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- ABSTRACT

The computation of flow fields about fighter-type aircraft by
a new, efficient numerical scheme is discussed. Space
discretization is accomplished with a single-block, body-
conforming structured mesh. The innovative approach to grid
generation can handle very complex configurations with
multiple 1ifting surfaces including aircraft with both
horizontal and vertical tails. The time-dependent discretized
Euler equations are integrated to steady state via a Runge-
Kutta scheme with a Tocal time step. Residual smoothing,
enthalpy damping, and a multigrid sequencing of the
computational mesh are employed to accelerate convergence.
The method, which was designed specifically for transonic
applications, can be used efficiently over a wide Mach range
covering from low subsonic to supersonic speeds.

INTRODUCTION

The capability of computing aerodynamic flow fields over
candidate configurations is of very great value to an aircraft
designer. While not replacing the wind tunnel, it complements
and, in many ways, it offers considerable timing and economic
advantages over the Tatter. The number of candidate
configurations that can be analyzed computationally in a given
amount of time is substantially larger than the number that
could be examined experimentally due to the long times
required for model building and facility scheduling and also
due to a relative paucity of experimental facilities. In
addition, numerical computations offer the possibility of
examining details of the flow that cannot be obtained

experimentalily.



14 Computers and Experiments in Fluid Flow

Accurate numerical simulations require machines with very
large memories and high-speed processors. These are becoming
widely available with the advent of supercomputers and
minisuper-computers. Even on the machines that are currently
in use, however, methods for the solution of the Navier-Stokes
equations require running times that are so long as to
preclude their frequent use, except in the case of simple
geometrical models. In addition, the current status of
turbulence modeling lends a measure of unreliability to
predictions based on the Navier-Stokes equations. At present,
numerical methods based on the Euler equations offer an
excellent compromise between reliability, speed, and faithful
representation of the flow field.

A1l numerical methods require a subdivision of the physical
space about the configuration that is to be examined. This
discretization, or mesh generation, process has matured to the
point that meshes about very complex configurations can be
generated. The grid generation step can be very complicated,
however, and, at times, it can by carried out only by
experienced users. It can, in addition, be time-consuming, a
feature that may occasionally be unacceptable.

The space about relatively simple shapes can be represented
quite well by a single-block structured mesh. In the present
context, a structured mesh is one that has a definite
topological structure. Single-block meshes are relatively
easy to generate. Indeed, the simplest mesh is a Cartesian
mesh [1]. Numerical schemes for the solution of partial
differential equations work extremely well on such simple
meshes. The use of such meshes requires special handling of
boundary conditions at the surface of the model. For more
complicated shapes (e.g., an aircraft with wings, nacelles,
horizontal and vertical tails, etc.), composite meshes made up
of several grids separately generated for each individual
component would seem more appropriate. In such composite
meshes, the individual grids, which may be topologically
different, either meet at pre-defined interfaces [2] or
overlap [3]. The generation of grids in the latter class is
considerably easier than that of grids belonging to the former
class. A recently introduced, alternative discretization is
provided by unstructured grids [4]. However, methods based on
unstructured grids have not yet reached the maturity level of
methods based on structured grids. With a mesh that is fine
enough to resolve a flow field adequately, the storage )
requirements and running times of such methods are beyond the
capacity of most current computers and the availability of
most users. At present, composite grids offer the most
versatile approach to the analysis of the flows about comp lex
configurations. Unfortunately, these, too, have drawbacks.
First, as mentioned earlier, the grids are not generated
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easily. Second, the existence of interfaces or overlaps
between the constituent grids requires special treatment of
such artificial internal boundaries, inevitably leading to a
deterioration of the convergence qualities of the underlying
flow-solution scheme and, as a result, Tonger running times.

In the present work, the development of a method with a
relatively simple mesh generation scheme and with a speed of
execution high enough to permit its use in a design
environment will be described. As will be illustrated, a
single-block H-0 mesh, which can be easily generated, can be
used to represent the space around a large variety of
configurations, including rather complex ones. On such a
mesh, numerical schemes can be designed to take advantage of
the ordered sequence of mesh cells without the encumbrance of
internal mesh boundaries. Such a numerical scheme will be
described in this paper along with the grid generation
process. The basis of the method rests on an algorithm by
Jameson [5] for the integration of the time-dependent Euler
equations to steady state via a Runge-Kutta scheme. As will
be shown, several techniques can be used to accelerate
convergence to the steady state.

