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1. SUMMARY

This paper presents a perspective on computational fluid
dynamics as a tool for aircraft design. It addresses the
requirements for effective industrial use, and trade-offs
between modelling accuracy and computational costs. Is-
sues in algorithm design are discussed in detail, together
with a unified approach to the design of shock capturing
algorithms. Finally, the paper discusses the use of tech-
niques drawn from contro[ptheory to determine optimal
aerodynamic shapes. In the future multidisciplinary anal-
ysis and optimization should be combined to provide an
integrated numerical design environment.

2. INTRODUCTION

Computational methods first began to have a significant
impact on aerodynamic analysis and design in the period
of 1965-75. This decade saw the introduction of panel
methods which could solve the linear flow models for
arbitrarily complex geometry in both subsonic and super-
sonic flow [58, 146, 178]. It also saw the appearance of
the first satisfactory methods for treating tge nonlinear
equations of transonic flow [122, 121, 63, 64, 43, 54], and
the development of the hodograph method for the design
of shock free supercritical airfoils [15].

Computational Fluid Dynamics (CFD) has now matured
to the point at which it is widely accepted as a key tool
for aerodynamic design. Algorithms have been the sub-
ject of intensive development for the past two decades.

he principles underlyinithe design and implementation
of robust schemes which can accurately resolve shock
waves and contact discontinuities in compressible flows
are now quite well established. Itis also quite well under-
stood how to design high order schemes for viscous flow,
including compact schemes and spectral methods. Adap-
tive refinement of the mesh interval (h) and the order of
approximations (p) has been successfully exploited both
separately and in combination in the h-p method [125].
A continuing obstacle to the treatment of configurations
with complex geometry has been the problem of mesh
generation. Several general techniques have been devel-
oped, including algebraic transformations and methods
based on the solution of elliptic and hyperbolic equations.
In the last few years methods using unstructured meshes
have also begun to gain more general acceptance. The
Dassault-INRIA group led the way in developing a fi-
nite element method for transonic potential flow. They
obtained a solution for a complete Falcon 50 as early
as 1982 [25]. Euler methods for unstructured meshes
have been the subject of intensive development by several
éroups since 1985 [109, 81, 80, 162, 14], and Navier-

tokes methods on unstructured meshes have also been
demonstrated [116, 117, 11].

Despite the advances that have been made, CFD is still
not being exploited as effectively as one would like in the
design process. This is partly due to the long set-up and
high costs, both human and computational of complex
flow simulations. The essential requirements for indus-
trial use are:

1. assured accuracy
2. acceptable computational and human costs

3. fast turn around.

Improvements are still needed in all three areas. In par-
ticular, the fidelity of modelling of high Reynolds number
viscous flows continues to be limited by computational
costs. Consequently accurate and cost-effective simula-
tion of viscous flow at Reynolds numbers associated with
full scale flight, such as the prediction of high lift devices,
remains a cﬁallenge. Several routes are available toward
the reduction of computational costs, including the re-
duction of mesh requirements by the use of higﬁer order
schemes, improved convergence to a steady state by so-
histicated acceleration methods, fast inversion methods
or implicit schemes, and the exploitation of massively
parallel computers.

Another factor limiting the effective use of CFD is the
lack of good interfaces to computer aided design (CAD)
systems. The geometry models provided by existing CAD
systems often fail to meet the requirements of continuity
and smoothness needed for flow simulation, with the con-
sequence that they must be modified before they can be
used to provide the input for mesh generation. This bottle-
neck, which impedes the automation of the mesh genera-
tion process, needs to be eliminated, and the CFD software
should be fully integrated in a numerical design environ-
ment. In addition to more accurate and cost-effective flow
prediction methods, better optimizations methods are also
needed, so that not only can designs be rapidly evaluated,
but directions of improvement can be identified. Posses-
sion of techniques which result in a faster design cycle
gives a crucial advantage in a competitive environment.

A critical issue, examined in the next section, is the choice
of mathematical models. What level of complexity is
needed to provide sufficient accuracy for aerodynamic
design, ancF what is the impact on cost and turn-around
time? Section 3 addresses the design of numerical algo-
rithms for flow simulation. Section 4 presents the results
of some numerical calculations which require moderate
computer resources and could be completed with the fast
turn-around required by industrial users. Section 5 dis-
cusses automatic design procedures which can be used
to produce optimum aerodynamic designs. Finally, Sec-
tion 7. offers an outlook for the future.



3. THE COMPLEXITY OF FLUID FLOW AND
MATHEMATICAL MODELLING

3.1 The Hierarchy of Mathematical Models

Many critical phenomena of fluid flow, such as shock
waves and turbulence, are essentially non-linear. They
also exhibit extreme disparities of scales. While the ac-
tual thickness of a shock wave is of the order of a mean
free path of the gas particles, on a macroscopic scale its
thickness is essentially zero. In turbulent flow energy
is transferred from large scale motions to progressively
smaller eddies until the scale becomes so small that the
motion is dissipated by viscosity. The ratio of the length
scale of the global flow to that of the smallest persisting

eddies is of the order Re* , where Re is the Reynolds num-
ber, typically in the range of 30 million for an aircraft. In
order to resolve such scales in all three space directions a
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computational grid with the order of Re? cells would be
required. This 1s beyond the range of any current or fore-
seeable computer. Consequently mathematical models
with varying degrees of simplification have to be intro-
duced in order to make computational simulation of flow
fedasible, and to produce viable and cost-effective meth-
ods.

Figure 1 (supplied by Pradeep Raj) indicates a hierar-
chy of models at différent levels of simplification which
have proved useful in practice. Efficient flight is gen-
erally achieved by the use of smooth and streamlined
shapes which avoid flow separation and minimize vis-
cous effects, with the consequence that useful predictions
can be made using inviscid models. Inviscid calculations
with boundary layer corrections can provide quite accu-
rate Eredictions of lift and drag when the flow remains
attached, but iteration between the inviscid outer solution
and the inner boundary layer solution becomes increas-
in%ly difficult with the onset of separation. Procedures for
solving the full viscous equations are likely to be needed
for the simulation of arbitrary complex separated flows,
which may occur at high angles of attack or with bluff
bodies. In order to treat flows at high Reynolds numbers,
one is generally forced to estimate turbulent effects by
Reynolds averaging of the fluctuating components. This
requires the introduction of a turbulence model. As the
available computing power increases one may also as-
pire to large eddy simulation (LES) in which the larger
scale eddies are directly calculated, while the influence
of turbulence at scales smaller than the mesh interval is
represented by a subgrid scale model.

IV. RANS (1990s)

[ 11, Nonlinear Potential (1970s) ]

+ Nonlinear

[ 1. Linear Potential (1960s) J
/ Inviscid, Irrotational \
Linear

Figure 1: Hierarchy of Fluid Flow Models

3.2 Computational Costs

Computational costs vary drastically with the choice of
mathematical model. Panel methods can be effectivel

used to solve the linear potential flow equation witK
higher-end personal comlputers (with an Intel 80486 mi-
croprocessor, for example). Studies of the dependency
of the result on mesh refinement, performed by this au-
thor and others, have demonstrated that inviscid transonic

potential flow or Euler solutions for an airfoil can be ac-
curately calculated on a mesh with 160 cells around the
section, and 32 cells normal to the section. Using multi-
grid techniques 10 to 25 cycles are enough to obtain a
converged result. Consequently airfoil calculations can
be performed in seconds on a Cray YMP, and can also
be performed on 486-class personal computers. Corre-
spondingl{) accurate three-dimensional inviscid calcula-
tions can be performed for a wing on a mesh, say with
192x32x48=294,912 cells, in about 5 minutes on a sin-
gle processor Cray YMP, or less than a minute with eight
processors, or in 1 or 2 hours on a workstation such as a
Hewlett Packard 735 or an IBM 560 model.

Viscous simulations at high Reynolds numbers require
vastly greater resources. Careful two-dimensional studies
of mesh requirements have been carried out at Princeton
by Martinelli [113]. He found that on the order of 32
mesh intervals were needed to resolve a turbulent bound-
ary layer, in addition to 32 intervals between the boundary
layer and the far field, leading to a total of 64 intervals.
In order to prevent degradations in accuracy and conver-

ence due to excessively large aspect ratios (in excess of

,000) in the surface mesh cells, the chordwise resolu-
tion must also be increased to 512 intervals. Reasonably
accurate solutions can be obtained in a 512x64 mesh in
100 multigrid cycles. Translated to three dimensions, this
would imply the need for meshes with 5-10 million cells
(for example, 512x64 x256 = 8,388,608 cells as shown
in Figure 2). When simulations are performed on less
fine meshes with, say, 500,000 to 1 million cells, it is very
hard to avoid mesh dependency in the solutions as well as
sensitivity to the turbulence model.

32 cells

32 celis in the
boundary layer

512 cells around the wing to Jimit
the mesh aspect ratio (to about 1000)

Surfuce Mesh

/

256 cells
spanwise

Total: 512 x 64 x 256 = 8 388 608 cells

Figure 2: Mesh Requirements for a Viscous Simulation

A typical algorithm requires of the order of 5,000 floating
B{/)im operations per mesh point in one multigrid iteration.
ith 10 million mesh points, the operation count is of the

order of 0.5x10'! per cycle. Given a computer capable

of sustaining 10! operations per second (100 gigaflops),
200 cycles could then be performed in 100 seconds. Sim-
ulations of unsteady viscous flows (flutter, buffet) would
be likely to require 1,000-10,000 time steps. A further
progression to large eddy simulation of complex config-
urations would require even }g{reater resources. The fol-
lowing estimate is due to W.H. Jou [89]. Suppose that a
conservative estimate of the size of eddies in a boundary
layer that ought to be resolved is 1/5 of the boundary layer
thickness. Assuming that 10 points are needed to resolve



a single eddy, the mesh interval should then be 1/50 of
the boundary layer thickness. Moreover, since the eddies
are three-dimensional, the same mesh interval should be
used in all three directions. Now, if the boundary layer
thickness is of the order of 0.01 of the chord length, 5,000
intervals will be needed in the chordwise direction, and
for a wing with an aspect ratio of 10, 50,000 intervals will
be needed in the spanwise direction. Thus, of the order of
50 x 5,000 x 50,000 or 12.5 billion mesh points would
be needed in the boundary layer. If the time dependent
behavior of the eddies is to be fully resolved using time
steps on the order of the time for a wave to pass througha
mesh interval, and one allows for a total time equal to the
time required for waves to travel three times the length
of the chord, of the order of 15,000 time steps would be

needed. Performance beyond the teraflop (10'2 opera-
tions per second) will be needed to attempt calculations
of this nature, which also have an information content far
beyond what is needed for enginering analysis and de-
sign. The designer does not need to know the details of
the eddies in tﬁe boundary layer. The primary purpose
of such calculations is to improve the prediction of aver-
aged quantities such as skin triction, and the prediction of
global behavior such as the onset of separation. The main
current use of Navier-Stokes and large eddy simulations
is to gain an improved insight into the physics of turbulent
flow, which may in turn lead to the development of more
comprehensive and reliable turbulence models.

3.3 Turbulence Modelling

It is doubtful whether a universally valid turbulence
model, capable of describing all complex flows, could be
devised [52]. Algebraic models [30, 9] have proved fairly
satisfactory for the calculation of attached and slightly
separated wing flows. These models rely on the boundary
layer concept, usually incorporating separate formulas for
the inner and outer layers, and they require an estimate
of a length scale which depends on the thickness of the
boundary layer. The estimation of this quantity by a
search for a'maximum of the vorticity times a distance
to the wall, as in the Baldwin-Lomax model, can lead to
ambiguities in internal flows, and also in complex vorti-
cal flows over slender bodies and highly swept or delta
wings [40, 114]. The Johnson-King model [87], which
allows for non-equilibrium effects through the introduc-
tion of an ordinary differential equation for the maximum
shear stress, has improved the prediction of flows with
shock induced separation [147, gO].

Closure models depending on the solution of transport
e%uations are widely accepted for industrial applications.
These models eliminate the need to estimate a length scale
by detecting the edge of the boundary layer. Eddy viscos-
ity models typically use two equations for the turbulent
kinetic energy k and the dissipation rate €, or a pair of
e(f]uivalent quantities [88, 177, 159, 1, 120, 35). Models
of this type generally tend to present difficulties in the
region very close to the wall. They also tend to be badly
conditioned for numerical solution. The k—1I model [153]
is designed to alleviate this problem by taking advantage
of the linear behaviour of the length scale [ near the wall.
In an alternative approach to the design of models which
are more amenable to numerical solution, new models
requiring the solution of one transport equation have re-
cemlf/ been introduced [10, 158]. The performance of
the algebraic models remains competitive for wing flows,
but the one- and two-equation models show promise for
broader classes of flows. In order to achieve greater uni-
versality, research is also being pursued on more complex
Reynolds stress transport models, which require the solu-
tion of a larger number of transport equations.

Another direction of research is the attempt to devise
more rational models via renormalization group (RNG)
theory [181, 154]. Both algebraic and two-equation k — €
models devised by this approach have shown promising
results [115].

