is regarded as a free surface.



For flow about an airfoil or wing, the aerodynamic
properties which define the cost function are func-
tions of the flow-field variables (w) and the physical
location of the boundary, which may be represented
by the function F, say. Then

I=1(wF),
and a change in F results in a change

oIt 5 oIt
T aE
in the cost function. Using control theory, the gov-
erning equations of the flowfield are introduced as a
constraint in such a way that the final expression for
the gradient does not require reevaluation of the flow-
field. In order to achieve this dw must be eliminated
from (43). Suppose that the governing equation R
which expresses the dependence of w and F within
the flowfield domain D can be written as

51 = 5F, (43)

R(w,F) =0. (44)

Then dw is determined from the equation

o= (2] 5o [Z] 50 o

Next, introducing a Lagrange Multiplier ¢, we have
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Choosing ¥ to satisfy the adjoint equation
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the first term is eliminated, and we find that
51 =GoF,

where
oIT [GR}
= —= -9 |=—|.
oF OF
The advantage is that (47) is independent of dw, with
the result that the gradient of I with respect to an ar-
bitrary number of design variables can be determined
without the need for additional flow-field evaluations.
In the case that (44) is a partial differential equation,
the adjoint equation (46) is also a partial differential
equation and appropriate boundary conditions must
be determined.
After making a step in the negative gradient direc-
tion, the gradient can be recalculated and the process
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repeated to follow a path of steepest descent until a
minimum is reached. In order to avoid violating con-
straints, such as a minimum acceptable wing thick-
ness, the gradient may be projected into the allowable
subspace within which the constraints are satisfied.
In this way one can devise procedures which must
necessarily converge at least to a local minimum, and
which can be accelerated by the use of more sophis-
ticated descent methods such as conjugate gradient
or quasi-Newton algorithms. There is the possibility
of more than one local minimum, but in any case the
method will lead to an improvement over the original
design. Furthermore, unlike the traditional inverse
algorithms, any measure of performance can be used
as the cost function.

In reference [72] the author derived the adjoint
equations for transonic flows modelled by both the
potential flow equation and the Euler equations. The
theory was developed in terms of partial differen-
tial equations, leading to an adjoint partial differen-
tial equation. In order to obtain numerical solutions
both the flow and the adjoint equations must be dis-
cretized. The control theory might be applied directly
to the discrete flow equations which result from the
numerical approximation of the flow equations by fi-
nite element, finite volume or finite difference proce-
dures. This leads directly to a set of discrete adjoint
equations with a matrix which is the transpose of the
Jacobian matrix of the full set of discrete nonlinear
flow equations. On a three-dimensional mesh with in-
dices 1, 7, k the individual adjoint equations may be
derived by collecting together all the terms multiplied
by the variation dw; j of the discrete flow variable
wj j,k. The resulting discrete adjoint equations rep-
resent a possible discretization of the adjoint partial
differential equation. If these equations are solved ex-
actly they can provide an exact gradient of the inexact
cost function which results from the discretization of
the flow equations. On the other hand any consis-
tent discretization of the adjoint partial differential
equation will yield the exact gradient in the limit as
the mesh is refined. The trade-off between the com-
plexity of the adjoint discretization, the accuracy of
the resulting estimate of the gradient, and its impact
on the computational cost to approach an optimum
solution is a subject of ngoing research.

The true optimum shape belongs to an infinitely
dimensional space of design parameters. One motiva-
tion for developing the theory for the partial differen-
tial equations of the flow is to provide an indication in
principle of how such a solution could be approached
if sufficient computational resources were available.
Another motivation is that it highlights the possibil-
ity of generating ill posed formulations of the prob-
lem. For example, if one attempts to calculate the
sensitivity of the pressure at a particular location to
changes in the boundary shape, there is the possibility
that a shape modification could cause a shock wave to



pass over that location. Then the sensitivity could be-
come unbounded. The movement of the shock, how-
ever, is continuous as the shape changes. Therefore
a quantity such as the drag coefficient, which is de-
termined by integrating the pressure over the surface,
also depends continuousty on the shape. The adjoint
equation allows the sensitivity of the drag coefficient
to be determined without the explicit evaluation of
pressure sensitivities which would be ill posed.

