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ABSTRACT

The finite-volume method of Jameson and
Caghey provides a framework within which it is
possible to calculate transonic potential flows
about essentially arbitrary geametrical oconfig-
urations. Improvements designed to increase the
sccuracy of the basic scheme and its oonsistency
in the far field will be described. These include
the incorporation of an artificial viscosity which
mintains the formal second-order accuracy of the
scheme in supersonic zones, and a modification of
the flux balances to allow the free-stream
conditions to satisfy the difference equations
identically. Results of calculations illustrating
the importance of these effects will be
presentd.

I. Introduction

The finite-volume methods of Jameson and
(hugheyl'z'3 provide a general framework
vithin which it is relatively easy tn calculate
the transonic potential flow past essentially
arhitrary geometrical configurations. Like
finite—clament methods, these methods use only
lral properties of the transformations which
gererate the difference-grid. This feature
essentially decouples the solution of the
transonic flow equations from the grid-generating
step, so that minor modifications of a universal
tlgorithm can be applied in any boundary-
conforming coordinate system. Although the
initial variants of these methods used line
relaxation to solve the difference equations, the
alti-grid/altermating-direction~implicit (MAD)
scheme of Jameson? has also been applied to
provide high rates of convergence to very smll
residuals for two-dimensional calculations.®

Two particular features of the formulation of
the finite-volume methods will be addressed in the
present paper, with the aim of improving the
Sccuracy and consistency of the method. The
first is an improved artificial viscosity which
fnm’s retention of formal second-order accuracy
in swersonic zones; the second is a modification
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of the scheme which allows the freestream
conditions to be satisfied identically by the
difference equations. In the following sections,
the fully-conservative finite-volume method will
first be briefly reviewed, including-the changes
necessary to retain second-order accuracy in
supersonic zones. The problem of consistency with
the free—stream solution will then be discussed
and a remedy proposed. Finally, results of
calculations incorporating these changes will be
presented and discussed.

II. Analysis

A. Finite-Volume Scheme

For convenience, here and throughout the
peper the analysis will be described for a
two-dimensional problem, and only distinguishing
features of the extension to three-dimensional
problems will be discussed. The equations of
steady, inviscid, isentropic flow can be
represented as follows, et x,y be (artesian
coordinates and u,v be the corresponding
components of the velocity vector q. Then the
continuity equation can be written as

(guy, *+ (g, = 0, e}

where € is the local density. This is given by
the isentropic law

1
k-1 2 2. k-1
¢ = +5 Mg -q)), @
where k is the ratio of specific heats, and My,
is the freestream Mach nunber. The pressure p
and the speed of sound a follow from the
relations

P o= @ /i), )
and
2 . ek—-lm‘g. )
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Consider now a transformation to a new set of
coordinates X,Y. Let the Jacobian matrix of the
transformation be defined by

x X1 - :
Ho=g X Y} , (5)
Yx Yy
and let h denote the determinant of H. The
metric tensor of the new coordinate system is
given by the matrix H'H , and the

contravariant components of the velocity vector
U,V are given by -

(e ff - owft)

where ¢ 1is the velocity potential. Eg.(l), upon
multiplication by h, can then be written

(phl)y + (gh¥)y = O. N

The fully-conservative finite-volume
approximation corresponding to Eq.(7) is
constructed by assuming separate bilinear
variations of the independent and dependent
variables within each mesh cell.
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Mesh cell in Physical and Computational' Domeins.

Numbering the cell vertices as illustrated in the
sketch above, and assuming that the local
coordinates Xy = x1/2, Yy =% 1/2 at the
vertices, the local mapping can be written

4
x = 42;;1(1/4 +XX(1/4+ YD, (8)
i=1
where x; 1is the x~coordinate of the i-th
vertex. Similar formlas are assumed to hold for
y and @. At a cell center, this transformation
yields formulas for derivatives such as

A = l/2(x2 ~x + X3 = x4). 9)