The selection of sufficiently accurate mathematical mod-
els and a judgment of their cost-effectivencss ultimately
rests with industry. Aircraft and spacecraft dcsi%ns nor-
mally pass through the three phases of conceptual design,
preliminary design, and detailed design. Correspond-
mgl{, the appropriate CFD models will vary in complex-
ity. In the conceptual and preliminary design phases, the
emphasis will be on relatively simple models which can
give results with very rapid turn-around and low computer
costs, in order to evaluate alternative configurations and
perform quick Earamelric studies. The detailed design
stage requires the most complete simulation that can be
achieved with acceptable cost. In the past, the low level
of confidence that could be placed on numerical predic-
tions has forced the extensive use of wind tunnel testing
at an early stage of the desi%n. This practice was very
expensive. The limited number of models that could be
fabricated also limited the range of design variations that
could be evaluated. It can be anticipated that in the fu-
ture, the role of wind tunnel testing in the design process
will be more one of verification. Experimental research
to improve our understanding of the physics of complex
flows will continue, however, to play a vital role.

4. CFD ALGORITHMS
4.1 Difficulties of Flow Simulation

The computational simulation of fluid flow presents a
number of severe challenges for algorithm design. At the
level of inviscid modeling, the inherent nonlinearity of

_the fluid flow equations leads to the formation of singu-

larities such as shock waves and contact discontinuities.
Moreover, the geometric configurations of interest are
extremely complex, and generally contain shag edges
which lead to the shedding of vortex sheets. Extreme
radients near stagnation points or wing tips may also
ead to numerical errors that can have global influence.
Numerically generated entropy may be convected from
the leading edge, for example, causing the formation of
a numerically induced boundary layer which can lead to
separation. The need to treat exterior domains of infinite
extent is also a source of difficulty. Boundary conditions
imposed at artificial outer boundaries may cause reflected
waves which significantly interfere with the flow. When
viscous effects are also included in the simulation, the
extreme difference of the scales in the viscous boundary
layer and the outer flow, which is essentially inviscid, is
another source of difficulty, forcing the use of meshes with
extreme variations in the mesh intervals. For these rea-
sons, CFD has been a driving force for the development
of numerical algorithms.

4.2 Structured and Unstructured Meshes

The algorithm designer faces a number of critical deci-
sions. The first choice that must be made is the nature
of the mesh used to divide the flow field into discrete
subdomains. The discretization procedure must allow for
the treatment of complex configurations, The principal
alternatives are Cartesian meshes, body-fitted curvilinear
meshes, and unstructured tetrahedral meshes. Each of
these approaches has advantages which have led to their
use. e Cartesian mesh minimizes the complexity of
the algorithm at interior points and facilitates the use of
high order discretization procedures, at the expense of
greater comtplexity, and possibly a loss of accuracy, in the
treatment of boundary conditions at curved surfaces. This
difficulty may be alleviated by using mesh refinement pro-
cedures near the surface. W¥th their aid, schemes which
use Cartesian meshes have recently been developed to
treat very complex configurations [T19, 148, 22, 93].

Body-fitted meshes have been widely used and are par-
ticularly well suited to the treatment of viscous flow be-
cause they readily allow the mesh to be compressed near
the body surface. With this approach, the problem of
mesh géneration itself has proved to be a major pacing



item. The most commonly used procedures are alge-
braic transformations [7, 44, 46, 155], methods based on
the solution of elliptic equations, pioneered by Thompson
[169, 170, 156, 157], and methods based on the solution of
hyperbolic equations marching out from the body [160].
In order to treat very complex configurations it generally
proves expedient to use a multiblock {176, 149] proce-
dure, with separately generated meshes in each block,
which may then be patched at block faces, or allowed
to overlap, as in the Chimera scheme [19, 20]. While a
number of interactive software systems for grid genera-
tion have been developed, such as EAGLE, GRIDGEN,
and ICEM, the generation of a satisfactorz grid for a very
complex configuration may require months of effort.

The alternative is to use an unstructured mesh in which the
domain is subdivided into tetrahedra. This in turn requires
the development of solution algorithms capable of yield-
ing the required accuracy on unstructured meshes. This
approach has been gaining acceptance, as it is becoming
apparent that it can lead to a speed-up and reduction in
the cost of mesh generation that more than offsets the in-
creased complexity and cost of the flow simulations. Two
competing procedures for generating triangulations which
have both proved successful are Delaunay triangulation
[41, 11], based on concepts introduced at the beginning
of the century by Voronoi [174], and the moving front
method [110].

4.3 Finite Difference, Finite Volume, and Finite Ele-
ment Schemes

Associated with choice of mesh type is the formulation of
the discretization procedure for the equations of fluid flow,
which can be expressed as differential conservation laws.
In the Cartesian tensor notation, let z; be the coordinates,
p, p, T, and E the pressure, density, temperature, and
total energy, and u; the velocity components. Using the
convention that summation over j=1,2, 3 is implied by a
repeated subscript j, each conservation equation has the

form
w 9f; o
8t 811,']'

For the mass equation

M

w=p, fi=pu;.
For the 4 momentum equation
wi=pu;, fij=puiu; + pdij — 0ij,

where o5 is the viscous stress tensor. For the energy
equation

orT

w=pE, f;=(pE +p)u; —ojug — Rg;]j,

where  is the coefficient of heat conduction. The pressure
is related to the density and energy by the equation of state

p=(y—Dp (E - %uiui) @

in which « is the ratio of specific heats. In the Navier-
Stokes equations the viscous stresses are assumed to be
linearly proportional to the rate of strain, or

_ [ Oui Ou; f Oug
Tij=H (6.’17]‘ + 8211) + Adij (5{;) > 3

where i and A are the coefficients of viscosity and bulk
viscosity, and usually A=—2p/3.

The finite difference method, which requires the use of
a Cartesian or a structured curvilinear mesh, directly ap-
proximates the differential operators appearing in these

equations. In the finite volume method [111], the dis-
cretization is accomplished by dividing the domain of
the flow into a large number of small subdomains, and
applying the conservation laws in the integral form

2 wdV +

f - dS=0.
ot Jo o0

Here f is the flux appearing in equation (1) and dS is
the directed surface element of the boundary 9 of the
domain €. The use of the integral form has the advantage
that no assumption of the differentiability of the solutions
is implied, with the result that it remains a valid statement
for a subdomain containing a shock wave. In general the
subdomains could be arbitrary, but it is convenient to use
either hexahedral cells in a body conforming curvilinear
mesh or tetrahedrons in an unstructured mesh.

Alternative discretization schemes may be obtained by
storing flow variables at either the cell centers or the ver-
tices. These variations are illustrated in Figure 3 for the
two-dimensional case. With a cell-centered scheme the
discrete conservation law takes the form

3b: Vertex Scheme.

Figure 3: Structured and Unstructured Discretizations.

d
v+ > £:8=0, @)
faces

where V is the cell volume, and f is now a numerical
estimate of the flux vector through each face. f may be
evaluated from values of the flow variables in the cells
separated by each face, using upwind biasing to allow for
the directions of wave propagation. With hexahedral cells,
equation (4) is very similar to a finite difference scheme
in curvilinear coordinates. Under a transformation to
curvilinear coordinates &;, equation (1) becomes

9 9 (06 .\

where J is the Jacobian determinant of the transformation
matrix [—g%] The transformed flux Jg%fj corresponds
to the dot product of the flux f with a vector face area
Jgf"—_, while J represents the transformation of the cell

J
volume. The finite volume form (4) has the advantages
that it is valid for both structured and unstructured meshes,
and that it assures that a uniform flow exactly satisfies the

equations, because Y f,.es S=0 for a closed control vol-
ume. Finite difference schemes do not necessarily satisfy



this conés‘trainl because of the discretization errors in eval-
uating ;)f— and the inversion of the transformation matrix.
J

A cell-vertex finite volume scheme can be derived by tak-
ing the union of the cells surrounding a given vertex as the
control volume for that vertex [55, 71, 138]. In equation
(4), V is now the sum of the volumes of the surrounding
cells, while the flux balance is evaluated over the outer
faces of the polyhedral control volume. In the absence of
upwind biasing the flux vector is evaluated by averaging
over the corners of each face. This has the advantage of
remaining accurate on an irregular or unstructured mesh.
An alternative route to the discrete equations is provided
by the finite element method. Whereas the finite differ-
ence and finite volume methods approximate the differ-
ential and integral operators, the fpmite element method
proceeds by inserting an approximate solution into the
exact equations. On multiplying by a test function ¢ and
integrating by parts over space, one obtains the weak form

A / / / pwdQ= / / / £-VdQ — / ¢f-dS  (6)
ot Q Q aQ

which is also valid in the presence of discontinuities in the
flow. In the Galerkin method the approximate solution is
expanded in terms of the same family of functions as those
from which the test functions are drawn. By choosing
test functions with local support, separate equations are
obtained for each node. For example, if a tetrahedral
mesh is used, and ¢ is piecewise linear, with a nonzero
value only at a single node, the equations at each node
have a stencil which contains only the nearest neighbors.
In this case the finite element approximation corresponds
closely to a finite volume scheme. If a piecewise linear
approximation to the flux f is used in the evaluation of
the integrals on the right hand side of equation (6), these
integrals reduce to formulas which are identical to the flux
balance of the finite volume scheme.

Thus the finite difference and finite volume methods lead
to essentially similar schemes on structured meshes, while
the finite volume method is essentially equivalent to a fi-
nite element method with linear elements when a tetra-
hedral mesh is used. Provided that the flow equations
are expressed in the conservation law form (1), all three
methods lead to an exact cancellation of the fluxes through
interior cell boundaries, so that the conservative [pro erty
of the equations is preserved. The important role of this
property in ensuring correct shock jump conditions was
pointed out by Lax and Wendroff [96].

4.4 Non-oscillatory Shock Capturing Schemes
4.4.1 Local Extremum Diminishing (LED) Schemes

The discretization procedures which have been described
in the last section lead to nondissipative approximations
to the Euler equations. Dissipative terms may be needed
for two reasons. The first is the possibility of undamped
oscillatory modes. The second reason is tﬁe need for the
clean capture of shock waves and contact discontinuities
without undesirable oscillations. An extreme overshoot
could result in a negative value of an inherently positive
quantity such as the pressure or density. The next sec-
tions summarize a unified approach to the construction of
nonoscillatory schemes via tge introduction of controlled
diffusive and antidiffusive terms. This is the line adhered
to in the author’s own work.

The development of non-oscillatory schemes has been a
prime focus of algorithm research for compressible flow.
Consider a general semi-discrete scheme of the form

d
U= e vk = v) M
k7

A maximum cannot increase and a minimum cannot de-
crease if the coefficients ¢j; are non-negative, since at a

maximum vy, —v; < 0, and at a minimum vy — v; > 0.
Thus the condition

cik 20, k £j (8)

is sufficient to ensure stability in the maximum norm.
Moreover, if the scheme has a compact stencil, so that
¢;jx=0 when j and k are not nearest ncighbors, a local
maximum cannot increase and local minimum cannot de-
crease. This local extremum diminishing (LED) property
prevents the birth and growth of oscillations. ”lPhe one-
dimensional conservation law

ou O
ot Fagl W0

provides a useful model for analysis. In this case waves
are propagated with a speed a (u) =g—£, and the solution

is constant along the characteristics ‘fi—f=a(u). Thus the
LED property is satisfied. In fact the total variation

TV (u) =/

of a solution of this equation does not increase, provided
that any discontinuity appearing in the solution satisfies an
entropy condition [95]. Harten proposed that difference
schemes ought to be designed so that the discrete total
variation cannot increase [56]. If the end values are fixed,
the total variation can be expressed as

TV (u) =2 (Z maxima — Z minima) .

Thus a LED scheme is also total variation diminish-
ing (TVD). Positivity conditions of the ty[)e expressed
in equations (7) and (8) lead to_ diagonally dominant
schemes, and are the key to the elimination of improper
oscillations. The positivity conditions may be realized by
the introduction of diffusive terms or by the use of up-
wind biasing in the discrete scheme. Unfortunately, they
may also lead to severe restrictions on accuracy unless the
coefficients have a complex nonlinear dependence on the
solution.

du
—a; dzr

4.4.2 Artificial Diffusion and Upwinding

Following the pioneering work of Godunov [51], a vari-
ety of dissipative and upwind schemes designed to have
good shock capturing properties have been developed dur-
ing the past two decades [161, 23, 97, 99, 145, 129, 56,
128, 165, 5, 68, 182, 62, 179, 13, 12, 11]. If the one-
dimensional scalar conservation law

ov O
n + 6_zf(v) =0 9

is represented by a three point scheme

d'Uj o+
@

the scheme is LED if

(vjrr — ;) + ¢y (vim1 —v;),

J-3

+ -
Cit >0, ¢,

20, (10)

(ST
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A conservative semidiscrete approximation to the one-
dimensional conservation law can be derived b% subdi-
viding the line into cells. Then the evolution of the value
v; in the jth cell is given by

d .
A.’L‘"ﬁ + h’]+

=0 11
T ; an

1 1
2 J—2




where A4 1s an estimate of the flux between cells 7 and

j + 1. The simplest estimate is the arithmetic average
(fj+1 + f;) /2, but this leads to a scheme that does not
satisfy the positivity conditions. To correct this, one may
add a'dissipative term and set

1
h]‘+%=§ (fie1+ £) — Q4+l (vj+1 —v5) - (12)

In order to estimate the required value of the coefficient
Qi+t let @+l be a numerical estimate of the wave speed

af
ou’ f f
S vy A
a.p1={ AT (13)
it: af i v
v | )=, it v41=v;
2
Then
1
h]-+% - h]_% = + (Eaj.,_% - aj+% A’Uj.q.%
1
+ (Eaj—% taj ) A’Uj_%,
where

Avj+%=vj+1 — vj,
and the LED condition (10) is satisfied if

(14)

> 3 [aes

CX]-+ i

1
2

If one takes )

aj+%—§ laj-!-% s

one obtains the first order upwind scheme

B
hﬁ%_{ fi+1

This is the least diffusive first order scheme which satisfies
the LED condition. In this sense upwinding is a natural
approach to the construction of non-oscillatory schemes.
It may be noted that the successful treatment of transonic
otential flow also involved the use of upwind biasing.
his was first introduced by Murman and é)ole to treat the
transonic small disturbance equation [122].

ifaj4p >0
. 2
1faj+% <0

Another important requirement of discrete schemes is
that they should exclude nonphysical solutions which do
not satisfy appropriate entropy conditions [94], which
require the convergence of characteristics towards ad-
missible discontinuities.  This places more stringent
bounds on the minimum level of numerical viscosity
[112, 168, 127, 130]. In the case that the numerical flux
function is strictly convex, Aiso has recently proved [2]
that it is sufficient that

1 .
41 > max {5 ’aﬂ.%l L€ sign(uj4p — v5) }

fore > 0. Thus the numerical viscosity should be rounded
out and not allowed to reach zero at a point where the

wave speed a (u) =g{ approaches zero. This justifies, for
example, Harten’s entropy fix [56].

