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Introduction: The Design Problem as a Control Problem

The ultimate objective of the aerodynamic design is to optimize the geometric
shape of a configuration taking into account the trade-offs between aerodynamic
performance, structure weight, and the requirement for internal volume to con-
tain fuel and payload. The subtlety and complexity of fluid flow is such that it
is unlikely that repeated trials in an interactive analysis and design procedure
can lead to a truly optimum design. Progress toward automatic design has been
restricted by the extreme computing costs that might be incurred from brute
force numerical optimization. However, useful design methods have been devised
for various simplified cases, such as two-dimensional airfoils in viscous flows and
wings in inviscid flows [11]. The computational costs for these methods result
directly from the vast number of flow solutions that are required to obtain a
converged design.

Alternatively, it has been recognized that the designer generally has an idea
of the kind of pressure distribution that will lead to the desired performance.
Thus, it is useful to consider the inverse problem of calculating the shape that
will lead to a given pressure distribution. The method is advantageous, since
only one flow solution is required to obtain the desired design. Unfortunately,
a physically realizable shape may not necessarily exist, unless the pressure dis-
tribution satisfies certain constraints. Thus the problem must be very carefully
formulated.

The problem of designing a two-dimensional profile to attain a desired pres-
sure distribution was first studied by Lighthill, who solved it for the case of
incompressible flow with a conformal mapping of the profile to a unit circle [7].
The speed over the profile is

1

where ¢ is the potential which is known for incompressible flow and h is the
modulus of the mapping function. The surface value of h can be obtained by
setting ¢ = q4, where gq is the desired speed, and since the mapping function is
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analytic, it is uniquely determined by the value of A on the boundary. A solution
exists for a given speed goo at infinity only if

1
— ¢ qdf = qoo,
27r7{q q

and there are additional constraints on ¢ if the profile is required to be closed.

The difficulty that the objective may be unattainable can be circumvented
by regarding the design problem as a control problem in which the control is
the shape of the boundary. A variety of alternative formulations of the design
problem can then be treated systematically within the framework of the math-
ematical theory for control of systems governed by partial differential equations
[8]. This approach to optimal aerodynamic design was introduced by Jameson
[4,5], who examined the design problem for compressible flow with shock waves,
and devised adjoint equations to determine the gradient for both potential flow
and also flows governed by the Euler equations. More recently Ta’asan, Kuruvila,
and Salas, implemented a one shot approach in which the constraint represented
by the flow equations is only required to be satisfied by the final converged so-
lution [14]. Pironneau has studied the use of control theory for optimum shape
design of systems governed by elliptic equations [9] , while adjoint methods have
also been used by Baysal and Eleshaky [1].

Suppose that the control is defined by a function F(§) of some independent
variable £ or in the discrete case a vector with componets F;. Also suppose that
the desired objective is measured by a cost function I. This may, for example,
measure the deviation from a desired surface pressure distribution, but it can
also represent other measures of performance such as lift and drag. Thus the
design problem is recast into a numerical optimization procedure. This has the
advantage that if the objective, say, of a target pressure distribution, is unattain-
able, it is still possible to find a minimum of the cost function. Now a variation
8F in the control produces a variation 67 in the cost. Following control theory,
61 can be expressed to first order as an inner product

58I =(G,6F),

where the gradient G is independent of the particular variation 67, and can be
determined by solving an adjoint equation. For a discrete system of equations

(G.6F)=> GibF;
and for an infinitely dimensional system
(G,67) = / G (€) 6 F d.
In either case, if one makes a shape change
OF = =AG, (1)

where ) is sufficiently small and positive, then
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§I=-X(G,G) <0

assuring a reduction in 1.