MESH GENERATION

A single-block H-O mesh about an arbitrary geometrical model
can be set up by combining a series of two-dimensional meshes
around selected cross sections of the aircraft. Each of these
meshes can be generated in planes normal to the longitudinal
axis of the aircraft using a conformal mapping technique
originally suggested by Moretti [6]. An arbitrary cross
section can be mapped into a near circle by removing corners
through a sequence of Karman-Trefftz mappings whose number is
equal to the number of corners to be removed. In the near-
circle plane, a polar-type grid centered on a point
equidistant from the vertical extremes of the mapped cross
section transforms into a good computational grid in physical
space. The circumferential lines of the polar grid are
gradually distorted to a perfect circle at a predetermined
distance denoting the outer boundary of the mesh.

A typical cross section of the aircraft may cut through one or
more components (e.g., fuselage, wing, nacelles, tails), and
these may be connected or separated. In the latter case, the
separate pieces are connected by slits. If slits are present,
care is taken to match up grid points on either side of the
slit. By having grid continuity across a slit, application of
boundary conditions in the numerical scheme is simplified.

The distance to which each 2-D mesh extends is kept constant.
Upstream of the aircraft's nose, the first mesh plane on the
ajrcraft is extended to a predetermined distance with
gradually increasing spacing between the planes. This portion
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of the grid is purely cylindrical and at its center it
contains a degenerate axis. A similar strategy produces a
cylindrical grid downstream of the aircraft. This part of the
grid wraps around a slit, since the last cross section
includes the wing's trailing edge and/or wake. In a typical
grid, one-half of the planes are positioned along the
aircraft's length and the other half of the planes are divided
between the upstream and the downstream portions of the grid.

The grid generated about an F-14-type aircraft (wing, nacelle,
horizontal and twin vertical control surfaces) is depicted in
Figs. 1 and 2. The wing and both control surfaces have
sweptback leading and trailing edges. In Fig. 1 the surface
grid is shown reflected about the symmetry plane. The 0 grids
around several representative cross sections of the aircraft
are shown in Fig. 2. On this configuration, the wake slit
coming off the wing is gradually warped to intercept the
rearward horizontal tail. As the back end of the aircraft is
approached, additional wake slits appear between the engine
nacelle and each of the horizontal and vertical tails and the
"nancake" between the twin vertical tails. A1l the slits
eventually join to form an "inverted-T" slit extending to

infinity.
FINITE VOLUME TIME-STEPPING SCHEME

Discretization of the Euler Equations

An inviscid, rotational flow is described by the Euler
equations which are derived from the physical laws of
conservation and which embody the notion that, in the absence
of singularities, the time rates of change of mass, momentum,
and energy contained within any given volume (o) must be equal
to the net flux of the quantity through the boundary of the
volume (s2). In integral form, the equations can be written

as

257 wMag + 7 F™. g5 = 0 (1)
Q a0

Here t is the time, S is the directed surface area, w(m)
d?n?tes the five scalar quantities that are conserved, and
FAM) 45 the corresponding vector flux. In a Cartesian
coordinate system, the variables and fluxes are given by

() - 0 s F(l) 2 [pu,oV,DW]T, (2a)
W(2) - pU,'F(Z) = [pu2 + D, puv,oUWIT, (2b)
W3 - oV, F(3) 2 [pUV,oVZ + p, oVW]T, (2¢)
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1) [ouw,pvw,ow2 + D]T, (2d)

I

w8 = o, F

W(® = e FO5) o [oHu, oMy, oHw] T (2e)

i

where the superscript, T, denotes a transpose operator.

Assuming a perfect gas with a ratio of specific heats equal to
y, the pressure, p, and total enthalpy, H, can be expressed in
terms of the density (o), the three velocity components (u,v,w),

and the total energy (E). Thus,
p = (v-1) o[E - 3 (W + V2 + WD), (3a)
H=E+ % . (3b)

It is assumed that the unknown variables are to be solved for
at the nodes of the mesh and that each node (i,j,k) has a
control volume consisting of the eight cells meeting at
that node. At each node, then
8 8
d (m) (m) .