Higher order schemes can be constructed by introducing
higher order diffusive terms. Unfortunalery these have
larger stencils and coefficients of varying sign which are
not compatible with the conditions (8) for a LED scheme,
and it is known that schemes which satisfy these condi-
tions are at best first order accurate in the neighborhood
of an extremum. It proves useful in the following de-
velopment to introduce the concept of essentially local
extremum diminishing (ELED) schemes. These are de-
fined to be schemes which satisfy the condition that in
the limit as the mesh width Az — 0, local maxima are
non-increasing, and local minima are non-decreasing.

4.4.3 High Resolution Switched Schemes: Jameson-

Schmidt-Turkel (JST) Scheme

Higher order non-oscillatory schemes can be derived by
introducing anti-diffusive terms in a controlled manner.
An early attempt to produce a high resolution scheme
by this approach is tEe Jameson-Schmidt-Turkel (JST)
scheme [gg]. Suppose that anti-diffusive terms are intro-
duced by subtracting neighboring differences to produce
a third order diffusive flux

1
dj+%=aj+% {Avﬂ.% -3 (A’Uj+% + A'vj_%>}, (15)

3
which is an approximation to %aAﬂ a%f' The positivity
condition (8) is violated by this scheme. It proves that it
generates substantial oscillations in the vicinity of shock
waves, which can be eliminated by switching locally to the
first order scheme. The JST scheme therefore introduces
blended diffusion of the form

dj+% + 6‘1(_'2_)% A’Uj+% (16)

—_ 6‘7(_:)% (AUJ+% ot 2AU1+% + AUJ_%) 5
The idea is to use variable coefficients e.(Z). and e.(4),
its3 itz

which produce a low level of diffusion in regions where
the solution is smooth, but prevent oscillations near dis-

continuities. If 63(3)1 is constructed so that it is of order
2

()

ity

unity, both terms in d;4; will be of order Az3.

Az? where the solution is smooth, while € is of order

The JST scheme has proved very effective in practice in
numerous calculations of comglex steady flows, and con-
ditions under which it could be a total variation dimin-
ishing (TVD) scheme have been examined by Swanson
and Turkel [164]. An alternative statement of sufficient
conditions on the coefficients e](f)l and e](:)l for the IST
2 2
scheme to be LED is as follows:

Theorem 1 (Positivity of the JST scheme)
Suppose that whenever either vj+| or vj is an extremum

the coefficients of the JST scheme satisfy

1
e].(f)% > ‘aﬁ%’, e].(:)%=0. a7

Then the JST scheme is local extremum diminishing
(LED).

Proof: We need only consider the rate of change 7ofv at
extremal points. Suppose that v; is an extremun. Then

and each coefficient has the required sign. O




In order to construct ej(z), and ej.(”‘). with the desired prop-
-3 -3
erties define

ifu #0orv £0 (18)
if u=v=0,

[u[*]v]

U~ a
R(u,v) ={ i
0

where ¢ is a positive integer. Then R(u,v) =1 if uvand v
have opposite signs. Otherwise R (u,v) < 1. Now set

Qj=R(AUj+%aAUj—%) 3 Qj+%=max(Qja Qj+1) .

and

()

1
10y €W)m3050, (1= Quup) - (19)

€.7=
z

4.4.4 Symmetric Limited Positive (SLIP) Scheme

An alternative route to high resolution without oscillation
is to introduce flux limiters to guarantee the satisfaction
of the positivity condition (8). The use of limiters dates
back to the work of Boris and Book [23]. A particularly
simple way to introduce limiters, proposed by the author
in 1984 [68], is to use flux limited dissipation. In this
scheme the third order diffusion defined by equation (15)
is modified by the insertion of limiters which produce an
e?‘uivalent three point scheme with positive coefficients.
The original scheme [68] can be improved in the following
manner so that less restrictive flux limiters are required.
Let L{u,v) be a limited average of u and v with the
following properties:

Pl. L(u,v) =L(v,u)
P2. L(au,av) =alL(u,v)
P3. L(u,u) =u

P4. L(u,v) =0 if u and v have opposite signs: other-
wise L (u,v) has the same sign as u and v.

Properties (P1-P3) are natural properties of an average.
ProBerty (P4) is needed for the construction of a LED or
TVD scheme.

It is convenient to introduce the notation
¢(ry=L,r)=L(r,1),

where according to (P4) ¢ () > 0. It follows from (P2)

on setting a=1 or 1 that

L(u,v) =¢ (%) u=¢ (%) v.

Also it follows on setting v=1 and u=r that

¢ (r) =r¢ (%) .

Thus, if there exists r < 0 for which ¢ () > 0, then
¢ (L) < 0. The only way to ensure that ¢(r) > 0is to

E%cll)xire ¢ (r) =0 for all r < 0, corresponding to property

Now one defines the diffusive flux for a scalar conserva-
tion law as

djvy=ae) {Auﬁ% -L (Avﬁ%,Avj_%)}. (20)

Set

r+=A‘Uj+% . =A’U]-_%.
Av;_y ’ Avjey
and
L(Avjy,A0;_4) = ¢G7) Av;
L(Ang%,Avﬁ%) = qﬁ(r")Avﬁ%.
Then,

dv; 1 _
Az —t ={aj+i ~ 585+ +aj_%d>('r )}AU].+%

1 +
_ {aj__% + —2-aj_% +aj+%¢(7‘ ) }Avj_%.(ZI)

Thus the scheme satisfies the LED condition if Q) >
% iaj.,.%l for all §, and ¢(r) > 0, which is assured by
property (P4) on L. At the same time it follows from
property (P3) that the first order diffusive flux is can-
celed when Av is smoothly varying and of constant sign.
Schemes constructed by this formulation will be referred
to as symmetric limited positive (SLIP) schemes. This
result may be summarized as

Theorem 2 (Positivity of the SLIP scheme)

Suppose that the discrete conservation law (11) contains
a Ili)mitea' diffusive flux as defined by equation (20). Then
the positivity condition (14), together with the proper-
ties (P1—P4) for limited averages, are sufficient to ensure
satisfaction of the LED principle that a local maximum
cannot increase and a local minimum cannot decrease. O

A variety of limiters may be defined which meet the re-
quirements of properties (P1-P4). Define

S (u,v) =% {sign(u) +sign(v) }

which vanishes is u and v have opposite signs.

Then two limiters which are appropriate are the following
well-known schemes:

1. Minmod:
L(u,v) =S (u,v) min(Jul, [v])

2. Van Leer:

2ullo]
jul + T

L(u,v) =5(u,v)

In order to produce a family of limiters which contains
these as special cases it is convenient to set

L(u,v) =%D (u,v) (u+v),

where D (u,v) is a factor which should deflate the arith-
metic average, and become zero if u and v have opposite
signs. Take

q

A )

Jul + [v]

D(u,v) =1 - R(u,v) =1 ~—

where R (u,v) is the same function that was introduced
in the JST scheme, and ¢ is a positive integer. Then
D (u,v) =0 if u and v have opposite signs. Also if g=1,
L (u,v) reduces to minmod, while if ¢=2, L(u,v) is




equivalent to Van Leer’s limiter. By increasing g one can
generate a sequence of limited averages which approach
a limit defined by the arithmetic mean truncated to zero
when u and v have opposite signs.

When the terms are regrouped, it can be seen that with
this limiter the SLIP scheme is exactlg equivalent to the
JST scheme, with the switch is defined as

Qj-i-% = R<Avj+%7AUj+%)
@ .
1 = Qi

4
6].(+)% aj+% (1 - Q].{.%) .

This formulation thus unifies the JST and SLIP schemes.

4.4.5 Essentially Local Extremum Diminishing (ELED)
Scheme with Soft Limiter

The limiters defined by the formula (22) have the disad-
vantage that they are active at a smooth extrema, reducing
the local accuracy of the scheme to first order. In or-
der to prevent this, the SLIP scheme can be relaxed to
give an essentially local extremum diminishing (ELED)
scheme which is second order accurate at smoot%l extrema
by the introduction of a threshold in the limited average.
Therefore redefine D (u,v) as

q

vy , @3

max( |u| + |v], eAzT)

D(u,v) =1 -

where r=%, g > 2. This reduces to the previous definition
if |u| + |v| > eAx”.

In any region where the solution is smooth, Avﬁ% —Av;_1
is of order Az?. In fact if there is a smooth extremum in
the neighborhood of v; or v;+,, a Taylor series expansion

indicates that AUJ-.,.%, Av]-+% and Avj_% are each individ-

uvally of order Az?2, since £=0 at the extremum. It ma
y dz y

be verified that second order accuracy is preserved at a
smooth extremum if ¢ > 2. On the other hand the lim-

iter acts in the usual way if 1Avj+%l or IAv]-_%l > eAz”,

and it may also be verified that in the limit Az — O
local maxima are non increasing and local minima are
non decreasing [78]. Thus the scheme is essentially local
extremum diminishing (ELED).

The effect of the “soft limiter” is not only to improve the
accuracy: the introduction of a threshold below which
extrema of small amplitude are accepted also usually re-
sults in a faster rate of convergence to a steady state, and
decreases the likelyhood of limit cycles in which the lim-
iter interacts unfavorably with the corrections produced
by the updating scheme. In a scheme recently proposed
by Venkatakrishnan a threshold is introduced precisely
for this purpose [173].

4.4.6 Upstream Limited Positive (USLIP) Schemes

By adding the anti-diffusive correction purely from the
upstream side one may derive a family of upstream limited
gosnive (USLIP) schemes. Corresponding to the original
SLIP scheme defined by equation (20), a%JSLIP scheme
is obtained by setting

dj+%=aj+% {AUJ+% - L (A’Uj.{.%,AUj__zl_)}

dj+%=aj+% {Avﬁ% - L (Avj+%,Avj+. )}

[

ifaj4 < 0. If aj+%=% aﬁ.%' one recovers a standard
2

high resolution upwind scheme in semi-discrete form.
Consider the case that ajey > 0 and aj_y > 0. If one

sets

the scheme reduces to

dvj 1 -
xil:_i {¢(r+) aj+% + (2-—¢(I" ))G,]-_%}A”U]—_%.

To assure the correct sign to satisfy the LED criterion the
flux limiter must now satisfy the additional constraint that

o(r) <2.

The USLIP formulation is essentially equivalent to stan-
dard upwind schemes [129, 165]. Both the SLIP and US-
LIP constructions can be implemented on unstructured
meshes [75, 78]. The anti-diffusive terms are then calcu-
lated by taking the scalar product of the vectors defining
an edge with the gradient in the adjacent upstream and
downstream cells.

44.7 L;ystems of Conservation Laws: Flux Splitting and
lux-Difference Splitting

Steger and Warming [161] first showed how to generalize
the concept of upwinding to the system of conservation
laws 9

w

ot
by the concept of flux splitting. Suppose that the flux is

+ -
splitas f=f* + f~ where %%}— and %-%— have positive and
negative eigenvalues. Then the first order upwind scheme
is produced by taking the numerical flux to be

+ -
hj+%=fj +fj+1.
This can be expressed in viscosity form as
h _ Ll + 17+ o+
L T 5 fj+| fj “5 fj+1 fj

e (g i)+ 5 (- 17)
= % (fj+l + fj) - dj+%7

+ —8—f(w) =0 (24)
or

where the diffusive flux is
1 _
disy=5 A" = f 7y (25)

Roe derived the alternative formulation of flux difference
splitting [145] by distributing the corrections due to the
ux difference in each interval upwind and downwind to
obtain
d'u)] — + _
Al‘—d-t— (fje1 — [+ = fi—) 7 =0,

where now the flux difference fj+; — f; is split. The
corresponding diffusive flux is

dj+%=% e Afl:‘%) '

Following Roe’s derivation, let A4, be a mean value
Jacobian matrix exactly satisfying the condition

fiv1 = fi=Aj01 (wjey —wy) (26)




A+ may be calculated by substituting the weighted av-
erages
e VP P VowH * /P an
VPi+1 Y /P ' VOH /P
into the standard formulas for the Jacobian matrix A=g£.

A splitting according to characteristic fields is now ob-
tained by decomposing Aj+% as

Aj+%=TAT_', (28)

where the columns of T are the eigenvectors of Aj+%,

and A is a diagonal matrix of the eigenvalues. Now the
corresponding diffusive flux is

1

where
‘Aﬁ% | =T |A|T"!

and |A] is the diagonal matrix containing the absolute
values of the eigenvalues.