For flow about an airfoil or wing, the aerodynamic properties which define
the cost function are functions of the flow-field variables (w) and the physical
location of the boundary, which may be represented by the function F, say. Then

I=1I(w,F),

and a change in F results in a change
6] = —bw+ ——=6F, (2)
w

in the cost function. Brute force methods evaluate the gradient by making a small
change in each design variable separately, and then recalculating both the grid
and flow-field variables. This requires a number of additional flow calculations
equal to the number of design variables. Using control theory, the governing
equations of the flowfield are introduced as a constraint in such a way that the
final expression for the gradient doas not require reevaluation of the flow field.
In order to achieve this Sw must be eliminated from (2). The governing equation
R expresses the dependence of w and F within the flowfield domain D,

R(w,F)=0,
Thus §w is determined from the equation

= [ s [22] 7o o

Next, introducing a Lagrange Multiplier ¢, we have

oIt oIt r([6R] . OR

eIt . [OR 81" L [OR
{5 " [Ga oo {57 - [ 7

Choosing % to satisfy the adjoint equation

[%grw: o (@)

the first term is eliminated, and we find that
§I = G6F (5)
where

oIT . [6R
C=%F Y [ﬁ]
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The advantage is that (5) is independent of §w, with the result that the gradient
of I with respect to an arbitrary number of design variables can be determined
without the need for additional flow-field evaluations. The main cost is in solving
the adjoint equation (4). In general, the adjoint problem is about as complex as
a flow solution. If the number of design variables is large, the cost differential
between one adjoint solution and the large number of flowfield evaluations re-
quired to determine the gradient by brute force becomes compelling. Instead of
introducing a Lagrange multiplier, ¢, one can solve (3) for éw as
-1

N
Ow

5“’:_[ oF

and insert the result in (2). This is the implicit gradient approach, which is
essentially equivalent to the control theory approach, as has been pointed out
by Shubin and Frank [12,13]. In any event there is and advantage in determining
the gradient G by the solution of the adjoint equation.

After making such a modification, the gradient can be recalculated and the
process repeated to follow a path of steepest descent (1) until a minimum is
reached. In order to avoid violating constraints, such as a minimum acceptable
wing thickness, the gradient may be projected into the allowable subspace within
which the constraints are satisfied. In this way one can devise procedures which
must necessarily converge at least to a local minimum, and which can be ac-
celerated by the use of more sophisticated descent methods such as conjugate
gradient or quasi-Newton algorithms. There is the possibility of more than one
local minimum, but in any case the method will lead to an improvement over
the original design. Furthermore, unlike the traditional inverse algorithms, any
measure of performance can be used as the cost function.

In order to illustrate the application of control theory to aerodynamic design
problems the next section presents the method for three-dimensional wing design
using the inviscid Euler equations as the mathematical model for compressible
flow.

Three Dimensional Design Using the Euler Equations

Tt proves convenient to denote the Cartesian coordinates and velocity compo-
nents by z, z2, 3 and u;, ug, us, and to use the convention that summation
over i = 1 to 3 is implied by a repeated index i. The three-dimensional Euler
equations may be written as

w i .
%—t 2:; =0 inD, (6)
where
P pU;
pu1 pusuy + péi1
w=< pup o, fi =< puiug + pdiz (7)
pus3 puiug + pdis

pE pu: H
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and 6;; is the Kronecker delta function. Also,
1.9
p=0-DpiE—5(u) (8)

and

pH = pE+p (9)

where v is the ratio of the specific heats. Consider a transformation to coordi-
nates &, &2, &3 where

oz; 0&;
K;; = L, J=det(K), K;'= .
=[5 =m0, k5= |5
Introduce contravariant velocity components as
U1 Uy
U » = K1 Uy
Us us
The Euler equations can now be written as
oW  OF;
— 4+ —=0 inD 10
ot Teg 0 M (10)
with
P pUs
UL pUiur + 524p
W=J< puz p, Fi=J< pUiuz + %P . (11)
pus pUsus + 5Eip
pE pU:H

Assume now that the new computational coordinate system conforms to the
wing in such a way that the wing surface By is represented by £ = 0. Then
the flow is determined as the steady state solution of equation (10) subject to
the flow tangency condition

Us =0 on Bw. (12)

At the far field boundary B, conditions are specified for incoming waves, as in
the two-dimensional case, while outgoing waves are determined by the solution.