If we introduce the averaging and differencing
operators

It = V202,59 * fioaye, g0

St g

(10)
(1e1/2,5 = tim1y2,5)

then the transformation dervivatives, evaluated ap
the cell centers, can be expressed by formulas
such as

x =M "(x"

x = Mx X\P‘
with similar expressions for the derivatives of y
and the potential. Such formulas can be used to
determine R, h, U, and V at the center of each
cell using Egs.(2),(5), and (6). EQ.(7) is
represented by conserving fluxes across the
boundaries of auxiliary cells whose faces are

chosen to be midway between the facés of the
primary mesh cells. This can be represented as

1)

/“Y SX( th) +/.(x S‘Y( th) = 0. (12)

This formula can also be cbtained by applying the
Bateman variational principle that the integral of
the pressure

I-dexdy ; (13)

is stationary, and approximating I by a simple
one-point integration scheme in which the pressure
at the center of each grid cell is multiplied by
the cell area. For subsonic flow the finite-
volume method can equally well be regarded as a
finite element method with isoparametric bi-linesr
elements.

The extension to treat transonic flows is
accomplished by adding an artificial viscosity to
introduce an upwind bias. The use of the
one-point integration scheme leading to Eq.(12)
has the advantage of requiring only one density
evaluation per mesh point, but also has the
undesirable effect of tending to decouple the
solution at odd- and even-numbered points of the
grid, and suitable recoupling terms can be added
to improve the stability of the solution. If we
represent the influence coefficients of the terms
containing and ¢YY in the expanded
form of |.(12) as

& = ene!l - vPa?
a = o - Pad

wvhere glJ are the elements of (HTH)™1,
then the compensated equation can be written

Sx/uy( gy + Sy/cax( phv) - )
"S’ xY(Ax*AY)Snﬁb =0

vhere 0 < € £ 1/2, In practice € =1/2 is
generally used. An alternative method of
obtaining the recoupling terms is to use a
higher-order integration scheme which takes
account not only of the pressure at the center o
each cell, but also its x- and y- derivatives.

(14)



Second-order Viscosity

The original scheme was stabilized in
supersonic regions by the explicit addition of an
artificial viscosity, chosen to emlate the
directional bias introduced by the rotated
difference schame of Jameson.®  We defined

$= ghcr/az(uz Sxx + w E 0

(16)
Q= oo /a2 &y, + V¥ 839,
vhere the switching function
o = mx(0., 1 - (Mcll)z) 17)

is non-zero only far values of the local Mach
mmber M = g/a greater than some critical Mach
punber Mc. Then, after defining

A
pi..'l if u2o,

P - (18)
i+1/2,3 ¢
P,y i U<O,

vith a similar shift for Q, we represented
B.(15) as

Sy aD + B+ Sy(paconn) + @
- §éaty +hpdnt = o

The difference Egs.(15) approximate the
original differential Bg.(7) to within a formal
truncation error of second arder in the mesh
spacing in the physical plane when the mesh is
@mooth. Since the additionsl fluxes P and Q
tdded in supercritical regions are of order of the
physical mesh spacing, however, Egs.(19)
yoroximate By.(7) to within a truncation errar of
ooly first erder in the mesh spacing. The error
resulting from the introduction of the artificial
viscosity can be reduced to second order at nearly
tll points in the flowfield if we define

19

P .-qa-xnSeP 1f U3 0
1,3 x§ '

1‘10:’
Foye,g = (20)
A ~
Pyt "‘SXQ)P1+2,3 1f U<o,

%ere ¥ is a constant of arder unity. In
reglons where the solution is smooth, the term
¥}e 15 of first order in the mesh spacing,
g the viscosity is formally a second order
Qantity, Near a shock, the quantity

a- *JXQ) becomes smll, and Egs.(20)
Srroximte Bgs.(18) — i.e., the viscosity
feverts to a first-arder quantity. This
tfridization of the second-order scheme has been
tand necessary to stabilize computations for
®lutions containing strong shocks.