4.4.8 Alternative Splittings

Characteristic splitting has the advantages that it intro-
duces the minimum amount of diffusion to exclude the
growth of local extrema of the characteristic variables, and
that with the Roe linearization it allows a discrete shock
structure with a single interior point. To reduce the com-
putational complexity one may replace |A| by al where
if « is at least equal to the spectral radius max [A(A) |,
then the positivity conditions will still be satisfied. Then
the first order scheme simply has the scalar diffusive flux

1
dj+li=§aj+%ij+l- (29)

2

The JST scheme with scalar diffusive flux captures shock
waves with about 3 interior points, and it has been widel
used for transonic flow calculations because it is boti;
robust and computationally inexpensive.

An intermediate class of schemes can be formulated by
defining the first order diffusive flux as a combination of
differences of the state and flux vectors

i . 1
dj+y=5a541C (wjby —wjs) + 38i+4 (firi=F), GO

where the factor ¢ is included in the first term to make
a;.“ and ﬂj+% dimensionless. Schemes of this class
2

are fully upwind in supersonic flow if one takes a;.‘+l=0
2

and ﬂj+%=sign(M) when the absolute value of the Mach

number M exceeds 1. The flux vector f can be decom-

posed as
f=uw + fp, (31)
where
0
o=l P |- (32)
up
Then

fj+l - fi=u (’wj+1 - wj) tw (“j+| - “j) + ij+| - fpj7
_ . . (33)
where @ and @ are the arithmetic averages

1

(ujer +uy) s @=5 (w1 +wj).

Thus these schemes are closely related to schemes which
introduce separate splittings of the convective and pres-
sure terms, such as the wave-particle scheme [144), 8], the
advection upwind splitting method (AUSM) [105, 175],
and the convective upwind and split pressure (CUSP)
schemes [76].

In order to examine the shock capturing properties of these
various schemes, consider the general case of a first order
diffusive flux of the form

1
dj+%=§aj+%Bj+% (’lUj+| —UJ_,) s (34)
where the matrix Bj+% determines the properties of the
scheme and the scaling factor a4 is included for con-
venience. All the previous schemes can be obtained by
representing Bj+% as a polynomial in the matrix A]»+%

defined by equation (26). Schemes of this class were
considered by Van Leer [98]. According to the Cayley-
Hamilton theorem, a matrix satisfies its own characteristic
equation. Therefore the third and higher powers of A can
be eliminated, and there is no loss of generality in limiting

Bj+% to a polynomial of degree 2,

Bjyi=ool + andjuy + oAy, (35)

The characteristic

upwind scheme for which Bj+%=IA]-+%. is obtained by

substituting AJ-+%=TAT"1, A§+1=TA2T“. Then ao,
2 -

ay, and a; are determined from the three equations

g + al)\k + az)\%=])\kl y k=1,2,3.

The same re resentation remains valid for three dimen-
sional flow because Aj+% still has only three distinct

eigenvaluesu, u + ¢, u — .

4.4.9 Analysis of Stationary Discrete Shocks

j+1 j+2

Figure 4: Shock structure for single interior point.

The ideal model of a'discrete shock is illustrated in fig-
ure (4). Suppose that wy, and wp are left and right
states which satisfy the jump conditions for a stationary
shock, and that the corresponding fluxes are fr=f(wr)
and fr=f(wg). Since the shock is stationary fr=fg.
The ideal discrete shock has constant states wy, to the left
and wp to the right, and a single point with an intermedi-
ate value w4. The intermediate value is needed to allow
the discrete solution to correspond to a true solution in
which the shock wave does not coincide with an interface
between two mesh cells.

Schemes corresponding to one, two or three terms in equa-
tion (35) are examined in [79]. The analysis of these three



cases shows that a discrete shock structure with a single
interior point is supported by artificial diffusion that sat-
isfies the two conditions that

1. it produces an upwind flux if the flow is determined
to be supersonic through the interface

2. it satisfies a generalized eigenvalue problem for the
exit from the shock of the form

(Aar — carBar)(wr —wa)=0, (36)

where A4p is the linearized Jacobian matrix and Bag
is the matrix defining the diffusion for the interface AR.
This follows from the equilibrium condition hra=hrr
for the cell j + 1 in figure 4. These two conditions are
satisfied by both the characteristic scheme and also the
CUSP schéme, provided that the coefficients of convective
diffusion and pressure differences are correctly balanced.
Scalar diffusion does not satisfy the first condition. In the
case of the CUSP scheme (30) equation (36) reduces to

*

a*c
ARa + wpr —wa)=0

( RAY T3 (wr —w4)

Thus wg — w4 is an eigenvector of the Roe matrix Ap4,
and —fﬁr—; is the corresponding eigenvalue. Since the
eigenvalues are u, u + ¢, and u — ¢, the only choice which
leads to positive diffusion when u > 0 is u — ¢, yielding
the relationship

a*c=(1+3) (c—u),0<u<c

Thus there is a one parameter family of schemes which
support the ideal shock structure. The term 8(fr — fa)
contributes to the diffusion of the convective terms. Al-
lowing for the split (31), the total effective coefficient of
convective diffusion is ac=a*c + fu. A CUSP scheme
with low numerical diffusion is then obtained by taking

a=|M|, leading to the coefficients illustrated in figure 5.

Figure 5: Diffusion Coefficients.

4.4.10 CUSP and Characteristic Schemes Admitting
Constant Total Enthalpy in Steady Flow

In steady flow the stagnation enthalpy H- is constant, cor-
responding to the fact that the energy and mass conserva-
tion equations are consistent when the constant factor H
is removed from the energy equation. Discrete and semi-
discrete schemes do not necessarily satisfy this property.
In the case of a semi-discrete scheme expressed in viscos-
ity form, equations (11) and (12), a solution with constant
H is admitted if the viscosity for the energy equation re-
duces to the viscosity for the continuity equation with p
replaced by pH. When the standard characteristic de-
composition (28) is used, the viscous fluxes for p and
pH which result from composition of the fluxes for the
characteristic variables do not have this property, and H
is not constant in the discrete solution. In practice there
is an excursion of H in the discrete shock structure which
represents a local heat source. In very high speed flows

10

the corresponding error in the temperature may lead to a
wrong prediction of associated eftects such as chemical
reactions.

The source of the error in the stagnation enthalpy is the
discrepancy between the convective terms

P
ul pu |,
pH

in the flux vector, which contain pH, and the state vector
which contains pE. This may be remedied by introducing
a modified state vector

pp
wp=| pu |.
3 JH

Then one introduces the linearization
fr— fL=An(wWhgy — wh,)
Here Ay, may be calculated in the same way as the stan-

dard Roe linearization. Introduce the weighted averages
defined by equation (27). Then

0 1 0
Ap= _v_ﬂuTz o/l P 2ol
—wH  H

The eigenvalues of A, are u, A% and A~ where

1 +1 2 —u?
/\i=%—u:t\/(’y u)2+c—7“—. (37)

2y

Now both CUSP and characteristic schemes which pre-
serve constant stagnation enthalpy in steady flow can be
constructed from the modified Jacobian matrix Ay [79].
These schemes also produce a discrete shock structure
with one interior point in steady flow. Then one arrives at
four variations with this property, which can conveniently
be distinguished as the é). and H-CUSP schemes, and the
E- and H-characteristic schemes.

4.5 Multidimensional Schemes

The simplest approach to the treatment of multi-
dimensional problems on structured meshes is to appl
the one-dimensional construction separately in each mesf\;
direction. On triangulated meshes in two or three dimen-
sions the SLIP and USLIP constructions may also be
implemented along the mesh edges [78]. A substantial
body of current research is directed toward the imple-
mentation of truly multi-dimensional upwind schemes in
which the upwind biasing is determined by properties of
the flow rather than the mesh. A thorough review is given
by Pailliere and Deconinck in reference [131].

Residual distribution schemes are an attractive agproach
for triangulated meshes. In these the residual defined by
the space derivatives is evaluated for each cell, and then
distrl%uted to the vertices with weights which depend on
the direction of convection. For a scalar conservation
law the weights can be chosen to maintain positivity with
minimum cross diffusion in the direction normal to the
flow. For the Euler equations the residual can be linearized
by assuming that the parameter vector with components

/P/Pui, and \/pH varies linearly over the cell. Then
df; (w) ow
a.’ltj a.L‘J
o/

where the Jacobian matrices Aj=%Z are evaluated with
Roe averaging of the values of w at the vertices. Waves




in the direction n can then be expressed in terms of the
eigenvectors of n; A;, and a positive distribution scheme
is used for waves in preferred directions. The best choice
of these directions is the subject of ongoing research,
but preliminary results indicate the possibility of achiev-
ing high resolution of shocks and contact discontinuities
which are not aligned with mesh lines [131].

Hirsch and Van Ransbeeck adopt an alternative approach
in which they directly construct directional diffusive terms
on structured meshes, with anti-diffusion controlled by
limiters based on comparisons of slopes in different di-
rections [60]. They also show promising results in calcu-
lations of nozzles with multiply reflected oblique shocks.

4.5.1 High Order Godunov Schemes, and Kinetic Flux
Splitting

A substantial body of current research is directed toward
the implementation of truly multi-dimensional upwind
schemes [59, 134, 100]. Reference [131] provides a thor-
ough review of recent developments in this field. Some of
the most impressive simulations of time dependent flows
with strong shock waves have been achieved with higher
order Godunov schemes [179]. In these schemes the aver-
age value in each cell is updated by applying the integral
conservation law using interface fluxes predicted from
the exact or approximate solution of a Riemann problem
between adjacent cells. A higher order estimate of the
solution is then reconstructed from the cell averages, and
slope limiters are applied to the reconstruction. An ex-
ample is the class of essentially non-oscillatory (ENO)
schemes, which can attain a very high order of accu-
racy at the cost of a substantial increase in computational
complexity [32, 152, 150, 151]. Methods based on re-
construction can also be implemented on unstructured
meshes [13, 12]. Recently there has been an increasing
interest in kinetic flux splitting schemes, which use solu-
tions of the Boltzmann equation or the BGK equation to
predict the interface fluxes [42, 36, 45, 135, 180].

4.6 Discretization of the Viscous Terms

The discretization of the viscous terms of the Navier
Stokes equations requires an approximation to the ve-

locity derivatives % in order to calculate the tensor o;;,

defined by equation ](3). Then the viscous terms may be
included in the flux balance (4). In order to evaluate the
derivatives one may apply the Gauss formula to a control

volume V' with the boundary S
Ou;
———’dv=/ un;dS,
1 ij s v

where n; is the outward normal. For a tetrahedral or
hexahedral cell this gives

Ou;_ 1 S wmn s (38)

dz; vol
faces

where T; is an estimate of the average of u; over the
face. If u varies linearly over a tetrahedral cell this is
exact. Alternatively, assuming a local transformation to
computational coordinates £;, one may apply the chain

rule .
P _
u_[ou] (2] gu o 9
Ox | 0€| |9x]| 0O |0¢

Here the transformation derivatives g—z- can be evaluated

~ . - J .
by the same finite difference formulas as the velocity
derivatives g% In this case g—‘g is exact if u is a linearly

J
varying function.

For a cell-centered discretization (figure 6a) g—‘i‘i is needed
r

at each face. The simplest procedure is to evaluate %

in each cell, and to average -‘3—?— between the two cells
J .

on either side of a face [86]. The resulting discretization

does not have a compact stencil, and supports undamped

oscillatory modes. In a one-dimensional calculation, for

2 . . w.g —2uitu;

example, 3% would be discretized as b In
ot w1 Qui i

order to produce a compact stencil % may be estimated

from a control volume centered on each face, using formu-
las (38) or (39) [143]. This is computationally expensive
because the number of faces is much larger than the num-
ber of cells. In a hexahedral mesh with a large number of
vertices the number of faces approaches three times the
number of cells.

This motivates the introduction of dual meshes for the
evaluation of the velocity derivatives and the flux bal-
ance as sketched in figure 6. The figure shows both

| e

dual cell
.- T~. G,

i g

NV . -

\

6a: Celi-centered
scheme. o;; evaluated 6b: Cell-vertex scheme.

at vertices of the primary 7ij evaluated at cell cen-
mesh ters of the primary mesh

Fi%ure 6: Viscous discretizations for cell-centered and
cell-vertex algorithms.

cell-centered and cell-vertex schemes. The dual mesh
connects cell centers of the primary mesh. If there is a
kink in the primary mesh, the dual cells should be formed
by assembﬁng contiguous fractions of the neighboring
primary cells. On smooth meshes comparable results are
obtainéd by either of these formulations [113, 114, 106].
If the mesh has a kink the cell-vertex scheme has the
advantage that the derivatives g&d‘r‘—f are calculated in the

7
interior of a regular cell, with no loss of accuracy.

A desirable property is that a linearly varying velocity dis-
tribution, as in a Couette flow, should produce a constant
stress and hence an exact stress balance. This Froperty is
not necessarily satisfied in general by finite ditference or
finite volume schemes on curvilinear meshes. The char-
acterization k-exact has been proposed for schemes that
are exact for polynomials of degree k. The cell-vertex fi-
nite volume scheéme is linearly exact if the derivatives are

evaluated by equation (39), since then g%; is exactly eval-

uated as a constant, leading to constant viscous stresses
oij, and an exact viscous stress balance. This remains

true when there is a kink in the mesh, because the sum-
mation of constant stresses over the faces of the kinked
control volume sketched in figure 6 still yields a perfect
balance. The use of equation (39) to evaluate -g%‘- how-
El
ever, requires the additional calculation or storage of the
nine metric quantities %‘— in each cell, whereas equation
7

(38) can be evaluated from the same face areas that are
used for the flux balance.