Suppose now that it is desired to control the surface pressure by varying the
wing shape. It is convenient to retain a fixed computational domain. Variations
in the shape then result in corresponding variations in the mapping derivatives
defined by H. Introduce the cost function

I= %//BW (p — pa)? dé1dés,

where py is the desired pressure. The design problem is now treated as a control
problem where the control function is the wing shape, which is to be chosen to
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minimize I subject to the constraints defined by the flow equations (10-11). A
variation in the shape will cause a variation §p in the pressure and consequently
the a variation in the cost function

61 = //BW (p— pa) bp dsdés. (13)

Since p depends on w through the equation of state (8-9), the variation ép
can be determined from the variation éw. Define the Jacobian matrices

0fi _
Ai=g5 Ci= JK;'A; (14)
Then the equation for §w in the steady state becomes
0]
6F;) =0, 15
5z, (°F) (15)

where
6F; = Cibw + 6 (J?é_) fj.
(932]'

Now, multiplying by a vector co-state variable ¢ and integrating over the domain

" O6F;
/D. i ( 8¢; ) a6 =0,

and if 9 is differentiable this may be integrated by parts to give

o7 [ (nTsE,
/ (G o7) des = [ (naw™om) acs

where m; are components of a unit vector normal to the boundary. Thus the
variation in the cost function may now be written

_ _ (TN
6T = / /B =pa) b derdsy /Dj(a@ m)d&]

+ /B (nipT 6F;) dép.

(16)

On the wing surface By, n; = ng = 0 and it follows from equation (12) that

g%?ép 6 (JO%%)
6F =74 Lasp b+pd 6(1582) b (17)

Suppose now that 7 is the steady state solution of the adjoint equation
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o i
5~ Ci 3, =0 inD. (18)

At the outer boundary incoming characteristics for ) correspond to outgoing
characteristics for §w. Consequently, as in the two-dimensional case, one can
choose boundary conditions for 1 such that

T Ciéw = 0.

Then if the coordinate transformation is such that & (JK‘l) is negligible in the
far field, the only remaining boundary term is

—//BW T Fy d& dEs.

Thus by letting ¥ satisfy the boundary condition,
g 0 a
7 (e + ot + 22) —(r—ra) on B, (19)

we find finally that

oy’ o¢;
61 = aﬁf( 5)13 dép

//B {¢28§2 1/’38€2+7/) %}pd&d&,

(20)

Fig. 1.a. z,y-Plane. Fig. 1.b. £, n-Plane.

A convenient way to treat a wing is to introduce sheared parabolic coordi-
nates as shown in figure 1 through the transformation
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v =20(0) +50(0) {& ~ 1+ (60}
v =90 () +a(QEm+S(E0)
z=2C.

Here z = z1, y = xa, z = z3 are the Cartesian coordinates, and £ and n + S
correspond to parabolic coordinates generated by the mapping

m—i—iy=m0+iyo+%a(C){§+i(n+S)}2

at a fixed span station (. 2 (¢) and yp (¢) are the coordinates of a singular line
which is swept to lie just inside the leading edge of a swept wing, while a () is a
scale factor to allow for spanwise chord variations. The surface 7 = 0 is a shallow
bump corresponding to the wing surface, with a height S (£, () determined by

the equation
£+iS = /2 (zp,, + YBw )s

where zp,, (z) and yp,, (2) are coordinates of points lying on the wing surface.
We now treat S (£, () as the control.

In this case the transformation matrix g%—;— becomes
(a(6—(n+S)Se) —aln+S8) A—a(n+S5)S;
K= a(n+S+£S¢) a& B+ alSe
i 0 0 1
_.’115 Ty A+ :E,,SC
= | Y YUy B+ ynSC )
(0 0 1
where
r—x Yy —1
A=ag a 0+a:0<, B:aﬁy J0+y0<'
Now,
J = zeyn — Tyye = 2+ (n+ S)Z
and
Yy  —iy B — ypA
JEK = | —ye a¢ yeA—aB—JS
0 0 J

Then under a modification S

bz¢ = —a (68S¢ + (n + S) 65¢)

bxy = —adS
bye = a (68 + 6555)
by, = 0.

Thus
§J =2a% (n+S)6S
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and
0 abS | —aBéS
§(JK™') = | —6yg | b¢ D
0 0 &J
where

D = bye A — 8B — ac 65 — 615, — J8S..
a

Inserting these formulas in equation (20) we find that the volume integral in 61

’ /// ‘WT&sf2 d¢ dn d¢

T
/// o0 {~6yef1 + bz fo + Dfs}dE dn dC

/ / / @—T&st de dn d,

where S and 685 are 1ndependent of 1. Therefore, integrating over n, the variation
in the cost function can be reduced to a surface integral of the form

6 = // (P(€,0)65 — Q(£,0) 65¢ — R(£,C) 6S¢) d€ d
Bw

Here
= a (2 + Sepz + Cos) p

6¢T
/ (Efi+(n+8) o+ (EA+ (n+S)B) fo} d

6 T
1” (F1 + S fo + Cfa) dn

81[1T

Q=a(a+n+S)y3)p
+/%{ fi+ ) A SYB d
an {fi+m+8) f2+ (EA+(n+S)B) fs}dn

R = Jyup
/ 985 1padn,
J

C=2a(n+$)54—./4—655+g‘

where

Also the shape change will be confined to a boundary region of the { — ¢ plane,
so we can integrate by parts to obtain
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61_//BW( +6£)55 de dc.