The discrete adjoint equations, whether they are
derived directly or by discretization of the adjoint
partial differential equation, are linear. " Therefore
they could be solved by direct numerical inversion.
The cost of direct inversion can thus become pro-
hibitive as the mesh is refined, and it becomes more
efficient to use iterative solution methods. Moreover,
because of the similarity of the adjoint equations to
the flow equations, the same iterative methods which
have been proved to be efficient for the solution of
the flow equations are efficient for the solution of the
adjoint equations.

The control theory formulation for optimal aerody-
namic design has proved effective in a variety of ap-
plications [73, 77, 142]. The adjoint equations have
also been used by Ta’asan, Kuruvila and Salas [167],
who have implemented a one shot approach in which
the constraint represented by the flow equations is
only required to be satisfied by the final converged
solution, and computational costs are also reduced by
applying multigrid techniques to the geometry mod-
ifications as well as the solution of the flow and ad-
joint equations. Pironneau has studied the use of con-
trol theory for optimal shape design of systems gov-
erned by elliptic equations {134], and more recently
the Navier-Stokes equations, and also wave reflection
problems. Adjoint methods have also been used by
Baysal and Eleshaky {16].

Three-Dimensional Design using the Euler Equations
In order to illustrate the application of control theory
to aerodynamic design problems, this section treats
the case of three-dimensional wing design using the
inviscid Euler equations as the mathematical model
for compressible flow. A transformation to a body-
fitted coordinate system will be introduced, so that
variations in the wing shape induce corresponding
variations in the computational mesh. Thus the flow
is determined by the solution of the transformed equa-
tion (5). Let

311:1'

Ky = [56—;] ,J = det(K), K = [?—&—} ,

61‘]‘
and

Q=JK "

The elements of () are the coefficients of KX, and in a
finite volume discretization they are just the face ar-
cas of the computational cells projected in the 1, T,

and z3 directions. Also introduce scaled coutravari-
ant velocity components

Ui = Qiju]-.

The transformed equations can now be written as

aw  OF;

— 4+ —=0 48

ot 9¢; (48)
where

W =Juw
and
pU;

pUiur + Qup
pUsuz + Qizp
pUius + Qisp
pUiH
Assume now that the new computational coordinate
system conforms to the wing in such a way that the
wing surface By is represented by §& = 0. Then
the flow is determined as the steady state solution of
equation (48) subject to the flow tangency condition

F;=Qif; =

U, =0 on By. (49)

At the far field boundary B, conditions are specified
for incoming waves, as in the two-dimensional case,
while outgoing waves are determined by the solution.
The weak form of the Euler equations for steady
flow can be written as
T
aﬁ’-f«;d@ = / ni¢T FidB, - (50)
p 0& B
where the test vector ¢ is an arbitrary differentiable
function and n; is the outward normal at the bound-
ary. If a differentiable solution w is obtained to this
equation, it can be integrated by parts to give

T(‘)Fi
—dD =0
/D¢ 0¢&;

and since this is true for any ¢, the differential form
can be recovered. If the solution is discontinuous,
equation (50) may be integrated by parts separately
on either side of the discontinuity to recover the shock
jump conditions.

Suppose now that it is desired to control the surface
pressure by varying the wing shape. It is convenient
to retain a fixed computational domain. Variations
in the shape then result in corresponding variations
in the mapping derivatives defined by K. Introduce
the cost function

1
I= 5//8“/ (P_pd)2 d§,dés,

where py is the desired pressure. The design problem
is now treated as a control problem where the control
function is the wing shape, which is to be chosen to
minimize I subject to the constraints defined by the



flow equations (48-50). A variation in the shape will
cause a variation dp in the pressure and consequently
a variation in the cost function

51=//BW (p—pa)bp derdés.  (51)

Since p depends on w through the equation of state
(2), the variation dp can be determined from the vari-
ation dw. Define the Jacobian matrices
o,
ow’
The weak form of the equation for dw in the steady
state becomes

d¢7

- §FdD = / (n:¢T 6 F;)dB,
p 0& B

A= C; = QijAj. (52)

where

§F, = Cidw + 6Qy; fj,

which should hold for any differential test function ¢.
This equation may be added to the variation in the
cost function, which may now be written as

