Calculation of Transonic Potential Flowfields

. -
About Complex, Three-Dimensional Configurations

Kk

k%
D. A. Caughey  and Antony Jameson

ABSTRACT

Methods for extending iterative, Tinite-difference calculations of
transonic potential flowfields to complex three-dimensional configurations
are discussed. One particularly attractive approach is to use relatively
simple conformal mappings in combination with shearing transformations to
generate computational domains that are nearly-conformally mapped from the
physical space in one family of coordinate surfaces, and which map the
complex boundaries to grid surfaces. The application of such a method to a
general wing-body combination or to a mu]tib?aded fan is discussed. A
transformation to map the wing-fuselage or fan-hub combination to a con-
venient computational domain is proposed. The transformation is useful in
its own right for treating the two-dimensional problems of flow past a
profile in a wind tunnel or through a cascade. Some rvesults of preliminary

calculations are presented.
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INTRODUCTION

In recent years, iterative solutions of finite-difference approximations
to the transonic potential equation have met with remarkable success. These
methods have been used to predict the inviscid, mixed flowfields about air-
foi]s] , wings2 , and simple wing-boay combinations3 within the framework
of small-disturbance theory; they have also been applied to calculate the

A55 , bodies of revoiution5’€

inviscid, transonic flowfields about airfoils
nace]]es7’% and ob]iqué’and swepgowings using the full potential equation.

There are two computational advantages of using small-disturbance theory.
First, the equétion is somewhat simpler,and its type is completely determined
by the coefficient of the dyx term, allowing the construction of reléﬁive]y simp}g
type-dependent differencing schemes. Second, the boundary conditions can usually
be transferred to some mean surface which can often be chosen as a coordinate
plane in a simple cartesian system. For complex geometries, this is a great
simplification, since the treatment of boundary conditions in cases when the
boundary surface does not coincide with grid points is generally either very
complicated and time-consuming or inaccurate.

When using the full potential equation'thé use of such mean surface
approximations is generally inconsistent witﬁ the accuracy of the equation
jtself. The alternatives are (1) to use interpolation formulas to apply the
boundary conditions at the grid points nearest the boundary surfaces, or (2)
to use coordinate transformations which reduce the boundaries to coordinate
surfaces. At the present time it is not clear which approach is better for
the handling of complex geometr1cQ1 shapes. The 1nterpo]at10n schemes re-
quire additional complexity in the difference codes to treat the var1ety of

mesh-boundary intersections that may occur; the transformation method adds



complexity to the equations themselves, and may require additional storage.
for transformation derivatives. Our approach is the 1attér. In this case
the bdundary conditions are satisfied exactly (in a finite-difference sense)
on the boundary surfaces; it is also hoped that since the transformations
need be calculated only once at the beginning of the solution, the method

will compare favorably in terms of speed with the grid-interpolation methods.




PROPOSED ANALYSIS

Conformal transformations have proved a useful tool for the finite-
difference calculation of two dimensional flowfields. A preliminary trans-
formation is performed which maps the body boundary onto some canonical curve
(e.g;, a profile onto the unit circle), and a finite-difference grid is set
up in convenient coordinates in the mapped plane for which the canonical curve
is a coordinate line. A difference approximation to the transformed equation
is then solved by relaxation, with the boundary conditions applied along the
appropriate coordinate lines.

Much of the advantage of this approach is lost when we go to problems in

‘three dimensions, because there is no generalization of conformal mapping in

this case. Also, if we perform sepérate conformal mappings to canonical curves
in each of some family of coordinate surfaces, we lose orthogonality, so that
numerous mapping derivatives have to be calculated. The Tabor of determining
the map'functions at each point of the grid, and the storage required to save
them for repeated use during the iterative solution of the difference equations,
can then become excessive. |