In the case of an unstructured mesh, the weak form (6)
leads to a natural discretization with linear elements, in




which the piecewise linear approximation yields a con-
stant stress in each cell. This method yields a represen-
tation which is globally correct when averaged over the
cells, aresult that can beé proved by energy estimates forel-
liptic problems [163]. It should be noted, however, that it
yields formulas that are not necessarily locally consistent
with the differential equations, if Taylor series expansions
are substituted for the solution at the vertices appearing
in the local stencil. Figure 7 illustrates the discretization
of the Laplacian u,, + u,, which is obtained with linear
elements. It shows a particular triangulation such that
the approximation is locally consistent with uzz + 3uy,.
Thus the use of an irregular triangulation in the boundary
layer may significantly degrade the accuracy.

Cocflicients
resulting from
lincar elements

Figure 7: Example of discretization uz, + y, On a trian-

gular mesh. The discretization is locally equivalent to the

N —2u,+ 6u.+
approximation =2 zh"f "°,3uyy=3“d Gh"; dup

4.7 Time Stepping Schemes

If the space discretization Frocedure is implemented sep-
arately, it leads to a set of coupled ordinary differential
equations, which can be written in the form

fg + R(w)=0, (40)

where w is the vector of the flow variables at the mesh
points, and R(w) is the vector of the residuals, consisting
of the flux balances defined by the space discretization
scheme, together with the added dissipative terms. If the
objective is simply to reach the steady state and details
of'the transient solution are immaterial, the time-stepping
scheme may be designed solely to maximize the rate of
convergence. The first decision that must be made is
whether to use an explicit scheme, in which the space
derivatives are calculated from known values of the flow
variables at the beginning of the time step, or an implicit
scheme, in which the formulas for the space derivatives
include as yet unknown values of the flow variables at
the end of the time step, leading to the need to solve
coupled equations for the new values. The permissi-
ble time step for an explicit scheme is limited by the
Courant-Friedrichs-Lewy (CFL) condition, which states
that a difference scheme cannot be a convergentand stable
approximation unless its domain of depengence contains
the domain of dependence of the corresponding differen-
tial equation. One can anticipate that implicit schemes
will yteld convergence in a smaller number of time steps,
because the time step is no longer constrained by the CEL
condition. Implicit schemes will be efficient, however,
only if the decrease in the number of time steps outweighs
the increase in the computational effort per time step con-
sequent upon the need to solve coupled equations. The
prototype implicit scheme can be formulated by estimat-
oW

ing S att + pAt as a linear combination of R(w") and
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R(w"*!). The resulting equation
witl=w™ — At {(l - wR (W) +pR (w"ﬂ)}
can be linearized as
(I + ,uAtg—z) dw + AtR (w")=0.

If one sets =1 and lets At — oo this reduces to the
Newton iteration , which has been successfully used in
two-dimensional calculations (172, S0}. In the three-
dimensional case with, say, an N x N x N mesh, the
bandwidth of the matrix tﬁat must be inverted is of or-
der N2. Direct inversion requires a number of operations
proportional to the number of unknowns multiplied by

the square of the bandwidth of the order of N 7. This is
rohibitive, and forces recourse to either an approximate
actorization method or an iterative solution method.

Alternating direction methods, which introduce factors
corresponding to each coordinate, are widely used for
structured meshes [17, 136]. They cannot be imple-
mented on unstructured tetrahedral meshes that do not
contain identifiable mesh directions, although other de-
compositions are possible [107]. If one chooses to adopt
the iterative solution technique, the principal alternatives
are variants of the Gauss-Seidel and Jacobi methods. A
symmetric Gauss-Seidel method with one iteration per
time step is essentially equivalent to an approximate
lower-upper (LLU) factorization of the implicit scheme
[85, 124, 31, 183]. On the other hand, the Jacobi method
with a fixed number of iterations per time step reduces
to a multistage explicit scheme, belonging to the gen-
eral class of Runge-Kutta schemes [33]. Schemes of this
type have %roved very effective for wide variety of prob-
lems, and they have the advantage that they can be applied
equally easily on both structured and unstructured meshes
[83, 67, 69, 144].

If one reduces the linear model problem corresponding to
(40) to an ordinary differential equation by substituting a

Fourier mode wW=e*P%3, the resulting Fourier symbol has
an imaginary f)art proportional to the wave speed, and
a negative real part gropomonal to the diffusion. Thus
the time stepping scheme should have a stability region
which contains substantial intervals of both the negative
real axis and the imaginary axis. To achieve this it pays
to treat the convective and dissipative terms in a distinct
fashion. Thus the residual is split as

R(w) =Q(w) + D(w),

where Q (w) is the convective part and D (w) the dissi-
ative part. Denote the time level nAt by a superscript n.
hen the multistage time stepping scheme is formulated
as

w(n+1,0) = w"
wmtLE) oy AL (Q(k——l) + D(k—l))
wn‘l’l - w(n'H,m)

where the superscript k denotes the k-th stage, =1, and

Q@ = Qwm, DW=Dw"
Q(k) = Q (w(n+l,k)>
D(k) = 3D (w(n*‘l,k)) +(1—-,3k)D(k_l).

The coefficients oy are chosen to maximize the stability
interval along the imaginary axis, and the coefficicnts




B arc chosen (o increase the stability interval along the
negative real axis.

These schemes do not fall within the standard framework
of Runge-Kutta schemes, and they have much larger sta-
bility regions [69]. Two schemes which have been found
to be particularly effective are tabulated below. The first
is a four-stage scheme with two evaluations of dissipation.
Its coefficients are
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The second is a five-stage scheme with three evaluations
of dissipation. Its coefficients are

a1=% Bi=1

=g B2=0

O¢3=§ ,33=0 56 (42)
as=5 =0

a5=f ﬂ5=0.44

4.8 Multigrid Methods
4.8.1 Acceleration of Steady Flow Calculations

Radical improvements in the rate of convergence to a
steady state can be realized by the multigrid time-stepping
techni?ue. The concept of acceleration by the introduc-
tion of multiple grids was first proposed by Fedorenko
[48]. There is by now a fairly well-deveyoped theory
of multigrid methods for elliptic equations based on the
concept that the updating scheme acts as a smoothing op-
erator on each grid [24, 53]. This theory does not hold for
hyperbolic systems. Nevertheless, it seems that it ought
to be possible to accelerate the evolution of a hyperbolic
system to a steady state by using large time steps on coarse
grids so that disturbances will be more rapidly expelled
through the outer boundary. Various multigrid time-
stepping schemes designed to take advantage ot this effect
have been proposed [123, 65, 55, 71, 29, 6, 57, 82, 92].

One can devise a multigrid scheme using a sequence of
independently generated coarser meshes by eliminating
alternate points in each coordinate direction. In order to
give a precise description of the multigrid scheme, sub-
scripts may be used to indicate the grid. Several transfer
operations need to be defined. First the solution vector on
grid k must be initialized as
wk(o) =Tk k—1Wk—1,

where w1 is the current value on grid k — 1, and T, 1
is a transfer operator. Next it is necessary to transfer a
residual forcing function such that the solution grid k is

driven by the residuals calculated on grid k — 1. This can
be accomplished by setting

Pi=Qpx—1Ri—1 (we—1) — Ry [wéo)] )
where Q. 1 is another transfer operator. Then Ry (wy,)
is replaced by Ry (wy) + Py in the time- stepping scheme.

Thus, the multistage scheme is reformulated as

wél) = w,go) — ay Aty [ngo) +Pk]
wi = w® —apan [R 4+ R

The result wé"‘) then provides the initial data for grid
k + 1. Finally, the accumulated correction on grid k

has to be transferred back to grid k — 1 with the aid of
an interpolation operator £, _; . With properly optimized
coefficients multistage time-stepping schemes can be very
efficient drivers of the multigrid process. A W-cycle of
the type illustrated in Figure 8 proves to be a particularly

&) (B)
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8a: 3 Levels.

4 Level Cycle 4 Level Cycle

8c: 5 Levels.

Figure 8: Multigrid W-cycle for managing the grid cal-
culation. E, evaluate the change in the flow for one step;
T, transfer the data without updating the solution.

effective strategy for managing the work split between the
meshes. Ina llgxree-dimensional case the number of cells
is reduced by a factor of eight on each coarser grid. On
examination of the figure, it can therefore be seen that the
work measured in units corresponding to a step on the fine
grid is of the order of

1+2/8+4/64+...<4/3,

and consequently the very large effective time step of the
complete cycle costs only sligfxtly more than a single time
step in the fine grid.

4.8.2 Multigrid Implicit Schemes for Unsteady Flow

Time dependent calculations are needed for a number
of important apﬁlications, such as flutter analysis, or the
analysis of the flow past a helicopter rotor, in which the
stability limit of an explicit scheme forces the use of much
smaller time steps than would be needed for an accurate
simulation. In this situation a multigrid explicit scheme
can be used in an inner iteration to solve the equations of
a fully implicit time stepping scheme [74].

Suppose that (40) is approximated as
Dew™! + R(w™') =0.

Here D; is a k" order accurate backward difference op-
erator of the form

k
1 1
=__§ —(AT)Y1
D. Atq=lq(A -

where N N
A" w e — ™




Applied to the linear differential equation

— =Qw

dt

the schemes with k=1, 2 are stable for all At in the left
half plane (A-stable). Dahlquist has shown that A-stable
linear multi-step schemes are at best second order accurate
[38]. Gear however, has shown that the schemes with
k < 6 are stiffly stable [49], and one of the higher order
schemes may offer a better compromise between accuracy
and stability, depending on the application.

Equation (40) is now treated as a modified steady state
problem to be solved by a multigrid scheme using variable
local time steps in a fictitious time ¢*. For example, in the
case k=2 one solves

ow
=R*
gt &)
where
... 3 2 1
R () =gzw+ Blw) + Gt = 55w

and the last two terms are treated as fixed source terms.
The first term shifts the Fourier symbol of the equivalent
model problem to the left in the complex plane. While
this promotes stability, it may also require a limit to be
imposed on the magnitude of the local time step At* rel-
ative to that of the implicit time step At. This may be
relieved by a point-implicit modification of the multi-
stage scheme [Fl 8]. In the case of problems with moving
boundaries the equations must be modified to allow for
movement and deformation of the mesh.

This method has proved effective for the calculation of
unsteady flows that might be associated with wing flutter
[3, 4] and also in the calculation of unsteady incompress-
ible flows [18]. It has the advantage that it can be added
as an option to a computer program which uses an explicit
multigrid scheme, allowing it to be used for the efficient
calculation of both steady and unsteady flows.

4.9 Preconditioning

Another way to improve the rate of convergence to a
steady state is to multiply the space derivatives in equa-
tion (1) by a preconditioning matrix P which is designed
to equalize the eigenvalues, so that all the waves can be
advanced with optimal time steps. A symmetric precondi-
tioner which equalizes the eigenvalues has been proposed
by Van Leer ﬂOl]. When the equations are written in
stream-aligned coordinates this has the form

T 2 T
EZTM —TB 0 0 0
-—B]V[ EE+1 0 00
P=f 0 7 00
0 0 0O 7 0
0 0 0 0 1
where
B = m=v/1-M2 if M<1
/ 1
ﬂ = \/I—MZ,T= 1—"]‘\‘4—2, if MZI

Turkel has progoscd an asymmetric preconditioner which
has also proved effective, particularly for flow at low Mach
numbers [171]. The use of these preconditioners can lead
to instability at stagnation points where there is a zero
eigcivaluc which cannot be equalized with the eigenval-
ues tc.

The preconditioners of Van Leer and Turkel do not take
account of the effect of differences in the mesh intervals
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in the different coordinate directions. The need to resolve
the boundary layer generally forces the introduction of
mesh cells with very high aspect ratios ncar the bound-
ary, and these can lead to a severe reduction in the rate
of convergence to a steady state. Pierce has recently ob-
tained impressive results using diagonal and block-Jacobi
preconditioners which include the mesh intervals [132}.

An alternative approach has recently been proposed by
Ta’asan [167], in which the equations are_written in a
canonical form which separates the equations describ-
ing acoustic waves from those describing convection. In
terms of the velocity components u,v and the vorticity
w, temperature T, entropy s and total enthalpy H, the
equations describing steady two-dimensional flow can be
written as

D, D, O 0 0 u
o B
—a—y Bz -1 ? l0 v
0" 0 =g~z 40y | | |0
0o 0 0 To) 0 i
0 0 0 0 pQ
where
I % S N 4
Dy = 2 <(C “)ax u 6y)
I S N
D, = 2 ((c u)a uva )
0 0
D3 = v-é;-— gy-
0 0
Q = ué;+v%

Here the first two equations describe an elliptic system if
the flow is subsonic, while the remaining equations are
convective. Now separately optimized multigrid proce-
dures are used to solve the two sets of equations, which
are essentially decoupled.

4.10 High Order Schemes and Mesh Refinement

The need both to improve the accuracy of computational
simulations and to assure known levels of accuracy is the
focus of ongoing research. The main routes to improv-
ing the accuracy are to increase the order of the discrete
scheme and to reduce the mesh interval. High order differ-
ence methods are most easily implementeg on Cartesian,
or at least extremely smooih grids. The expansion of
the stencil as the order is increased leads to the need for
complex boundary conditions. Compact schemes keep
the stencil as small as possible [139, 103, 28]. On simple
domains, spectral metﬁods are particularly effective, es-
pecially in the case of periodic boundary conditions, and
can be used to produce exponentially fast convergence of
the error as the mesh interval is decreased [126, 27]. A
compromise is to divide the field into subdomains and
introduce high order elements. This approach is used in
the spectral element method [91].