§I = //BW (p = pa) 6p d61dés

opT )
- ———6F; ) dD
/D < 3 oF;
+ / (nipT 6 F;) dB. (53)
B

On the wingvsurface Bw, n1 = n3 = 0 and it follows
from equation (49) that

- - r -

0 0
Q210p 0Q21p
0Fy = | Qadbp | +| 6Qup |- (54)
Q236p 6Q23p
L 0 J L 0 N

Since the weak equation for dw should hold for an
arbitrary choice of the test vector ¢, we are free to
choose ¢ to simplify the resulting expressions. There-
fore we set ¢ = 1), where the costate vector 9 is the
solution of the adjoint equation

oy _ C,T% =
ot v ag;
At the outer boundary incoming characteristics for ¥

correspond to outgoing characteristics for dw. Con-
sequently one can choose boundary conditions for ¥

0 inD. (55)

such that
ninC'i(Sw =0,

Then if the coordinate transformation is such that
6@ is negligible in the far field, the only remaining
boundary term is

- / WTSF, dedés.
Bw

Thus by letting 1) satisfy the boundary condition,
Q2192 + Qaztps + Q23vpa = (p —py) on Bw, (56)
we find finally that

AT
ol = — ——8§Q; f;dD
/D 0& 747

—/ (8Qnv2 + 6Qa2tps + Qa3ws ) pdéidEs. (37)
Bw

A convenient way to treat a wing is to introduce

n

=

e N

18a: x,y-Plane. 18h: &, n-Plane.

Figure 18: Sheared Parabolic Mapping.

sheared parabolic coordinates as shown in figure 18
through the transformation

20 (0) + 30(0) {€ ~ (1 + 56,07}

r =
y = () +a@EMm+S(0)
z = (.
Here £ = z1, ¥ = T3, 2 = x3 are the Cartesian

coordinates, and £ and 7+ &S correspond to parabolic
coordinates generated by the mapping

T +1y = %o + iyo + %a(C){€+i(n+5)}2
at a fixed span station (. zo ({) and yo ({) are the
coordinates of a singular line which is swept to lie just
inside the leading edge of a swept wing, while a () is
a scale factor to allow for spanwise chord variations.
We now treat S (€, () as the control. Substitution
of these formulas yields the variation in the form

5T = / / G(€,m3S(€, m)dedn

where the gradient G(£,n) is obtained by evaluating
the integrals in equation (57). Thus to reduce I we
can choose

3§ = —AG

where )\ is sufficiently small and non-negative. In
order to impose a thickness constraint we can define
a baseline surface Sg (£,¢) below which S(€,() is
not allowed to fall. Now we take A = A(£,() as a
non-negative function such that

Then the constraint is satisfied, while

51=_/ AG2de d¢ < 0.
Bw



The costate solution 9 is a legitimate test function
for the weak form of the flow equations only if it is dif-
ferentiable. Smoothness should also be preserved in
the redesigned shape. It is therefore crucially impor-
tant to introduce appropriate smoothing procedures.
In order to avoid discontinuities in the adjoint bound-
ary condition which would be caused by the appear-
ance of shock waves, the cost function for the target
pressure may be modified to the form

1 82Z\*
I = 5// (/\1Z+/\2 (5—5) >dfd77
b . 0z
ME - 55/\25‘5—17—10(1-
Then
82 &
6 = // ()\12(534—)\2—525553) dédn

il

//z ()\1 - 5‘%,\2%) §2 dedn

// ZépdEdn

and the smooth quantity Z replaces p — pq in the
adjoint boundary condition.

Independent movement of the boundary mesh
points could produce discontinuities in the designed
shape. In order to prevent this the gradient may be
also smoothed. Both explicit and implicit smooth-
ing procedures are useful. Suppose that the move-
ment of the surface mesh points were defined by local
B-splines. In the case of a uniform one-dimensional
mesh, a B-spline with a displacement d centered at
the mesh point ¢ would produce displacements d/4 at
i+ 1 and i — 1 and zero elsewhere, while preserving
continuity of the first and second derivatives. Thus
we can suppose that the discrete surface displacement
has the form

6S = Bd,

where B is a matrix with coefficients defined by the
B-splines, and d; is the displacement associated with
the B-spline centered at ¢. Then, using the discrete
formulas, to first order the change in the cost is

61 =GT6S = ¢TBd.

Thus the gradient with respect to the B-spline coef-
ficients is obtained by multiplying G by BT, and a
descent step is defined by setting

d = -ABTG, §S = Bd= -ABBT¢

where A is sufficiently small and positive. The coeffi-
cients of B can be renormalized to produce unit row
sums. With a uniform mesh spacing in the compu-
tational domain this formula is equivalent to the use
of a gradient modified by two passes of the explicit
smoothing procedure

1 2 1
Gik = ggi—l,k + §gi,k + 6Qi+l,k
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with a similar smoothing procedure in the k dis-
cretization.