An attractive alternative approach has been used by Jameson for calculating
thé threé~dimensiona1bf1ow past yawed9 and swept]o wfngs. The same basic |

jdea has been applied to the flow past axisymmetric inlet nacelles by Caughey

‘and Jameson7. The method consists of applying a simple conformal transformation

(which can usually be generated by elementary functions) in each of one family
of coordinate surfaces which almost maps the boundary surfaces to coordinate
planes. A shearing transformation is then introduced to complete the mapping

of the boundaries to coordinate surfaces. This final transformation renders



the coordinate system non-orthogonal, but if the initial conformal mapping is
carefu11y chosen, the shearing is everywhere slight, and the weak non-
orthogonality seems not to cause any stability problems

For the analysis of flow past an isolated, three-dimensional wing, a
convenient mapping is the square root transformation applied in planes contain-
ing the wing section. If the branch point of the transformation is located
just inside the leading edge of the profile at each spanwise stat1on, this has
the effect of mapping the wing Qurface to a sha110w bump, which can then be
reduced to a plane by a simple shearing transFormat1on. The square-root
transformation is particularly nice because the mapping modulus and its deriva-
tives can all be calculated from the coordinates in the mapped plane using
only algebraic (non-transcendental) functions. Thus, there is 1ittle to be
gained by storing the mapping derivatives; rather they can be rapidly calculated
each time they are needed. The result of a typical calculation using this
method is presented in Figure 1.

To treat more complex configurations in a similar manner, we need to
reduce all boundary surfaces to shallow bumps by simple mappings. An example
of the next level of complexity we have in mind is shown in Figure 2. He
consider a wing mountedvon a fuselage having a circular cross-section of
varying radius denoted by R(x). We assume the flow is symmetric about the
vertical plane containing the fuselage centerline, so that we may apply a
symmetry condition there and consider the flow only in the half space.

We first define a singular line, just inside the leading edge of the wing,
which will later be used as the branch point in a con%orma] map to "unwrap"

the wing surface. The location of this singular 1ine can be denoted as
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where xé, yé will correspond to the local sweep and dihedral, respectively, of

the singular Jline. If we then intreduce the coordinates

{i

X = X - xs(z) s

i

y=y-y(z)

and finally

y = ;§2 + 2% JR(x)

6 = tan” (y/z)

the geometry will be transformed to that shown in Figure 3. A surface of

r = constant will then look 1ike Figure 4. It is in these surfaces, then,
that we wish to introduce our nearly-conformal transformations. Note that the
geometry of Figure 4 corresponds in the two-dimensional case to the flow past
a profile in a solid-walled wind tunnel or, if the symmetry conditions at

o =+ /2 are replaced by periodicity conditions, to the flow past one blade

in an infinite, two-dimensional cascade.

The transformation which is the generalization of Jameson's square—foot map-
ping to this case can be.shown to be (after a rescaling of 6 and a shift in the
origin)

X *+ i0 = log {1. - cosh ¢} , (1)
where ¢ = £ + in . A schematic representation of the g-plane is shown in
Figure 5a. The upper and lower symmetry Tines (tunnel walls) map to the
negative and positive real axes, respectively. The profile maps to a slight
bump, near the line n = w. If we Jet S(&) be the width of the infinite strip

in the z-plane, then the final shearing transformation
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X =t

Y = n/S(X)

reduces the strip to one of constant width, as shown in Figure 5b.

A complete sketch of the three-dimensional coordinate.system is shown in
Figure 6. The space is infinite in the directions of *+ X, r, but the computa-
tional domain can be rendered a finite rectangular parallelepiped by
suitable stretching transformations in these directions.

Finally, it can be mentioned that the above-described coordinate system
is a logical one to use for the prob]eﬁ of flow through a fan (or propeller)
or a three-dimensional cascade. Figure 7 shows the type of‘geometry that
might be treated in this way. In this case the range of ¢ treated would be
Timited to the interval [~ 2u/N, Zn/N], where N is the number of Tan {(or cas-
cade) blades, and the symmetry condition applied on these planes would be
replaced by the requirement of periodicity.

A fundamental difference between this problem and that of the wing-
fuselage combination is that the onflow would now be rotational in the reference
frame rotating with the blades. For cases in which tﬁe onflow is irrotational
in an absolute frame, however, a reduced potential can be introduced to describe
the velocity field in terms of the gradient of a single scalar potential plus

a constant rotational component. (See, e.g., Vavra]].)