High order difference schemes and spectral methods have
proven particularly useful in direct Navier-Stokes simula-
tions of transient and turbulent flows. High order methods
are also beneficial in computational aero-acoustics, where
it is desired to track waves over long distances with min-
imum error. If the flow contains shock waves or contact
discontinuities, the ENO method may be used to construct
high order non-oscillatory schemes.

In multi-dimensional flow simulations, global reduction
of the mesh interval can be prohibitively expensive, mo-
tivating the use of adaptive mesh refinement procedures
which reduce the local mesh width A if there is an indica-
tion that the error is too large [21, 39, 108, 61, 137, 102].
In such A-refinement methods, simple error indicators




such as local solution gradients may be used. Alterna-
tively, the discretization error may be estimated by com-
paring quantitics calculated with two mesh widths, say
on the current mesh and a coarser mesh with double the
mesh interval. Procedures of this kind may also be used
to provide a posteriori estimates of the error once the
calculation is completed.

This kind of local adaptive control can also be applied
to the local order of a finite element method to produce
a p-refinement method, where p represents the order of
the polynomial basis functions. Finally, both h- and p-
refinement can be combined to produce an h-p method in
which A and p are locally optimized to yield a solution
with minimum error [125]. Such methods can achieve
exponentially fast convergence, and are well established
in computational solid mechanics.

5. CURRENT STATUS OF NUMERICAL SIMU-
LATION

This section presents some representative numerical re-
sults which confirm the properties of the algorithms which
have been reviewed in the last section. These have been
drawn from the work of the author and his associates.
They also illustrate the kind of calculation which can be
performed in an industrial environment, where rapid turn
around is important to allow the quick assessment of de-
sign changes, and computational costs must be limited.

5.1 One-dimensional shock

In order to verify the discrete structure of station-
ary shocks, calculations were performed for a one-
dimensional problem with initial data containing left and
right states compatible with the Rankine Hugoniot condi-
tions. An intermediate state consisting of the arithmetic
average of the left and right states was introduced at a
single cell in the center of the domain. With this interme-
diate state the system is not in equilibrium, and the time
dependent equations were solved to find an equilibrium
solution with a stationary shock wave separating the left
and right states. Table 1 shows the result for a shock
wave at Mach 20. This calculation used the H-CUSP
scheme, which allows a solution with constant stagna-
tion enthalpy, with the limiter defined by equation (23),
and ¢g=3. The formulation is described in detail in refer-
ence [79). The table shows the values of H, p, M and

the entropy S=log ;f—’,; — log (%’“) A perfect one point
L

shock structure is displayed. The entropy is zero to 4
decimal places upstream’ of the shock, exhibits a slight
excursion at the interior point, and is constant to 4 deci-
mal places downstream of the shock. It may be noted that
the mass, momentum and energy of the initial data are
not compatible with the final equilibrium state. Accord-
ing to conservation arguments the total mass, momentum
and energy must remain constant if the outflow flux fg
remains equal to the inflow flux fr. Therefore fr must
be alloweg to vary according to an appropriate outflow
boundary condition to allow the total mass, momentum
and energy to be adjusted to values compatible with equi-

librium. :

I H p M S
19 | 283.5000 1.0000 20.0000  0.0000
20 | 283.5000 1.0000 20.0000  0.0000
21 | 283.5000 1.0000 20.0000  0.0000
22 | 283.4960 307.4467 0.7229 40.3353
23 | 283.4960 466.4889  0.3804 37.6355
24 | 2834960 466.4889  0.3804 37.6355
25 | 283.4960 466.4889  0.3804 37.6355

Table 1: Shock Wave at Mach 20

5.2 Euler Calculations for Airfoils and Wings

The results of transonic flow calculations for two well
known airfoils, the RAE 2822 and the NACA 0012, are
presented in figures (22-25). The H-CUSP scheme was
again used. The limiter defined by equation (23) was used
with g=3. The 5 stage time stepping scheme (42) was aug-
mented by the multigrid scheme described in section 4.2
to accelerate convergence to a stead& state. The equations
were discretized on meshes with O-topology extending
out to a radius of about 100 chords. In each case the
calculations were performed on a sequence of succes-
sively finer meshes from 40x8 to 320x64 cells, while the
multigrid cycles on each of these meshes descended to a
coarsest mésh of 10x2 cells. Figure 22 shows the inner
parts of the 160x32 meshes for the two airfoils. Figures
23-25 show the final results on 320x64 meshes for the
RAE 2822 airfoil at Mach .75 and 3° angle of attack, and
for the NACA 0012 airfoil at Mach .8 and 1.25° angle of
attack, and also at Mach .85 and 1° angle of attack. In the

pressure distributions the pressure coefficient Cp= 1_%11;‘2;
2P0 oo

is plotted with the negative (suction) pressures upward, so
that the upper curve represents the flow over the upper side
of a lifting airfoil. e convergence histories show the
mean rate of change of the density, and also the total num-
ber of supersonic points in the flow field, which provides
a useful measure of the global convergence of transonic
flow calculations such as these. In each case the conver-
gence history is shown for 100 cycles, while the pressure
distribution is displayed after a sufficient number of cy-
cles for its convergence. The pressure distribution of the
RAE 2822 airfoil converged in only 25 ctycles. Conver-
gence was slower for the NACA 0012 airfoil. In the case
of flow at Mach .8 and 1.25° angle of attack, additional
cycles were needed to damp out a wave downstream of
the weak shock wave on the lower surface.

As a further check on accuracy the drag coefficient should
be zero in subsonic flow, or in shock free transonic flow.
Table 2 shows the computed drag coefficient on a se-
quence of three meshes for three examples. The first two
are subsonic flows over the RAE 2822 and NACA 0012
airfoils at Mach .5 and 3° angle of attack. The third is the
flow over the shock free Korn airfoil at its design point
of Mach .75 and 0° angle of attack. In all three cases the
drag coefficient is calculated to be zero to four digits on a
160x32 mesh.

Mesh T RAE 2822 NACA00IZ  Korn Airfoil
Mach .50 Mach .50 Mach .75

o 3° a3° a 0°

40x8 .0062 0047 .0098
80x16 0013 .0008 0017
160x32 .0000 .0000 .0000

Table 2: Drag Coefficient on a sequence of meshes

As a further test of the performance of the H-CUSP
scheme, the flow past the ONERA M6 wing was cal-
culated on a mesh with C-H topology and 193x32x48 =
294912 cells. Figure 26 shows the result at Mach .84
and 3.06° angle of attack. This again verifies the non-
oscillatory character of the solution, and the sharp resolu-
tion of shock waves. In this case 50 cycles were sufficient
for convergence of the pressure distributions.

Figure 9 shows a calculation of the Northrop YF23 by R.J.
Busch, Jr., who used the author’s FLO57 code to solve
the Euler equations [26]. Although an inviscid model of
the flow was used, it can be seen that the simulations are
in good agreement with wind tunnel measurements both
at Mach .90, with angles of attack of 0, 8 and 16 degrees,
and at Mach 1.5 with angles of attack of 0, 4 and 8 de-
grees. At a high angle of attack the flow separates from
the leading edge, and this example shows thatin situations
where the point of separation is fixed, an inviscid model
may still produce a useful prediction. Thus valuable in-



formation for the aerodynamic design could be obtained
with a relatively inexpensive computational model.
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Figure 9: Comparison of Experimental and Computed
})r)ag Rise Curve for the YF-23 (Supplied by R. J. Bush
L.
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Sonic Beam Prediction, Mach 2.5.

Figure 10: Comparison of Experimental and Calculated
Results for a HSCT Configuration

The next figures show the results of calculations using the
AIRPLANE code developed by T.J. Baker and the author,
to solve the Euler equations on an unstructured mesh. This
provides the flexibility to treat arbitrarily complex config-
urations without the need to spend months developing an

[ No. o Nodes [[ Seconds/Cycle | Speedup ]

| 36.03 1.00
2 18.11 1.99
4 9.11 3.96
8 4.66 173
16 2.39 15.08

Table 3: AIRPLANE Parallel Performance on the SP2,
MD-11 Model

acceptable mesh. Figures 10 and 11 show calculations
for supersonic transport configurations which were per-
formed by Susan Cliff, The agreement with experimental
data is quite good, and it has also been possible to predict
the sonic boom signature [34]. Figure 12 shows an Euler
calculation for the McDonnell Douglas MD11 with flow
through the engine nacelles, using 348407 mesh points of
2100466 tetrahedra. This calculation takes 4 hours on an
IBM 590 workstation. A parallel version of the code has
been developed in collaboration with W.S. Cheng, and the
same calculation can be performed in 20 minutes using
16 processors of an IBM SP2. The parallel speed-up for
the MD11 is shown in table 3.

Figure 11: Pressure Contours and Sonic Boom on a Rep-
resentative HSCT Configuration

5.3 Viscous Flow Calculations

The next figures show viscous simulations based on the
solution of the Reynolds averaged Navier Stokes equa-
tions with turbulence models. Figure 13 shows a two-
dimensional calculation for the RAE 2822 airfoil by L.
Martinelli. The vertical axis represents the negative pres-
sure coefficient, and there is a shock wave half way along
the upper surface. This example confirms that in the
absence of significant shock induced separation, simula-
tions performed on a sufficiently fine mesh (with 512 x 64
cells) can produce excellent agreement with experimental
data. Figure 21 shows a simulation of the McDonnell-
Douglas F18 performed by R.M. Cummings, Y.M. Rizk,
L.B. Schiff and N.M. Chaderjian at NASA Ames [37].
They used a multiblock mesh with about 900000 mesh
points. While this is probably not enough for an accu-
rate quantitative prediction, the agreement with both the
experimental data and the visualization are quite good.

Figure 14 shows an unsteady flow calculation for a
%itchin0 airfoil performed by J. Alonso using the code

FLOS?2, which he jointly developed with L. Martinelli
and the author [4]. This uses the multigrid implicit scheme
described in Section 3.7.2 which allows the number of
time steps to be reduced from several thousand to 36 per
pitching c(i'cle. The agreement with experimental data is
quite good.




ATRPLANE MD11 Calculation
Mach 0.835

Figure 12: Computed Pressure Field for a McDonnell
Douglas MD11

5.4 Ship Wave Resistance calculations

Figures 15-17 show the results of an application of the
same multigrid finite volume techniques to the calculation
of the flow past a naval frigate, using a code which was
developed by J. Farmer, L. Martinelli and the author [47].
The mesh was adjusted during the course of the calcu-
lation to conform to the free surface in order to satisfy
the exact non-linear boundary condition, while artificial
compressibility was used to treat the incompressible flow
equations.

6. AERODYNAMIC SHAPE OPTIMIZATION
6.1 Optimization and Design

Traditionally the process of selecting design variations has
been carried out by trial and error, relying on the intuition
and experience of the designer. With currently available
equipment the turn around for numerical simulations is
becoming so rapid that it is feasible to examine an ex-
tremely large number of variations. It is not at all likely
that repeated trials in an interactive design and analysis
procedure can lead to a truly optimum design. In order
to take full advantage of the possibility of examining a
large design space the numerical simulations need to be
combined with automatic search and optimization proce-
dures. This can lead to automatic design methods which
will fully realize the potential improvements in aerody-
namic efficiency.

The simplest apgroach to optimization is to define the
cometry through a set of design parameters, which may,
or example, be the weights «; applied to a set of shape

functions b; (z) so that the shape is represented as

f@) =) aibi(@).

Then a cost function [ is selected which might, for exam-
ple, be the drag coefficient or the lift to drag ratio, and I
1s regarded as a function of the parameters ;. The sen-

sitivities 2 may now be estimated by making a small

da;
variation da; in each design parameter in turn and recal-
culating the flow to obtain the change in I. Then

Al Ia;+da;) —I(a)
8ai = '

éai

The gradient vector g—i may now be used to determine a

dircction of improvement. The simplest procedurc is to
make a step in the negative gradient direction by setting

+
a"M=a" - Na,
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Figure 13: Two-Dimensional Turbulent Viscous Calcula-
tion (by Luigi Martinelli)

so that to first order

oIt oIt a1
I +6I=I - %5Q—I—A—£%.

More sophisticated search procedures may beused suchas
quasi-Newton methods, which attempt to estimate the sec-
&I
daidaj
the gradient % in successive optimization steps. These
methods also generally introduce line searches to find
the minimum in the search direction which is defined at
each step. The main disadvantage of this approach is the
need for a number of flow calculations proportional to the
number of design variables to estimate the gradient. The
comgutatlonal_costs can thus become dprohlbmve as the

number of design variables is increased.

ond derivative of the cost function from changes in

An alternative approach is to cast the design problem as a
search for the shape that will generate the desired pressure
distribution. This approach recognizes that the designer
usually has an idea of the the kind of pressure distribu-
tion that will lead to the desired performance. Thus, it is
useful to consider the inverse problem of calculating the
shape that will lead to a given pressure distribution. The
method has the advantage that only one flow solution is
required to obtain the desired design. Unfortunately, a

hysically realizable shape may not necessarily exist, un-
ess the pressure distribution satisfies certain constraints.
Thus the problem must be very carefully formulated; oth-
erwise it may be ill posed.

The difficulty that the target pressure may be unattainable
may be circimvented by treating the inverse problem as
a special case of the optimization problem, with a cost
function which measures the error in the solution of the
inverse problem. For example, if pq is the desired surface
pressure, one may take the cost function to be an integral
over the the body surface of the square of the pressure



Figure 14: Mach Number Contours. Pitching Airfoil
Case. Re=1.0 x 108, M,=0.796, K.=0.202.