- Vv W + Q =0 4

dt (ngl nJ n nzl n (4)
Here, V.. is the volume of the nth cell and Qn(m) is the net
flux through that cell. If the fluxes across the faces of
each cell are computed first, then the fluxes through internal
faces of the control volume cancel exactly and, therefore, the
net flux through each control volume is the sum of the fluxes
through the external faces only. Artificial dissipation needs
to be added to this scheme in order to prevent the appearance
of spurious oscillations that could arise near discontinuities
in the solution, such as shocks, or oscillations with an odd-
even point mode, which would give a zero net contribution to
the flux balance. This artificial dissipation, which goes to
zero in the 1imit of zero mesh spacing, has a low background
Jevel everywhere in order to suppress the odd-even point
oscillations, and it is increased in the presence of a
physical discontinuity in the flow field. The dissipation is
constructed in a way that preserves the conservation for? ?f
the equations. It is implemented b{ iubtracting from Q, M) in
Equation (4) a dissipative flux, D, M), which is the sum of
three terms separately constructed for each of the three
computational coordinate directions. For example, the term in

the i-coordinate direction is

(5)

where §, and dxz are first- and second-difference operators,
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respectively. 6(2) and €(4) are adaptive coefficients, and
the scaling factor, r, is based on an estimate of the maximum
1?5?1 wave speed. The discontinuities are detected by making
£ proportional to a normalized second difference of the
pressure. The dissipation terms are of third order, except in
regions of steep pressure gradients. The discretization of
the convective terms can be shown to be second-order accurate.

Time Integration Assuming the computational mesh to be
independent of time, Equation (4) can be rewritten in the form

%E‘”ng,k +rew(™y = g (6)
where R(w(m)) denotes the residual. The steady-state solution
is obtained by integrating Equation (9) with a multistage
Runge-Kutta scheme. If only the steady-state solution is of
interest, a locally varying time step,at, can be used. With
an N-stage scheme, the advance from time (t) to time (t+at) in
each variable W is computed by recursive formulas of the type

w(M =y - anAtR(w<”‘1)) (7)

where o = 0 and W(N) = W(t + at)- A five-stage scheme with
a; = 1/4, ap = 1/6, ag = 3/8, ay = 1/2, and o5 = 1 has worked
very well in practice. Also, in concert with the findings of
Jameson [7], the artificial dissipation terms can be frozen at
the values computed during the second stage. This strategy
not only decreases the computing time, but also increases the
stability margin of the scheme.

Convergence Acceleration
Residual Smoothing As indicated in previous studies [Ref. 5,

for example] computational efficiency can be enhanced by a
smoothing of the residuals. The maximum permissible time step
is set by the local Courant number. This Timitation is
relaxed if each residual is replaced by an average of its
neighbors. This average can be computed implicitly, thus
increasing the support of the numerical scheme.

Enthalpy Damping Assuming the flow to be homcenthalpic,
convergence to the steady state can be accelerated by enthalpy
damping. This technique exploits the difference between the
transient value of the locally computed enthalpy and its
known, steady-state value, which is also the value at
infinity. If one assumes that the rate of change of each
variable is proportional to this difference, a new, improved
estimate of a variable W can be obtained by adding to the
value computed at the end of the Runge-Kutta step the product
of the enthalpy discrepancy and a user-defined constant.

Multigrid Strategy The time marching to steady state could be
Tooked at as an iterative process of reducing the errors
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(i.e., residuals) at each node. Errors are reduced by an
exchange of information between nodes, and, during each
iterative cycle, information to any particular node comes only
from nodes involved in computing the residual at the node.
The exchange of information between two particular points in
space takes place faster on coarser grids. It would seem
advantageous, then, to devise a strategy that would use this
faster approach to the steady state on a coarser grid to
generate information that can be used to accelerate the
approach to the steady state on any given finer grid. This
was the basic idea of multigrid schemes when first presented
by Brandt [8]. Here, the scheme described by Jameson [9] is

followed.