PRELIMINARY RESULTS

To demonstrate the efficacy of the coordinate system Jjust described for
the calculation of three-dimensional flows, some preliminary two-dimensional
calculations have been performed using the mapping of Eq. (1). These parti-
cular calculations have been performed using the symmetry condition on the
lines g = & n/Z? and hence correspond to the flow past a profile in a non-~
ventilated, or solid-wall wind tunnel.

A sketch of the finite-difference mesh produced by this transformation is
shown in Figure 8. The sketch shows the point distribution for a very crude
grid containing 32 x 8 mesh cells, and is for the geometry of the original
Korn airfoil in a tunnel having a total height six times the airfoil chord.

To avoid difficulties at infinity, the singular part of the velocity

potential is removed, and the calculation is performed in terms of the reduced

potential

G=¢-%X ,
where, from Eq. (1),

% = log{cosh g-- cos n).
If we define T =1/8(g) »

) - Z sinh &
- and u ¢g cosh g~-cosn % Gy * YgGY i
- - sin n ‘ +

v *n T Cosh £ - cosn T & >

the planar potential equation becomes
AGyy + BGyy T CGyy + DGy +°E =0 » (2)
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with A= al - U,
U(TV + Y U)
B=—2{ é«fL—wYaZ} ,
h : £
s g (VY )2
C=a (T + YV 5) - g
£ h2
b= (a2 - uZhn T - 2r Y
| h
[ = ~U2 + V2 1 - cosh & cos n 9 UY sinh & sin n
h2 (cosh & - cos n)?2 h2 (cosh & - cos n)2

_—(UZ + VZ) U sinh gcosn+ V cosh £ sinn
pd )2

(cosh £€~-cos n

where a is the local speed of sound, and h2 is the square of the modulus of the

map function

i 1_12 _ cosh £ + cos n
cosh & - €0S n

The prgfi1e shape downstream of the trailing edge is continued smbo£h1y
to infinity in the computational domain, and allowance is made for a constant
jump in potential across this cut in the physical plane. The magnitude of
this jump is determined by the Kutta condition at the trailing edge of the
- profile.

A finite-difference form of Eq. (2) is solved using the rotated differ-
encing scheme first suggested by Jamesong; The equation is solvedsubject to

the conditions that




. sinh & sin n
S : - + G -
G = cosh E - ¢cosn X cosh & - cosn

T(1 + S‘Z)

on the profile surface,

on the symmetry lines, and

Gy = 0

at downstream infinity. The problem for G is thus a purely Neumann one, and
the value of G is allowed to float to an arbitrary level during the course of
the iteration.

A comparison of two such solutions is shown in Figure 9. The resu1t§ are
for the flow at M_ = 0.75 past the Korn airfoil at zero angle of attack, and
are calculated on a grid containing 128 x 32 mesh cells in the X and Y
directions, respectively. One calculation is for the profile in a tunnel having a
total height six times the airfoil chord: the other in a tunnel having a total

height four times the airfoil chord.



A REMARK ON TWO-DIMENSTONAL CASCADE CALCULATIONS

While the basic mapping of Eq. (1) can be used to perform two-dimensional
cascade or wind-tunnel calculations as demonstrated in the preceding section,
it is not necessarily the best coordinate system for these problems. For the
numerical calculation of flows past isolated profiles, the most accurate
resu?fs tb'date have been performed fn coordinéte syﬁteﬁs which conformally
map the exterior of the profile to the interior of the unit circ1e4’5, as mentionad
in the introduction. This has the advantage of allowing a large number of
grid points to be placed on the airfoil surface, and of easily allowing con-
centrations of the points at both the leading and trailing edges of the pro-
file (the latter being especially important for aft-cambered airfoils which
have large gradients there).