€ITor,

1
1=—/<p—pd>2d3,
2 /s

or possibly a more general Sobolev norm of the pressure
error. This has the advantage of converting a possibly ill
posed problem into a well posed one. It has the disadvan-
tage that it incurs the computational costs associated with
optimization procedures.

6.2 Application of Control Theory

In order to reduce the computational costs, it turns out that
there are advantages in formulating both the inverse prob-
lem and more general acrodynamic problems within the
framework of the mathematical theory for the control of
systems governed by partial differential equations [104].
A wing, forexample, is adevice to produceqlift by control-
ling the flow, and its design can be regarded as a problem
in the optimal control of the flow equations by variation

Figure 15: Contours of Surface Wave Elevation for
Combatant Ship
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Figure 16: Contours of Surface Wave Elevation Near the
Transom Stern

Figure 17: Pressure Contours in the Bow Region

of the shape of the boundary. If the boundary shape is re-
garded as arbitrary within some requirements of smooth-
ness, then the full generality of shapes cannot be defined
with a finite number of (Farameters, and one must use the
concept of the Frechet derivative of the cost with respect
to a function. Clearly, such a derivative cannot be deter-
mined directly by finite differences of the design param-
eters because there are now an infinite number of these.
Using techniques of control theory, however, the gradient
can be determined indirectly by solving an adjoint equa-
tion which has coefficients defined by the solution of the
flow equations. The cost of solving the adjoint equation
is comparable to that of solving the flow equations. Thus
the gradient can be determined with roughly the compu-
tational costs of two flow solutions, independently of the
number of design variables, which may Ee mfinite if the
boundary is regarded as a free surface.

For flow about an airfoil or wing, the aerodynamic prop-
erties which define the cost function are functions of the
flow-field variables (w) and the physical location of the
boundary, which may be represented by the function F,

say. Then
I=I(w,F),
and a change in F results in a change
oI’ orr

in the cost function. Using control theory, the governing



equations of the flowfield are introduced as a constraint
in such a way that the final expression for the gradient
does not require reevaluation of the flowfield. In order to
achieve this dw must be eliminated from (43). Suppose
that the governing equation R which expresses the depen-
dence of w and F within the flowfield domain D can be

written as
R (w, F)=0. 44)
Then dw is determined from the equation
OR OR

Next, introducing a Lagrange Multiplier 1), we have

(5] 8+ [57)7)

oIt
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Ql—iéw +
ow oF

(v ooy

Choosing % to satisfy the adjoint equation

T
U 57— y"

&1

oIt

ow

orR1T a1
[%] =50 46)
the first term is eliminated, and we find that
§I=GSF, 47
where -
=QI_ — T QI_%_ .
oF OF

The advantage is that (47) is independent of dw, with the
result that the gradient of I with respect to an arbitrary
number of design variables can be determined without the
need for additional flow-field evaluations. In the case that
(44) is a partial differential equation, the adjoint equation
(46) is also a partial differential equation and appropriate
boundary conditions must be determined.

After making a step in the negative gradient direction,
the gradient can be recalculated and the process repeated
to follow a path of steepest descent until a minimum is
reached. In order to avoid violating constraints, such as
a minimum acceptable wing thickness, the gradient ma
be projected into the allowable subspace within whic
the ‘constraints are satisfied. In this way one can devise

rocedures which must necessarily converge at least to a
ocal minimum, and which can be accelerated by the use
of more sophisticated descent methods such as conjugate
qudient or quasi-Newton algorithms. There is the possi-

ility of more than one local minimum, but in any case
the method will lead to an improvement over the original
design. Furthermore, unlike the traditional inverse algo-
rithms, any measure of performance can be used as the
cost function.

In reference [72] the author derived the adjoint equations
for transonic flows modelled by both the potential flow
equation and the Euler equations. The theory was de-
veloped in terms of partial differential equations, leading
to an adjoint partial differential equation. In order to
obtain numerical solutions both the flow and the adjoint
equations must be discretized. The control theory might
be applied directly to the discrete flow equations which
result from the numerical approximation of the flow equa-
tions by finite element, finite volume or finite difference
procedures. This leads directly to a set of discrete adjoint
equations with a matrix which is the transpose of the Jaco-
bian matrix of the full set of discrete nonlinear flow equa-
tions. On a three-dimensional mesh with indices, j, k the
individual adjoint equations may be derived by collecting
together all the terms multiplied by the variation dw; j x
of the discrete flow variable w;, j . The resulting discrete
adjoint equations represent a possible discretization of the

oo
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adjoint partial differential equation. If these equations are
sofved exactly they can provide an exact gradient of the
inexact cost function which results from the discretization
of the flow equations. On the other hand any consistent
discretization of the adjoint partial differential equation
will yield the exact gradient in the limit as the mesh is
refined. The trade-off between the complexity of the ad-
joint discretization, the accuracy of the resulting estimate
of the gradient, and its impact on the computational cost
to approach an optimum solution is a subject of ongoing
research.

The true optimum shape belongs to an infinitely dimen-
sional space of design parameters. One motivation for
developing the theory for the partial differential equa-
tions of the flow is to provide an indication in principle
of how such a solution could be approached if sufficient
computational resources were available. Another moti-
vation is that it highlights the possibility of generating
ill posed formulations of the problem. For example, if
one attempts to calculate the sensitivity of the pressure
at a particular location to changes in the boundary shape,
there is the Eossibility that a shage modification could
cause a shock wave to pass over that location. Then the
sensitivity could become unbounded. The movement of
the shock, however, is continuous as the shape changes.
Therefore a quantity such as the drag coefficient, which
is determine((il by integrating the pressure over the surface,
also depends continuously on the shape. The adjoint
equation allows the sensitivity of the drag coefficient to
be determined without the explicit evaluation of pressure
sensitivities which would be 11l posed.

The discrete adjoint equations, whether they are derived
directly or by discretization of the adjoint partial differen-
tial equation, are linear. Therefore they could be solved
by direct numerical inversion. The cost of direct inversion
can become prohibitive, however, as the mesh is refined,
and it becomes more efficient to use iterative solution
methods. Moreover, because of the similarity of the ad-
joint equations to the flow equations, the same iterative
methods which have been proved to be efficient for the
solution of the flow equations are efficient for the solution
of the adjoint equations.

The control theory formulation for optimal aerodynamic
design has proved effective in a variety of applications
[73,77, 141%. The adjoint equations have also been used
by Ta’asan, Kuruvila and Salas {166], who have imple-
mented a one shot approach in which the constraint repre-
sented by the flow equations is only required to be satisfied
by the final converged solution, and computational costs
are also reduced by applying multigrid techniques to the
geometry modifications as well as the solution of the flow
and ad[joint equations. Pironneau has studied the use of
control theory for optimal shape design of systems gov-
erned by elliptic equations [133], and more recently the
Navier-Stokes equations, and also wave reflection prob-
lems. Adjoint methods have also been used by Baysal
and Eleshaky [16].

6.3 Three-Dimensional Design using the Euler Equa-
tions

In order to illustrate the application of control theory to
acrodynamic design problems, this section treats the case
of three-dimensional wing design using the inviscid Eu-
ler equations as the mathematical modef for compressible
flow. A transformation to a body-fitted coordinate system
will be introduced, so that variaiions in the wing shape in-
duce corresponding variations in the computational mesh.
Thus the flow is determined by the solution of the trans-
formed equation (5). Let

=[928 gegencry wo=| 25
A”_[aéj] TR B ~[3%;'] 7

and
Q=JK~'.



The elements of Q are the coefficients of A, and in a
finite volume discretization they are just the face areas ol
the computational cells projected in the x;, x2, and z3
directions. Also introduce scaled contravariant velocity

components
Ui=Q,-juj.
The transformed equations can now be written as

o, or,_
ot a¢;

0 (48)

where
W=Jw
and
pU;
pUiur + Qirp
pUiuz + Qi2p
pUsuz + Qip
pUiH
Assume now that the new computational coordinate sys-
tem conforms to the wing in such a way that the wing
surface By is represented by §=0. Then the flow is
determined as the steady state solution of equation (48)
subject to the flow tangency condition

U>=0 on By. (49)
At the far field boundary B, conditions are specified for

incoming waves, as in the two-dimensional case, while
outgoing waves are determined by the solution.

Fi=Qi; f=

The weak form of the Euler equations for steady flow can
be written as

o7
p 0&

where the test vector ¢ is an arbitrary differentiable func-
tion and n; is the outward normal at the boundary. If a
differentiable solution w is obtained to this equation, it
can be integrated by parts to give

K=

and since this is true for any ¢, the differential form can
be recovered. If the solution is discontinuous, equation
(50) may be integrated by parts separately on either side
of the discontinuity to recover the shock jump conditions.

F,dD= / ni¢? FydB, (50)
B

dD=0

Suppose now that it is desired to control the surface pres-
sure by varying the wing shape. It is convenient to retain
a fixed computational domain. Variations in the shape
then result in corresponding variations in the mapping
derivatives defined by K. Introduce the cost function

1
I=§/ (p — pa)* d€1d&s,
Bw

where py is the desired pressure. The design problem is
now treated as a control problem where the control func-
tion is the wing shape, which is to be chosen to minimize
I subject to the constraints defined by the flow equations
(48-50). A variation in the shape will cause a variation
dp in the pressure and consequently a variation in the cost
function

51= / [ w-pot deas 5D

Since p depends on w through the equation of state (2),
the variation dp can be determined from the variation Sw.
Define the Jacobian matrices

ofi

A= ow’

Ci=QjA;. (52)
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The weak form of the equation for dw in the steady state

becomes
/.

d¢” T
——JFLdD= (’ﬂi(b (SFL) dB,
9¢&i B

where
6Fi=C¢5w + 5Qijfj,

which should hold for any differential test function ¢.

This equation may be added to the variation in the cost
function, which may now be written as

5I=/ ; (p — pa)dp d&1d&s

oy’ >
- OF; | dD
(%
+ / (niypToF;) dB. (53)
B
On the wing surface By, n;=n3=0 and it follows from
equation (45) that
0 0
Q216p dQup
F=| Qudp | + | 6Qunp (54)
Q2dp 0Qsp
0 0

Since the weak equation for §w should hold for an arbi-
trary choice of the test vector ¢, we are free to choose ¢ to
simplify the resulting expressions. Therefore we set $=),
where the costate vector 9 is the solution of the adjoint

equation
O _rd¥_
ot t ¢
At the outer boundary incoming characteristics for ¢ cor-

respond to outgoing characteristics for w. Consequently
one can choose boundary conditions for 3 such that

inD. (55)

ninCi(Sw:O.

Then if the coordinate transformation is such that 6Q is
negligible in the far field, the only remaining boundary

term 18
—// YT F, d&dgs.
Bw

Thus by letting 1 satisfy the boundary condition,
Quipr + Qups + Qupa=(p — pa) on Bw,
we find finally that

J

- / BQupr + 6Qnbs + Qupa) pd&idEs.  (57)
Bw '

(56)

a T
%JQijfdi

oI

A convenient way to treat a wing is to introduce sheared
parabolic coordinates as shown in figure 18 through the
transformation

l o3 b
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18b: £,n-Plane.

18a: z,y-Plane.

Figure 18: Sheared Parabolic Mapping.

Here x=x,, y=,, z=x3 are the Cartesian coordinates, and
£and 7 + S correspond to parabolic coordinates generated
by the mapping

1
z +iy=zo +iyo + 5a(O{E+i0+ S

at a fixed span station . zo(() and yo (¢) are the coor-
dinates of a singular line which is swept to lie just inside

the ]eadin§ edge of a swept wing, while a ({) is a scale
factor to allow for spanwise chord variations.

We now treat S (€, ¢) as the control. Substitution of these
formulas yields the variation in the form

51= / / GCEm) 5S(€,m) dédn

where the gradient G (£,n) is obtained by evaluating the
integrals in equation (57). Thus to reduce I we can choose

dS=—)\G

where X is sufficiently small and non-negative. In order
to impose a thickness constraint we can define a baseline
surface Sp (€, () below which S (€, ) is not allowed to
fall.h l}Ilow we take A=\ (£, ¢) as a non-negative function
such that

SEO+85,0 2800 (58)

Then the constraint is satisfied, while

6I=— / /B AG2dE d¢ < 0.

The costate solution 7 is a legitimate test function for
the weak form of the flow equations only if it is differ-
entiable. Smoothness should also be preserved in the
redesigned shape. It is therefore crucially important to
introduce appropriate smoothing procedures. In order
to avoid discontinuities in the adjoint boundary condition
which would be caused by the appearance of shock waves,
the cost function for the target pressure may be modified
to the form

1 AN

0. 02
MNE - a—é)\Z‘éz-P - Pd-

// (/\1253 + AZ%%(SZ) dédn
//Z (/\1 - %1\2%) 8Z dédy
// ZépdEdn

and the smooth quantity Z replaces p — py in the adjoint
boundary condition.

I~
—~
1l

Independent movement of the boundary mesh points
could produce discontinuities in the designed shape. In
order to prevent this the gradient may be also smoothed.
Both explicit and implicit smoothing procedures are use-
ful. Suppose that the movement of the surface mesh points
were deHned by local B-splines. In the case of a uniform
one-dimensional mesh, a B-spline with a displacement d
centered at the mesh point ¢ would produce displacements
d/4 ati + 1 and i — 1 and zero elsewhere, while preserv-
ing continuity of the first and second derivatives. Thus
we can suppose that the discrete surface displacement has

the form
65=Bd,

where B is a matrix with coefficients defined by the B-
splines, and d; is the displacement associated with the
B-spline centered at 7. Then, using the discrete formulas,
to first order the change in the cost is

§1=67§S=GT Bd.