Freestream Consistency

The implementation of the algorithm is
simplified by introducing the reduced potential G
describing perturbations from a uniform free
stream, inclined at an angle o« to the x-axis

G = ¢ ~xcoso - y sine, 21)

The contravariant velocities are then calculated
in two steps, first determining

u T’l (’7 oS o
= H + ’ (22)

v GY sinax

then using the first of Egs.(6) to determine U

and V. For two-dimensional problems, this
procedure has the attractive feature that the
freestream conditions (i.e., G= 0 ) identically
satisfy the difference equations. This is easily
verified since at each cell center in this case

U _ ,szycosa—/MxX X sinoc
h{V}_{—/UYQY(XB +Nc)§x sino&}. @

The density is calculated using the Cartesian
velocities from Egs.(22) in Eq.(2). For the
freestream condition, this gives ? = 1 and
Eq.(12) becames

/AY(&(/JXJ;, y cos & '/“X&' X sino) o)
+/-AX3;(-/JY§y cosa +/‘4Y<§;{x sin) = 0,

since the ‘averaging and differencing operators
comute.

In three-dimensional problems, the difference
equations do not admit G = 0 as a solution
because the elements of H-1 consist of
nonlinear products af the mepping derivatives, and
the averaging and differencing operators do not
cancel identically. For example, the x-component
of the free stream is given by

Ul (%22 -y
hiVv) = VpZx - ¥xZ cosX . (25)
v Y%y ~ Yvyx
At the cell centers, the fluxes are represented
by
U & poaem - poe? P
BAV 0= § ey pgs = pr? pdg® poosx
(]

UnyaS ot = pade? P

and the (three-dimensional equivalent of) Bq.(12)
becomes



JiyzOx B0 + pdy O0) + o dy (W) =R, (2D)

which is not identically zero for an arbitrary
spooth mesh. It can be verified, in fact, that
Eq.(27) results in

o 12 Py WYY) S,(Zé‘zz)-suzé;y) SPYJ;Z))

+fY<§,(%Y)Mz)—My)%J%z))
* 192 i) -y o cos o

(28)

If the Cartesian coordinates are expanded in
Taylor series about their values at the central
point shared by the eight neighboring mesh cells
contributing to the residual in Eq.(28), the
residual can be verified to be & fourth-order
quantity in the local mesh spacing. Since in our
formulation the residuals of Eq.(12) are of second
order in the mesh spacing, this effect corresponds
to a second-order errar in the residual. This is
consistent with the overall second-order accuracy
of the scheme in subsonic regions, but since the
mesh cells are necessarily quite large far from
the body in three—dimensional calculations, it was
thought that the error introduced by this
discretization of the free-stream contribution
might be important.

In order to assess the significance of this
error, calculations were performed with this
source of error removed from the residual by
re-writing Eg.(12) as

/JYZa;(( puu - nl) +
*/“xza;r( pBv - V) (29)
*/")mréjz( phv - ) = 0,

where hﬁ, hV, hW were calculated using formulas
similar to Egs.(26), but which also included the
y-component of the free-stream velocity. Since
these formulas can be considered approximations to
Bgs.(25), it is easily verified that the added
terms do cancel identically when evaluated
analytically. When evaluated mumerically,
however, they cancel exactly the error introduced
by the contribution of the free stream to the
total fluxes. At boundary points it is necessary
to devise reflection rules far these artificial
fluxes. Our procedure was to continue the fluxes
in the plane parallel to the boundary across the
boundary unchanged; the flux normal to the
boundary was corrected by retaining the first term
in a Taylor series expansion of the component of
Fq.(25) normal to the boundary, evaluating all
differences at the centers of the cells
immediately adjacent to the boundary. This
schane, when applied to the two-dimesional form of
the difference equations maintains its self-
cancelling property; in the three-dimensional
case, it has the effect of replacing the
differences in Eq.(28) taken normal to the

boundary by one-sided formilas.

B. Boundary Conditions and Grid Generation

An important advantage of the finite-volume
method is its decoupling of the solution procedure
from the grid-generation step. This permits the
grid to be generated in any convenient menner, apyg
allows application of an essentially universal
algorithm to any problem for which a boundary-
conforming coordinate system can be generated.