Implicit smoothing may also be used. The smooth-
ing equation

—€ir 3 k(Girr ke —Gik) ey k(Gik=Gim1k) = Gk
approximates the differential equation

_ 8 8¢

9—5—568—€=g

If one sets §S = —AG, then to first order the change
in the cost is

81
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assuring an improvement if A is sufficiently small and
positive, unless the process has already reached a sta-
tionary point at which G = 0.

Design of Swept Wings for Very Low Shock Drag
The method has been used to carry out a study

of swept wing designs which might be appropriate

for long range transport aircraft. Since three dimen-

sional calculations require substantial computational
resources, it is extremely important for the practi-
cal implementation of the method to use fast solu-
tion algorithms for the flow and the adjoint equa-
tions. In this case the author's FLO87 computer pro-
gram has been used as the basis of the design method.
FLOS87 solves the three dimensional Euler equations
with a cell-centered finite volume scheme, and uses
residual averaging and multigrid acceleration to ob-
tain very rapid steady state solutions, usually in 25
to 50 multigrid cycles [66, 70]. Upwind biasing is
used to produce non-oscillatory solutions, and assure
the clean capture of shock waves. This is introduced
through the addition of carefully controlled numeri-
cal diffusion terms, with a magnitude of order Azdin
smooth parts of the flow. The adjoint equations are
treated in the same way as the flow equations. The
fluxes are first estimated by central differences, and
then modified by downwind biasing through numer-
ical diffusive terms which are supplied by the same
subroutines that were used for the flow equations.
The study has been focussed on wings designed for
cruising at Mach .83, with lift coefficients in the range
of .5 to .55. In every case, the wing planform was
fixed while the sections were free to be changed ar-
bitrarily by the design method, with a restriction on
the minimum thickness. The initial wing has a unit-
semi-span, with 38 degrees leading edge sweep. It has



a modified trapezoidal planform, with straight taper
from a root chord of 0.38, and a curved trailing edge
in the inboard region blending into straight taper out-
board of the 30 percent span station to a tip chord
of 0.10, with an aspect ratio of 9.0. The initial wing
sections were based on a section specifically designed
by the author’s two dimensional design method (73]
to give shock free flow at Mach 0.78 with a lift coef-
ficient of 0.6. This section, which has a thickness to
chord ratio of 9.5 percent, was used at the tip. Sim-
ilar sections with an increased thickness were used
inboard. The variation of thickness was non-linear
with a more rapid increase near the root, where the
thickness to chord ratio of the basic section was mul-
tiplied by a factor of 1.47. The inboard sections were
rotated upwards to give the initial wing 3.5 degrees
twist from root to tip. The two-dimensional pressure
distribution of the basic wing section at its design
point was introduced as a target pressure distribution
uniformly across the span. This target is presumably
not realizable, but serves to favor the establishment
of a relatively benign pressure distribution. The to-
tal inviscid drag coefficient, due to the combination
of vortex and shock wave drag, was also included in
the cost function. Since the main objective of the
study was to minimize the drag, the target pressure
distribution was reset after every fourth design cycle
to a distribution derived by smoothing the existing
pressure distribution. This allows the scheme more
freedom to make changes which reduce drag. The
calculations were performed with the lift coefficient
forced to approach a fixed value by adjusting the an-
gle of attack every fifth iteration of the flow solution.
It was found that the computational costs can be re-
duced by using only 15 multigrid cycles in each flow
solution, and in each adjoint solution. Although this
is not enough for full convergence, it proves sufficient
to provide a shape modification which leads to an im-
provement.