In the present approach, the coarser mesh is generated by
eliminating alternate points in each of the coordinate
directions of a given mesh. Then, at each point on a coarse
mesh (K+1), the values of the variables W at the coincident
point on next-higher-level mesh (K) are injected. Once this
is accomplished, Runge-Kutta time steps can be performed on
the coarse mesh. The time step on the coarse grid is
performed with a modified residual, however. The modified
residual on the coarser mesh is obtained by adding to the
standard, computed residual a term Py 4 reflecting the
difference between the residual compu%ed on the finer mesh and
the residual computed on the coarser mesh using the values
transferred from the finer grid. The former is taken to be a
weighted average of the residuals at the 27 points nearest the
coincident point on mesh level K (including the point

itself). In returning to level K, the correction to W
calculated on level K+l is used to provide an improved value
of the variable on the finer mesh. At coincident points of
the two meshes, the improved value is simply the value of W on
the coarser mesh. At intermediate points, a trilinearly
interpolated value of the difference between values at two
mesh levels is added to the current value on the finer mesh.
Since on the coarser meshes the time steps are performed in
only a fraction of the time needed on the fine mesh, the
reduction in the total number of time steps outweighs the cost
of sequencing through the grids by a large margin.

BOUNDARY CONDITIONS

At node points lying on the aircraft, flow tangency is
enforced at the end of each time step by setting to zero any
normal component of velocity. In addition, fluxes through
faces lying on the aircraft surface are explicitly set to
reflect this condition. Continuity is enforced across wake
slits behind the wing by replacing the values of each variable
at matching nodes by their average. Similarly, values at
nodes sharing a common grid point on the degenerate axis ahead
of the aircraft are replaced by the average. At the outer
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boundaries of the mesh, appropriate inflow or outflow boundary
conditions are imposed using Riemann invariants to attenuate
the spurious reflections of outgoing waves into the field.
With zero sideslip, in addition, only one-half of the flow
field need be considered. In this case, symmetry is enforced
on the plane of symmetry of the aircraft.

NUMERICAL EXAMPLES

The first example in Fig. 3 shows surface pressure distribu-
tions over selected cross sections of the F-14-type configur-
ation depicted in Figs. 1 and 2. The calculations were
performed at a Mach number of 0.80 and an angle of attack of 5
deg. The computational mesh contained a total of 145 half-
planes normal to the longitudinal axis of the aircraft. Of
these, 97 were on the aircraft itself and the remaining were
evenly divided between the regions upstream and downstream of
the body. Each half-plane in turn contained 97 points in the
circumferential direction and 49 points in the radial
direction. In Fig. 3 the four cross sections, whose geometry
is depicted in the lower parts of the figure, denote stations
along the wing. Evidence of a shock is clearly indicated in
the outboard portion of the wing. At these flow conditions,
the flow is well-behaved, and nothing unusual is observed.

A more interesting flow is encountered when the configuration
is analyzed at an angle of attack of 20 deg. (and the same
Mach number). The cross-sectional pressure distributions are
shown in Fig. 4, and the Mach number contours on the surface
and in a mid-fuselage cross-sectional plane are depicted in
‘Fig. 5. In Fig. 4, there is indication of a shock close to
the Teading edge of the glove and the wing, and this shock can
be discerned as a clustering of contour lines in Fig. 5. This
shock apparently causes the flow to separate. Some of the
surface pressure distributions depicted in Fig. 4 reveal a
definite suction effect (evidenced by the "rounded" patterns
around a local pressure minimum). The pattern is typical of
flows where a vortex lies over the wing. Additional evidence
of flow separation is offered by Fig. 6, which shows entropy
contours on the surface and selected planes over the

aircraft. Entropy is generated near the wing tip, and the
contours order themselves in a definite vortex-like pattern.
Figure 7 depicts some streamlines of this flow. The left side
of the aircraft, in this head-on view, shows streamlines
started near the wing-glove junction, and these streamlines
can be seen to wrap into a tight vortex. The right side
shows, in addition, the streamlines from the wing's leading
edge. This latter set can also be seen to separate and to

wrap around the inner vortex.