The airfoil calculations to be described were
computed on a mesh generated by weekly shearing
the conformal mepping to a circle of the Joukowsky
airfoil most closely approximating the actual
airfoil in the leading-edge region. Details of
this coordinate system are contained in Reference
5. The three-dimensional calculations were
computed on a mesh generated by the Cylindrical/
Wind-tunnel mepping sequence described in
References 2 and 3.

Two types of boundary conditions must be
specified to determine solutions far the potential
flow problems considered herein. The no-flux
condition must be enforced across any solid
boundaries (such as the airfoil, wing and fuselage
surfaces); and appropriate far-field boundary
conditions must be specified at the necessarily
finite limits of the computational domain. 1In
addition, for the airfoil calculations, a
discontinuity in potential across same branch cut

. must be incorporated if the airfoil has lift. For

the three-dimensional calculations, a linearized
treatment of the vortex sheet is used. It assumes
that constant strength vortex filaments trail
downstream of the wing trailing edge in the nearly
streanwise computational surfaces. The values of
reduced potential on the sheet are determined by
requiring the velocity narmal to the assumned
location of the sheet to be continuous across the
sheet. :

The solid-surface boundary conditons are
quite easy to enforce in boundary-conforming
coordinate systems because the difference scheme
is formulated in terms of the contravariant
components of the velocity. The appropriate
condition is that the out-of-plane component be
zero. This is incorporated by reflection of the
normal-flux contributions far the cells immed-
iately adjacent to the boundary.

A disadvantage of the finite-volume schemes
is the need to truncate the usually infinite
domains of aerodynamic interest to finite
caputational regions. This is in contrast to
methods in which the equation can be analytically
transformed with suitable stretching functions o
that the difference mesh extends to infinity.
(See, e.g., References 6, 7, and 8.) In the
analyses treated here, a reduced potential is
introduced to describe the perturbations upon &an
otherwise uniform stream. This potential is set
to values appropriate for a compressible vortex of
circulation [,



¢ = L arctan (y 1-3%/x) (30)

on the farfield boundaries of the computationasl
domein for the airfoil calculations. The reduced
potential is set to zero on the upstream and
lateral farfield boundaries far the three-
dimensional calculations; the first derivative in
the streamwise direction of the reduced potential
is set to zero on the downstream boundary. This
is consistent with the assumption that the flow
properties have become invariant in the streamwise
direction. If the freestream is in the x
direction, irrotationality then implies that

Py = dvRx =0 and dudz = dw/Ox = 0, and
consequently that the streamwise velocity

corponent has its free-stream value.

C. Solution of Difference Equations

The difference equations resulting from this
formlation are solved iteratively. A relatively
conventional successive-line-overrelaxation (SLOR)
scheme is used in the computer codes which solve
the three-dimensional problems, with care taken in
the formulation of the algorithm to model the
correct domains of dependence. The solutions to
be presented were coaculated on a sequence of
three grids, each containing eight times the
nmber of mesh cells of the preceeding ane. On
each of the coarser grids, 200 relaxation sweeps
were performed, and the solution was used as an
{nitial estimate far the solution an the next
grid. Only 100 iterations were performed on the
finest grid. This is sufficient to remove nearly
all of the high wave-number error, but the 1lift
®my not be completely converged. Since we will
only compare results cbtained in a similar manner,
however, this lack of convergence should not
introduce & serious systematic error. Details of
te relaxation scheme can be found in Reference 1
td 2. The two-dimensional results to be
presented were calculated using a fine-volume
teeralization of Jameson's Multi-grid/
Kternating-direction (MAD) algorithm.%.5

II1. Results

Fesults will now be presented to demonstrate
Le effects of the improved accuracy of the
Sexnd-order viscosity and the removal of the
thwcation errar of the free stream. The results
for the improved viscosity will be presented for
*o-dimensional calculations; the results with
te free stream contribution to the residuals

Sbiracted out will pecessarily be
. presented far a
“reedimensional geometry.