Figures 27 and 28 show a wing which was designed
for a lift coefficient of .50 at Mach .85. In order to
prevent the final wing from becoming too thin the
threshold Sy (€,m) was set at three quarters of the
height of the bump S (£,7) defining the initial wing.
This calculation was performed on a mesh with 192
intervals in the £ direction wrapping around the wing,
32 intervals in the normal 77 direction and 48 intervals
in the spanwise ( direction, giving a total of 294912
cells. The wing was specified by 33 sections, each with
128 points, giving a total of 4224 design variables.
The plots show the initial wing geometry and pressure
distribution, and the modified geometry and pressure
distribution after 40 design cycles. The total inviscid
drag coefficient was reduced from 0.0210 to 0.0112.
The initial design exhibits a very strong shock wave
in the inboard region. It can be seen that this is com-
pletely eliminated, leaving a very weak shock wave in
the outboard region. To verify the solution, the final
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geometry was analyzed with another method, using
the computer program FLO67. This program uses a
cell-vertex formulation, and has recently been modi-
fied to incorporate a local extremum diminishing algo-
rithm with a very low level of numerical diffusion {76].
When run to full convergence it was found that a bet-
ter estimate of the drag coefficient of the redesigned
wing is 0.0094 at Mach 0.85 with a lift coefficient of
0.5, giving a lift to drag ratio of 53. The results from
FLO67 for the initial and final wings are illustrated
in Figures 29 and 30. A calculation at Mach 0.500
shows a drag coefficient of 0.0087 for a lift coeflicient
of 0.5. Since in this case the flow is entirely subsonic,
this provides an estimate of the vortex drag for this
planform and lift distribution, which is just what one
obtains from the standard formula for induced drag,
Cp = CLZ/CWAR, with an aspect ratio AR = 9,
and an efficiency factor € = 0.97. Thus the design
method has reduced the shock wave drag coefficient
to about 0.0007 at a lift coefficient of 0.5. Figure 31
shows the result of an analysis for an off design point
with the Mach number increased to .86 with the same
lift coefficient of .5. This results in a flat-topped pres-
sure distribution terminating with a weak shock of
nearly uniform strength across the whole span. The
drag coefficient is .0097. The penalty of .0003 is so
small that this might be a preferred cruising condi-
tion.

A second wing was designed in exactly the same
manner as the first, starting from the same initial ge-
ometry and with the same constraints, to give a lift
coefficient of .55 at Mach .85. This produces stronger
shock waves and is therefore a more severe test of the
method. In this case the total inviscid drag coef-
ficient was reduced from 0.0243 to 0.0134 in 40 de-
sign cycles. Again the performance of the final design
was verified by a calculation with FLO67, and when
the result was fully converged the drag coefficient was
found to be 0.0115. A subsonic calculation at Mach
.500 shows a drag coefficient of 0.0107 for a lift co-
efficient of 0.55. Thus in this case the shock wave
drag coefficient is about 0.0008. For a representative
transport aircraft the parasite drag coeflicient of the
wing due to skin friction is about 0.0045. Also the
fuselage drag coefficient is about 0.0050, the nacelle
drag coefficient is about 0.0015, the empennage drag
coefficient is about 0.0020, and excrescence drag co-
efficient is about 0.0010. This would give a total drag
coefficient Cp = 0.0255 for a lift coefficient of 0.5,
corresponding to a lift to drag ratio L/D = 21.6.
This would be a substantial improvement over the
values obtained by currently flying transport aircraft.

Optimization of Complex Configurations

In order to treat more complex configurations one
can use a numerical grid generation procedure to pro-
duce a body-fitted mesh for the initial geometry, and
then modify the mesh in subsequent design cycles




by an analytic perturbation formula. In the two-
dimensional case, for example, with computational
coordinates &, 7, let the boundary displacement at

= 0 be §zp(£), Sys(€). Then the mesh points
along the radial coordinate lines £ = constant can be
replaced by

yielding
Q_ dR
( )79— SOy

Such a procedure has been implemented by J.
Reuther for the three-dimensional Euler equations,
and applied to the optimization of wing-body config-
urations [143].

It is also possible to show that in the continuous
limit the field integral in equation (57) can be elimi-
nated. Let the change in the coordinates Z; at fixed §
be §z;(€). Then, using the fact that the fluxes f;(w)
satisfy the flow equation (48), it is possible to show
by a direct calculation that

¢] . af] ow
6_5.:(5@1]}[_7 - Qz] 811) 8£ 5

where

¢ = K~16z.

A detailed derivation is given in reference [78]. Thus
the perturbation equation can be written as

{%{Ui(éw-l—éw‘)} =0

where dw is the variation in the solution at fixed §
caused by the change in the boundary, while dw* is
the change in the original solution w(§) correspond-
ing to the mesh movement 6x(§)

a¢;
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and if ¢ satisfies the adjoint equation the entire field
integral is eliminated, leaving only the boundary in-
tegral in equation (57).