Thus to reduce I we can choose

- oQ
88 = ,\<P+ T C)"

where A is sufficiently small and non-negative.
In order to impose a thickness constraint we can define a baseline surface

So (£,¢) below which S(£,() is not allowed to fall. Now if we take A = A (&,Q)

as a non-negative function such that

Then the constraint is satisfied, while
2
// (P+ +8—IE) d¢ d¢ <0.
Bw ¢

Implementation for swept wings

Since three dimensional calculations require substantial computational resources,
it is extremely important for the practical implementation of the method to use
fast solution algorithms for the flow and the adjoint equations. In this case
the author’s FLO8T7 computer program has been used as the basis of the design
method. FLOS8T solves the three dimensional Euler equations with a cell-centered
finite volume scheme, and uses residual averaging and multigrid acceleration to
obtain very rapid steady state solutions, usually in 25 to 50 multigrid cycles
[2,3]. Upwind biasing is used to produce nonoscillatory solutions, and assure
the clean capture of shock waves. This is introduced through the addition of
carefully controlled numerical diffusion terms, with a magnitude of order Az
in smooth parts of the flow. The adjoint equations are treated in the same way
as the flow equations. The fluxes are first estimated by central differences, and
then modified by downwind biasing through numerical diffusive terms which are
supplied by the same subroutines that were used for the flow equations.

The method has been tested for the optimization of a swept wing. The wing
planform was fixed while the sections were free to be changed arbitrarily by the
design method, with a restriction on the minimum thickness. The wing has a
unit-semi-span, with 38 degrees leading edge sweep. It has a modified trapezoidal
planform, with straight taper from a root chord of 0.38, and a curved trailing edge
in the inboard region blending into straight taper outboard of the 30 percent
span station to a tip chord of 0.10, with an aspect ration of 9.0. The initial
wing sections were based on a section specifically designed by the author’s two
dimensional design method [4] to give shock free flow at Mach 0.78 with a lift
coefficient of 0.6. The pressure distribution is displayed in figure 2. This section,
which has a thickness to chord ration of 9.5 percent, was used at the tip. Similar
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sections with an increased thickness were used inboard. The variation of thickness
was non-linear with a more rapid increase near the root, where the thickness to
chord ratio of the basic section was multiplied by a factor of 1.47. The inboard
sections were rotated upwards to give the initial wing 3. degrees twist from root
to tip.

The two dimensional pressure distribution of the basic wing section at its
design point was introduced as a target pressure distribution uniformly across
the span. This target is presumably not realizable, but serves to favor the es-
tablishment of relatively benign pressure distribution. The total inviscid drag
coefficient, due to the combination of vortex and shock wave drag, was also in-
cluded in the cost function. Calculations were performed with the lift coefficient
forced to approach a fixed value by adjusting the angle of attack every fifth
iteration of the flow solution. It was found that the computational costs can
be reduced by using only 15 multigrid cycles in each flow solution, and in each
adjoint solution. Although this is not enough for full convergence, it proves suf-
ficient to provide a shape modification which leads to an improvement. Figures
3 and 4 show the result of a calculation at Mach number of 0.85, with the lift
coefficient forced to approach a value of 0.5. This calculation was performed on a
mesh with 192 intervals in the ¢ direction wrapping around the wing, 32 intervals
in the normal 7 direction and 48 intervals in the spanwise ¢ direction, giving a
total of 294912 cells. The wing was specified by 33 sections, each with 128 points,
giving a total of 4224 design variables. The plots show the initial wing geometry
and pressure distribution, and the modified geometry and pressure distribution
after 10 design cycles. The total inviscid drag was reduced from 0.0209 to 0.0119.
The initial design exhibits a very strong shock wave in the inboard region. It can
be seen that this is completely eliminated, leaving a very weak shock wave in
the outboard region. The drag reduction is mainly accomplished in the first four
design cycles but the pressure distribution continues to be adjusted to become
more like the target pressure distribution.