The analogous mapping for the cascade problem would be to map the physical
geometry to a ring. One possible mapping to perform this transformation can
be visualized in two steps as shown in Figure 10. First we map the infinite
strip with a finite slit to a plane with two sl]its on the real axis, e.g.,
by |

z = - log W,

where z = x + iy and w = u + iv are the complex variables in the physical and
mapped planes, respectively. Then the mapping of these slits to concentric circles

L : o 2
can be expressed in terms of the E11iptic Integral (sece Kober]“)

IC , ds
o ﬁf@s(s—])(s—ez)-

= exp

~ila
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where e, is the value of u at the image of the profile trailing edge in the w
plane, and ¥ is the radius of the inner circle of the ring. The profile would
be mapped to a nearly circular contour near the outer circle by this seqguence
of transformations. This contour could be mapped conformally to an exact

circle by an iterative scheme similar to that used to map an isclated profile
to a circle, or else a simple shearing transformation could be used to make it

a coordinate line.
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CONCLUSION

Some ideas for handling complex threé—dimensiona] geometries in the finite-
difference calculation of inviscid transonic flow patterns have been presented.
An attractive approach seems to be to use nearly conformal maps in a family of
coordinate surfaces which reduce the boundarfes to those of the computational
~grid. A convenient mapping for use in calculations involving wing-fuselage
combinations, fans, or three-dimensional cascades has been introduced, and
sample results demonstrating its success in two-dimensional problems have been
presented. Possible conformal mappings for the two-dimensional cascade (or wind
tunnel) problem are also briefly discussed. These ideas have.already proven
effective in the calculation of transonic flows past swept and yawed wings.

On the basis of these successes, we may expect the further application of these
ideas to result in solutions with adequate accuracy for a variety of important
engineering problems.

Finally, it should be noted that three-dimensional calculations require a
substantial amount of computer time. For example, the swept wing calculation
of Figure 1 requires about 75 minutes on the CDC 6600 (or 15-20 minutes on the
CDC 7600). There are, however, a number of promising possibilities for accelerat-
ing the rates of convergence of the iterative schemes. For example, extrapolated
_re]axation7, alternating direction methods]3, fast elliptic-solvers used in con-
junction with re]axation7’14y and a multi-grid method]5 have all been success-
fully applied to transonic problems. Thus, there appéars to be the prospect of

substantial reductions in the cost of these calculations.
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Figure Captions

Figure 1 (a) Geometry of Swept Wing.

~Figure 1 (b) Upper and Lower Surface Pressure Distributions on

Swept Wing.

Figure 2 Geometry of Wing-Fuselage Combination.

Figure 3 ’ Normalized Geometry of Ning—Fuseiage Combination.
Figure 4 Surface of r = constant, (1 < r < rtip)'

Figure 5 Nearly-Conformal Mapping of r = constant Surf;ces.
Fﬁgure 6 Sketch of Boundaries in Computational Domain.
Figure 7 Geometry of an N-Bladed Fan.

Figure 8 ~ Representative Mesh Distribution in Physical Plane

(32 x 8 Grid).

Figure 9 (a) Pressure Distribution on Korn Airfoil in a Wind Tunnel,
h/c = 6.0.

Figure 9 (b) Pressure Distribution on Korn Airfoil in a Wind Tunnel,
h/c = 4.0.

Figure 10 A Mapping for Two-Dimensional Cascade Calculations.



Figure 1 (a) Geometry of Swept Wing.
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Figure 1 (b) Upper and Lower Surface Pressurce Distributions ¢n

Swept Wing.

UPPER SURFACE PRESSURE LOWER SURFACE PRESSURE
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(a) Plan View (b) Front View

Figure 2 Geometry of Wing-Tuselage Combination.
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Figure 3 Normalized Geometry of Wing-Fuselage Combination.
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(b) Computational Plane (after shearing),
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Figure 5 Nearly-Conformal Mapping of r = constant Surfaces.
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Geometry of an N-bladed Fan.
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Figure 9 (b) Pressure Distribution on Korn Airfoil in a Wind Tunnel,
h/c = 4.0.
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Figure 10 A Mapping for Two-Dimensional Cascade Calculations. .