In an actual discretization the field terms are not
zero, but this result suggests that they should be
small if a fine enough mesh is used, and might be
dropped. This allows a drastic simplification of the
treatment of complex configurations. Preliminary nu-
merical experiments with airfoil and wing calculations

indicate roughly the same convergence with and with-
out the field terms in the gradient.

OUTLOOK AND CONCLUSIONS

Better algorithms and better computer hardware
have contributed about equally to the progress of
computational science in the last two decades. In
1970 the Control Data 6600 represented the state of
the art in computer hardware with a speed of about
108 operations per second (one megaflop), while in
1990 the 8 processor Cray YMP offered a perfor-
mance of about 10° operations per second (one gi-
gaflop). Correspondingly, steady-state Euler calcu-
lations which required 5,000-10,000 steps prior to
1980 could be performed in 10-50 steps in 1990 us-
ing multigrid acceleration. With the advent of mas-
sively parallel computers it appears that the progress
of computer hardware may even accelerate. Teraflop
machines offering further improvement by a factor of
1,000 are likely to be available within a few years.
Parallel architectures will force a reappraisal of exist-
ing algorithms, and their effective utilization will re-
quire the extensive development of new parallel soft-
ware.

In parallel with the transition to more sophisti-
cated algorithms, the present challenge is to extend
the effective use of CFD to more complex applica-
tions. A key problem is the treatment of multiple
space and time scales. These arise not only in turbu-
lent flows, but also in many other situations such as
chemically reacting flows, combustion, flame fronts
and plasma dynamics. Another challenge, is pre-
sented by problems with moving boundaries. Ex-
amples include helicopter rotors, and rotor-stator in-
teraction in turbomachinery. Algorithms for these
problems can be significantly improved by innovative
concepts, such as the idea of time inclining. It can
be anticipated that interdisciplinary applications in
which CFD is coupled with the computational anal-
ysis of other properties of the design will play an in-
creasingly important role. These applications may
include structural, thermal and electromagnetic anal-
ysis. Aeroelastic problems and integrated control sys-
tem and aerodynamic design are likely target areas.

The development of improved algorithms continues

-
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Figure 19: Concept for a Numerical Wind Tunnel.
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to be important in providing the basic building blocks
for numerical simulation. In particular, better error
estimation procedures must be developed and incor-
porated in the simulation software to provide error
control. The basic simulation software is only one
of the needed ingredients, however. The flow solver
must be embedded in a user-friendly system for ge-
ometry modeling, output analysis, and data manage-
ment that will provide a complete numerical design
environment. These are the ingredients which are
needed for the full realization of the concept of a nu-
merical wind tunnel. Figures 19 and 20 illustrate the
way in which a numerical wind tunnel might evolve
from current techniques, which involve massive data
handling tasks, to a fully integrated design environ-
ment.

In the long run, computational simulation should
become the principal tool of the aerodynamic design
process because of the flexibility it provides for the
rapid and comparatively inexpensive evaluation of al-
ternative designs, and because it can be integrated in
a numerical design environment providing for both
multi-disciplinary analysis and multi-disciplinary op-
timization.
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. NO BLOWING

Figure 21: Navier-Stokes Predictions for the F-18 Wing-Fuselage at Large Incidence
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27a: Initial Wing

27b: 40 Design lterations
Cp = 0.5000, Cp = 0.0112, o = —0.283°

C. = 05001, Cp = 0.0210, a = —1.672°
Figure 27: Swept Wing Design Case (1), M = 0.85, Fixed Lift Mode.Drag Reduction at ', = .5.
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UPPER SURFACE PRESSURE

UPPER SURFACE PRESSURE

28b: 40 Design lterations
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Figure 28: Swept Wing Design Case (1), M = 0.85, Fixed Lift Mode.Drag Reduction at Cr,

28a: Initial Wing
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Figure 29: FLO67 solution for initial wing. M = 0.85, Cp = 0.4997, Cp = 0.0207, a = —1.970°.
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Figure 30: FLOS67 check on redesigned wing. M = 0.85, Cr = 0.4992, Cp = 0.0094, a = —0.300°.
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Figure 31: FLO67 check on redesigned wing at a higher Mach number. M = 0.86, Cp = 0.4988 Cp = 0.0097,
a = —0.440°.
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