Thus the gradient with respect to the B-spline coefficients

is obtained by multiplying G by B, and a descent step is
defined by setting

=—ABTG, §S=Bd=—ABB"¢
where A is sufficiently small and positive. The coefficients
of B can be renormalized to produce unit row sums. With
a uniform mesh s;l)acing in the computational domain this

formula is equivalent to the use of a gradient modified by
two passes of the explicit smoothing procedure

- 1 2 1
gi,k"'ggi—-l,k + ggi,k + ‘égiﬂ,k

with a similar smoothing procedure in the k discretization.

Implicit smoothing may also be used. The smoothing
equation

—€itlk Gitrg — Gip) + €1k Gik — Gim1,k) =Gik
approximates the differential equation

s 8 0G_

g - 5568_§—g

If one sets 6S=—\G, then to first order the change in the
cost is

61

— / G6S dedn

- )

o] ()
0,

<

assuring an improvementif A is sufﬁciemlf)]' small and pos-
itive, unless the process has already reached a stationary
point at which G=0.

6.4 Design of Swept Wings for Very Low Shock Drag

The method has been used to carry out a stud?/ of swept
wing designs which might be appropriate for long range
transport aircraft. Since three dimensional calculations
require substantial computational resources, it 1S ex-
tremely important for the practical implementation of the
method to use fast solution algorithms for the flow and the



adjoint equations. In this case the author’s FLLO87 com-
puter program has been used as the basis of the design
method. FLLO87 solves the three dimensional Euler equa-
tions with a cell-centered finite volume scheme, and uses
residual averaging and multigrid acceleration to obtain
very rapid steady state solutions, usually in 25 to 50 multi-
grid cycles [66, 70]. Upwind biasing is used to produce
non-oscillatory solutions, and assure the clean capture of
shock waves. This is introduced through the addition
of carefully controlled numerical diffusion terms, with a

magnitude of order Az? in smooth parts of the flow. The
adjoint equations are treated in the same way as the flow
equations. The fluxes are first estimated by central differ-
ences, and then modified by downwind biasing through
numerical diffusive terms wﬁich are supplied by the same
subroutines that were used for the flow equations.

The study has been focussed on wings designed for cruis-
ing at Mach .85, with lift coefficients in the range of .5 to
.55. The wing planform was fixed while the sections were
free to be changed arbitrarily by the design method, with
a restriction on the minimum thickness. gI‘he initial wing
has a unit-semi-span, with 38 degrees leading edge sweep.
It has a modified trapezoidal planform, with straitght taper
from a root chord of 0.38, and a curved trailing edge in
the inboard region blending into straight taper outboard
of the 30 percent span station to a tip chord of 0.10, with
an aspect ratio of 9.0. The initial wing sections were
based on a section specifically designed by the author’s
two dimensional design method [7§] to give shock free
flow at Mach 0.78 with a lift coefficient of 0.6. This sec-
tion, which has a thickness to chord ratio of 9.5 percent,
was used at the tip. Similar sections with an increased
thickness were used inboard. The variation of thickness
was non-linear with a more rapid increase near the root,
where the thickness to chord ratio of the basic section
was multiplied by a factor of 1.44. The inboard sections
were rotated upwards to give the initial wing 6 degrees
twist from root to tip and the camber of the inboard sec-
tions was also reduced. The two-dimensional pressure
distribution of the basic wing section at its design point
was introduced as a target pressure distribution uniformly

across the span. This target is presumably not realizable, -

but serves to favor the establishment of a relatively benign
pressure distribution. The total inviscid drag coefficient,
due to the combination of vortex and shock wave drag,
was also included in the cost function. Since the main
objective of the study was to minimize the drag, the target
pressure distribution was reset after every fourth design
cycle to a distribution derived by smoothing the exist-
ing pressure distribution. This allows the scheme more
freedom to make changes which reduce drag. The cal-
culations were performed with the lift coefficient forced
to approach a fixed value by adjusting the angle of attack
every fifth iteration of the flow solution. It was found that
the computational costs can be reduced by using only 15
multigrid cycles in each flow solution, and in each adjoint
solution. Although this is not enough for full conver-
gence, it proves sutficient to provide a shape modification
which leads to an improvement.

It is also necessary to make sure that the final wing is
thick enough to alflow a light weight structure of the re-
iuire.d strength, and to provide sufficient fuel volume.

thickness constraint is imposed by not allowing shape
modifications which would reduce the thickness below
a specified fraction of the thickness of the initial wing.
If this fraction is set at unity, only modifications whic
increase the thickness are allowed.

If a single design point is used the design process gen-
erally produces a wing with a shock free How, so that
the vortex drag comprises the entire pressure drag. As
the angle of attack or Mach number is shifted away from
the design point, shock waves start to appear. Usuall

there is a single shock wave if either the angle of attac

or the Mach number is increased above the design point,
while a double shock pattern appears below the design
point. In practice, most of the designs show a very grad-
ual formation of shock waves away from the design point.
Generally, however, the lift coe?ﬁcient must be varied
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during the cruise to allow for the weight reduction as the
fuel is burnt. To obtain the best compromise wing over
a range one can minimize the average drag over several
design points. For this purpose it is simply necessary to
average the gradients calculated for the different design
points. This requires a separate flow and adjoint solution
to be calculated for each design point.

As an illustration, Figures (27 — 33), show the results of
a multipoint calculation at a Mach number of 0.85 and
three different design lift coefficients ( 0.500, 0.525 and
0.550). The plots show the initial wing geometry and pres-
sure distribution, and the modified geometry and pressure
distribution after 60 design cycles. The following table
summarizes the predicted reduction in the total inviscid
drags at the three design points. As is evident in the fig-

Lift Coefficient | Initial Cd  Final Cd
0.500 0.0156 0.0114
0.525 0.0173 0.0123
0.550 0.0191 0.0135

Table 4: Drag reduction at three different design points

ures the shock strengths have been greatly reduced, with
most of the wing displaying shock free conditions at all
three design points. At the low Cy, design point there is a
very weak incipient double shock pattern, and at the high
lift design point there is a very weak single shock. Sin-
gle point optimization at Cy, = 0.500 and 0.550 yielded
drag coefficients of 0.0112 and 0.0133, so the compro-
mise wing is within 2 drag counts of both point optimized
wings at their design points. The entire calculation for
the multiblock design requires 34 hours on an IBM 590
workstation.

6.5 Optimization of Complex Configurations

In order to treat more complex configurations one can use
a numerical grid generation procedure to produce a body-
fitted mesh for the initial geometry, and then modify the
mesh in subsequent design cycles by an analytic perturba-
tion formula. (}n the two-dimensional case, for example,
with computational coordinates £, 7, let the boundary dis-
placement at =0 be dz5(£), 0y, (£). Then the mesh
points along the radial coordinate lines {=constant can be
replaced by

sz (&,m)
dy&,m

R(n) oz (&)
R oy ()

yielding

R(n) £z %5%
dar

0K= 5
R(n) 3—§5yb dn (syb

Such a procedure has been implemented by J. Reuther for
the three-dimensional Euler equations, and apghed to the
optimization of wing-body configurations [142].

It is also possible to show that in the continuous limit
the field integral in equation (57) can be eliminated. Let
the change in the coordinates z; at fixed £ be dx;(&).
Then, using the fact that the fluxes f; (w) satisty the flow
etcl]uation (48), it is possible to show by a direct calculation
that

o _0 5 0fiow
3_&6Ql]fj—afi Qz] Sw 65/; 6§k
where
8¢=K'6z.

Thus the perturbation equation can be written as

o (df; .
—E)—&{g—ﬁ—(&w+6w )}=0




where dw is the variation in the solution at fixed £ caused
by the change in the boundary, while dw* is the change
in the original solution w (£) corresponding to the mesh
movement §x (£) :

_ Bwi

swr=2Y ¢,

w; aék gk

Now
T a T
/ o7 2 spae = / npT 6 F,des
0¢; B

oy
IV~ 0 (bw + bw*) d
p 0& wow') dS

and if v satisfies the adjoint eclluation the entire field in-
tegral is eliminated, leaving only the boundary integral in
equation (57).

In an actual discretization the field terms are not zero,
but this result suggests that they should be small if a fine
enough mesh is used, and might be dropped. This al-
lows a drastic simplification of the treatment of complex
configurations. Preliminary numerical experiments with
airfoil and wing calculations indicate roughly the same
Spnvergence with and without the field terms in the gra-
ient.

7. OUTLOOK AND CONCLUSIONS

Better algorithms and better computer hardware have con-
tributed about equally to the progress of computational
science in the last two decades. In 1970 the Control Data
6600 represented the state of the art in computer hard-

ware with a speed of about 10% operations per second
(one megaﬂop?, while in 1990 the 8 processor Cray YMP

offered a performance of about 10° operations per sec-
ond (one gigaflop). Correspondingly, steady-state Euler
calculations which required 5,000-10,000 steps prior to
1980 could be performed in 10-50 steps in 1990 using
multigrid acceleration. With the advent of massively par-
allel computers it appears that the progress of computer
hardware may even accelerate. Teraflop machines offer-
ing further improvement by a factor of ROOO are likely to
be available within a few years. Parallel architectures will
force a reappraisal of existinﬁ algorithms, and their effec-
tive utilization will require the extensive development of
new parallel software.

In parallel with the transition to more sophisticated algo-
rithms, the present challenge is to extend the effective use
of CFD to more complex applications. A key problem is
the treatment of multiple space and time scales. These
arise not only in turbulent flows, but also in many other
situations such as chemically reacting flows, combustion,
flame fronts and glasma dynamics. Another challenge, is
presented by problems with moving boundaries. Exam-

les include helicopter rotors, and rotor-stator interaction
in turbomachinery. Algorithms for these problems can
be significantly improved by innovative concepts, such
as the idea of time inclining. It can be anticipated that
interdisciplinary applications in which CFD is coupled
with the computational analysis of other properties of the
design will play an increasingly important role. These
applications may include structural, thermal and electro-
magnetic analysis. Aeroelastic problems and integrated
control system and aerodynamic design are likely target
areas. The development of improved algorithms contin-
ues to be important in providing the basic building blocks
for numerical simulation. In particular, better error esti-
mation procedures must be developed and incorporated
in the simulation software to provide error control. The
basic simulation software is only one of the needed ingre-
dients, however. The flow solver must be embedded 1n a
user-friendly system for geometry modeling, output anal-
ysis, and data management that will provide a complete
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numerical design environment. These are the ingredients
which are needed for the full realization of the concept of
a numerical wind tunnel. Figures 19 and 20 illustrate the
way in which a numerical wind tunnel might evolve from
current techniques, which involve massive data handling
tasks, to a fully integrated design environment.

In the long run, computational simulation should become
the principal tool of the aerodynamic design process be-
cause of the flexibility it provides for the rapid and com-
paratively inexpensive evaluation of alternative designs,
and because it can be integrated in a numerical design en-
vironment providing for both multi-disciplinary analysis
and multi-disciplinary optimization.
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23a: C, after 25 Cycles.
Ci=1.1312, C4=0.0469.
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Figure 23: RAE-2822 Airfoil at Mach 0.750 and =3.0°H-CUSP Scheme.
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Figure 27:

27a: Initial Wing 27b: 60 Design lterations

Lifting Design Case, M=0.85, Fixed Lift Mode.Multipoint Drag Reduction, Initial and Final Wings.
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UPPER SURFACE PRESSURE UPPER SURFACE PRESSURE

28a: Initial Wing 28b: 60 Design lterations
C1=0.4995, Cp=0.0156, a=—1.471° C1,=0.5000, Cp=0.0114, a=—0.933°

Figure 28: Multipoint Lifting Design Case: First Design Point, M=0.85, C1=0.5000
Fixed Lift Mode, Drag Reduction.
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UPPER SURFACE PRESSURE UPPER SURFACE PRESSURE

29a: Initial Wing 29b: 60 Design Iterations
C1=0.5243, Cp=0.0173, a=—1.300° C1=0.5251, Cp=0.0123, a=-0.770°

Figure 29: Multipoint Lifting Design Case: Second Design Point, 4/=0.85, C'1=0.5250
Fixed Lift Mode, Drag Reduction.
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UPPER SURFACE PRESSURE UPPER SURFACE PRESSURE

30a: Initial Wing 30b: 60 Design lterations
C1=0.5490, Cp=0.0191, a=—1.128° C1=0.5501, Cp=0.0135, a=—0.608°

Figure 30: Multipoint Lifting Design Case: Third Design Point, M=0.85, C1=0.5500
Fixed Lift Mode, Drag Reduction.
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31a: Initial Wing,
Span Station z=0.484

Figure 31: Multipoint Lifting Design Case, Design Point 1:
M=0.85, C1,=0.500, Pressure Coefficients of Initial and Final Wing Sections.

32a: Initial Wing,
Span Station z=0.484

Figure 32: Multipoint Lifting Design Case, Design Point 2:
M=0.85, C1=0.525, Pressure Coefficients of Initial and Final Wing Sections.

33a: Initial Wing,
Span Station 2=0.484

Figure 33: Multipoint Lifting Design Case, Design Point 3:
M=0.85, C=0.550, Pressure Coefficients of Initial and Final Wing Sections.

31b: Design After 60 Cycles,
Span Station z=0.484

S

32b: Design After 60 Cycles,
Span Station z=0.484

33b: Desigrﬁi After 60 Cycles,
Span Station z=0.484