To verify the solution, the final geometry, after 10 design cycles, was analyzed
with another method using the computer program FLOG67. This program uses
a cell-vertex formulation, and has recently been modified to incorporate a local
extremum diminishing algorithm with a very low level of numerical diffusion [6].
When run to full convergence it was found that the redesigned wing has a drag
coefficient of 0.0096 at Mach 0.85 at a lift coefficient of 0.5, with a corresponding
lift to drag ratio of 52. The result for @ = 0.0° and C, = 0.505 is illustrated in
Figure 5: this seems to be the nearest to a shock free condition. A calculation at
Mach 0.500 shows a drag coefficient of 0.0089 for a lift coefficient of 0.5. Since
in this case the flow is entirely subsonic, this provides an estimate of the vortex
drag for this planform and lift distribution, which is just what one obtains from
the standard formula for induced drag, Cp = C1,?/er AR, with an aspect ratio
AR =9, and an efficiency factor € = 0.97. Thus the design method has reduced
the shock wave drag coefficient to about 0.0007 at a lift coefficient of 0.5. For a
representative transport aircraft the parasite drag coeflicient of the wing due to
skin friction is about 0.0045. Also the fuselage drag coefficient is about 0.0050,
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the nacelle drag coefficient is about 0.0015, the empennage drag coefficient is
about 0.0020, and excrescence drag coeflicient is about 0.0010. This would give
a total drag coefficient Cp = 0.0236 for a lift coefficient of 0.5, corresponding
to a lift to drag ratio L/D = 21. This would be a substantial improvement over
the values obtained by currently flying transport aircraft.

Conclusion

In the period since this approach to optimal shape design was first proposed
by the author [4], the method has been verified by numerical implementation
for both potential flow and flows modeled by the Euler equations. It has been
demonstrated that it can be successfully used with a finite volume formulation to
perform calculations with arbitrary numerically generated grids [10]. The first
results which have been obtained for swept wings with the three dimensional
Euler equations suggest that the method has now matured to the point where
it can be a very useful tool for the design of new airplanes. Even in the case of
three dimensional flows, the computational requirements are so moderate that
the calculations can be performed with workstations such as the IBM RISC 6000
series. A design cycle on a 192x32x48 mesh takes about 1%— hours on an IBM
model 530 workstation, allowing overnight completion of a design calculation for
a swept wing.
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Fig. 2. Initial Wing Section and Target Pressure Distribution
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Fig. 3.a. Lifting Design Case, Fig. 3.b. Lifting Design Case,
M = 0.85, Fixed Lift Mode. M = 0.85, Fixed Lift Mode.
Initial Wing 10 Design Iterations

C; = 0.5000, Cy = 0.0209, o = —1.349° C; = 0.5000,Cy = 0.0119, o = 0.033°
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UPPER SURFACE PRESSURE

Fig. 4.a. Lifting Design Case,

M = 0.85, Fixed Lift Mode.

Cr = 0.5000, Cp = 0.0209, o = —1.349°
Drag Reduction

UPPER SURFACE PRESSURE

Fig. 4.b. Lifting Design Case,

M = 0.85, Fixed Lift Mode.

C1 = 0.5000, Cp = 0.0119, o = 0.033°
Drag Reduction
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Fig. 5.a. FLO67 check on redesigned
wing,

M = 0.85, Cr = 0.5051, Cp = 0.0099
a = 0.0°

Span station z = 0.00

s .
2
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i
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Fig. 5.c. FLO67 check on redesigned
wing.

M = 0.85, C, = 0.5051, Cp = 0.0099
a=0.0°

Span station z = 0.625

This book was processed by the author using the TEX macro package from Springer-

Verlag.
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Fig. 5.b. FLOG67 check on redesigned
wing.

M = 0.85, C = 0.5051, Cp = 0.0099
a=0.0°

Span station z = 0.312

<p

Fig.5.d. FLO67 check on redesigned

wing.

M = 0.85, C1 = 0.5051, Cp = 0.0099

o =0.0°
Span station z = 0.937