The numerical method has been used on a wide variety of
configurations over a considerable Mach number range, and this
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will be illustrated in the next two examples. In Fig. 8 the
cross-sectional pressure distributions computed on a generic
fighter aircraft at a free-stream Mach number of 0.20 and an
angle of attack of 25 deg. are shown. The configuration
features a chine-shaped forebody and a sharp-edged, cropped
delta wing. A vortex is generated by the chine and another
vortex is generated by the wing's leading edge. There s
considerable interaction between the two vortices as shown in
Fig. 9. The configuration is similar to the one treated by
Erickson and Brandon [10], and a sketch of their observations
is in good agreement with the computed streamline pattern, as
Fig. 9 shows. This computation was carried out on a 97x97x49
mesh, with one-half of the cross-sectional planes stacked over

the ajrcraft body.

The final example in Fig. 10 depicts the pressure distribu-
tions along four meridian lines running along the length of a
spherically blunted, biconic missile body at Mach 6 and an
angle of attack of 10 deg. This configuration consists of a
front and a rear conical secticn whose half angles are 12.84
and 7 deg., respectively. The body has been tested by Miller
and Gnoffo [11] and their experimental measurements also are
shown. The agreement between the computations and the
experiment is quite good, except in the vicinity of the nose
of the missile, a region in which the grid is too coarse to
describe the flow adequately. In particular, the shock
position is predicted very well. The calculation was
performed with a mesh comprising 65 longitudinal planes, of
which only eight were located upstream of the nose and eight
downstream, because of the restricted domains of dependence
and influence in this purely supersonic flow. Each cross-
sectional plane contained 49 points in the circumferential
direction and 33 in the radial direction.

CONCLUDING REMARKS

The method has proved to be very reliable and efficient in all
cases, even those where substantial flow separation is
encountered. Convergence to steady state, defined by a
reduction in the average residual of a minimum of three orders
of magnitude, is typically achieved in 200-300 cycles. The
convergence rate of the algorithm for a particular geometry
and set of flow conditions has shown very little sensitivity
to mesh size. Thus, on refining a particular mesh, the time
needed to advance one time step increases linearly with the
number of grid points, but the number of time steps needed for
convergence is largely unchanged. On the 689,185-point mesh
used for the calculations over the F-14-1ike body each time
step required approximately 30 sec. of CPU on a Cray-XMP
machine. The speed of the solution algorithm combined with
the relative simplicity of the grid generation process, even
in cases where bodies of considerable geometric complexity are
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considered, make the method an ideal tool in a preliminary
design environment.
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Figure 1: Surface/wake grid on F-14-type aircraft.
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Figure 2: Representative cross-sectional grid planes on F-14-type

aircraft.



24 Computers and Experiments in Fluid Flow

__1.3-—4
-0.8 -

— 3_
075
0.7
1.2

-1.8
-1.3 4
-0.8 -
“R3 -
O. —
0.7 -
1.2~

-1.8
-1.3 4
_0_8._
‘%3“1
0.2
0.7 1
1.2~

-1.8 "
-1.3
-0.8

_%3,_
0.2
0.7
l.2-

STATION 85

STATION 80

=

...1'8__.
-1.3
-0.8
-%g_
0.2
0.7 1
1.2~

_1‘8_
-1.% -
-0.8
_ng_
0.2 -
0.7
1.2~

STATION 90

PN

A/’\,\j

STATION 94

—_/

Figure 3: Computed cross-sectional surface pressure distributions

on F-14-type aircraft; Moo = 0.80, @ = 5 deg.

N
S

STATIGN 82

)

1.8+
-1.3 4
-0.8
- '3___
0.2 -
0.7 -
1.2

-1.8
-1.3 4
-0.8

_%3__4
0.2 -
0.7 -
1.2~

STATION 83

B>

STATION 107

[

Figure 4: Computed cross-sectional surface pressure distributions
on F-14-type aircraft; Mo = 0.80, o = 20 deg.



Computers and Experiments in Fluid Flow 25

Figure 5: Isomach contours on upper wing/body surface and in a
cross-sectional plane of F-14-type aircraft; Mo, = 0.80,
a = 20 deg.

Figure 6: Entropy contours on upper wing/body surface and
various cross-sectional planes of F-14-type aircraft;
My = 0.80, o = 20 deg.

Figure 7: Streamlines from leading edge of wing and glove of
F-14-type aircraft; My, = 0.80, o = 20 deg.; front view.
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