Pigures 1(a) and 1(b) show the surface
distributions calculated for the flow at

& free-stream Mach mmber of 0.75 past an NACA
0012 airfoil at 2 degrees angle of attack. Both
results were calculated using the same grid,
consisting of 128x32 mesh cells in the
circumferential and radial directions,
respectively. Figure 1(a) shows the result using
the first-order accurate viscosity; Figure 1(b)
shows the result using the second-order
formulation. The result using the first-order
viscosity clearly underpredicts the size of the
supersonic pocket above the airfoil and,
consequently, underpredicts the 1lift. That the
second-order accurate result is, in fact, pearer
the exact answer is verified by the coavergence
study plotted in Pigure 2 for this case,
calculated using sequences of grids far each
scheme. The calculated lift and drag coefficients
are plotted against mesh spacing far the first-
order scheme, while the results of the second-
order scheme are plotted against the square of the
mesh spacing. (NX is the number of mesh cells in
the circunferential direction.) Both schemes
clearly converge in the limit of zero mesh spacing
to the same 1ift and drag coefficients, but on the
128x32 grid, the error in lift coefficient
calculated using the first-order scheme is still
almost 10 per cent. For the second-order scheme
the error is less than 3 percent.

Results of the first- and second-order
schemes for a shockfree solution are shown in
Figures 3(a) and 3(b). The surface pressure
distributions are plotted for the Kom airfoil
(Catalog No. 75-06-12)2 at a free-stream Mach
number of 0.75 and zero angle of attack. These
conditions correspond to the shockfree design
point for this airfoil, so the exact solution
shauld have a amooth recompression back through
the sonic velocity at the dowmstream boundary of
the supersonic pocket above the airfoil. Results
are shown for the first-order scheme in Figure
3(a) and for the second-order scheme in Pigure
3(b). Both solutions were obtained on identical
grids containing 128x32 mesh cells. The
second-order-accurate scheme produces an almost
shock~free result, whose pressure distribution is
much nearer the hodograph solution. The
calculated drag coefficient still differs
appreciably from zero, but the sclutiom calculated
on & 256x64 mesh results in a drag coefficient
of only .0005.

The three-dimensional calculations were
performed for the ONERA wing M-6, mid-mounted on &
circular cylinder. The wing geometry is described
in Reference 10, and other calculations far this
wing—cylinder combination are presented in
References 1-3. A perspective view of the
wing-fuselage grid (corresponding to the coarsest
of the three grids used) is pictured in Figure 4.
Galculations were performed on an identical grid
containing 160x24x32 mesh cells using the basic
algaritim of References 1 and 3 and the



modification described herein to remove the
free-stream contribution to the residual. The
wing 1lift coefficients were 0.3106 and 0.3120
for the original and modified schemes,
respectively. The discrepancy in lift coefficient
was therefore less than one-half of one per cent.
At inboard stations, the wing surface pressure
distributions are virtually indistinguishable.
The streamwise surface pressure coefficients are
campared at two outboard span stations in Figures
5(a) and 5(b). As can be seen, even here the
details of the pressure distributions are in
excellent agreement, including at the 72 percent
semi-span station where the leading and trailing-
edge shocks are beginning to merge. The excellent
agreement between the two sets of results indi~
cates that the truncation error introduced by the
inconsistency between the free-stream conditions
and the difference equations introduces no serious
error, at least in the vicinity of the body. A
similar inconsistency in a finite-volume scheme
for the Euler equations developed by Pulliam and
Stegerll has also been reported to cause no
serious error. In view of the additional labor
involved in calculating the free-stream fluxes,
particularly at the boundaries in the present
scheme, the original scheme is probably to be
preferred.

IV. Conclusions

Several fundamental improvements to the
finite-volume method for the calculation of
transonic potential flows have been presented.
The incorporation of an improved artificial
viscosity which retains the second-order accuracy
of the basic scheme except in the immediate
vicinity of shocks is shown to be necessary for
the proper prediciton of lift when calculations
are performed on reasonably coarse meshes. The
lack of consistency of the difference equations
with a uniform free stream is shosm, by comparison

~"with a modified scheme which subtracts this

contribution, to produce smell errors.
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