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Abstract

Mathematical models of tramsonic flow are reviewed and design principles are
proposed to guide the development of appropriate numerical methods.
Discretization procedures are presented for rectilinear and triangular or tetra-
hedral meshes. Alternative methods of adding dissipation are discussed,
including procedures for constructing total variation diminishing schemes. A
variety of explicit and implicit time stepping schemes are reviewed. Trade—offs
between efficiency and computational cost are considered, and a general acce-
leration method using multiple grids is presented. Finally the problem of pre-
dicting the flow past a complete aircraft is examined, leading to an assessment

of various directions of improvement.
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1. Historical Perspective and Guiding Principles

During the last two decades the science of aerodynamics has been transformed
by the widespread introduction of computational methods to treat previously
intractable problems. The introduction of panel methods in the sixties made it
feasible to predict subsonic flows over complex configuratioms [l-2]. In the
seventies and eighties the dominant problem has been the prediction of transonic
flow. To a first approximation, cruising efficiency is proportional to the 1lift
to drag ratio multiplied by the speed. This is because the fuel flow of a jet
engine does not change much with speed, and also because other costs such as the
pay of the crew, maintenance, and depreciation are proportional to time rather
than distance. In subsonic flow the attainable 1lift to drag ratio is roughly
constant (in the range of 15 to 20) until compressibility effects become impor—
tant. Near the speed of sound shock waves appear in the flow, accompanied by
drag rise and a sharp decrease in the attainable 1lift to drag ratio (in the
range of 8 for a supersonic transport design). Thus there is a favorable window
of operation at high subsonic speeds, just before onset of drag rise.

Comparable efficiency is attainable at Mach numbers above three, but this intro-
duces a range of other problems, notably the sonic boom, and the need for

materials such as titanium, capable of withstanding high surface temperatures.

The prediction of transonic flow is equally important in the design of mili-
tary aircraft, since the high 1ift needed for maneuvers can only be sustained at
low supersonic speeds. The richness and complexity of transonic flow have also
stimulated the interest of mathematicians [3-4]. A long outstanding question

about the existence of shock free transonic flow was finally settled by the
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theorem of Morawetz to the effect that shock free transonic flows are isolated
solutions [5]. Any small perturbation will cause the appearance of a shock wave.
Effective methods were subsequently developed for generating airfoils with shock

free design points [6].

My emphasis in this paper is on steady flow. Unsteady flow is inherent in
certain other types of flight (that of insects and helicopters, for example),
but in the design of aircraft it is important primarily for the analysis of
failure modes such as wing flutter. The main objective of computational tran-
sonics is the reliable and economical prediction of steady transonic flow past a

complete aircraft.

The first choice to be made is that of an appropriate mathematical model.
Here there is a trade-off between the accuracy of the prediction and the cost of
the calculation. In the seventies major advances were made in the simulation of
transonic flow by the small disturbance and potential flow equations [7-11].
Programs such as FL022 [9], and the finite element code developed at Dassault
[11], have been widely used to assist the design of commercial transports. With
the rapid growth in both speed and memory of the computers now becoming
available, the savings in computational costs realizable by the use of these
approximations are no longer a dominant factor, and it seems that the future
must lie with the full nonlinear equations of fluid flow, which can provide an
exact description of shock waves and contact discontinuities. The eighties have
in fact seen rapid developments in methods for solving the Euler and

Navier—-Stokes equations [12-15].

The ultimate requirement will be a solution of the viscous equations. At

the Reynolds numbers which prevail in full scale flight, the onset of turbulence
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in the boundary layer is inevitable in the absence of some kind of active
control. The flow will accordingly be unsteady in the boundary layer. It is
clearly not possible to resolve the small scales of turbulence in a calculation
for a complete configuration, forecing recourse to statistical averaging and the
introduction of turbulence models. No universal turbulence model is available
at the present time, and greater accuracy may be attainable by careful matching
of an inner viscous solution of the boundary layer with an outer inviscid solu-
tion. Improvements in full viscous calculations are likely to be paced by
progress in turbulence modelling which may result from better understanding of
turbulence [16]. It appears, in any case, that the development of reliable and
accurate methods of solving the Euler equations of inviscid flow are an essen—
tial first step. This is useful in itself, since the viscous effects are so
small outside the boundary layer that an inviscid calculation can provide a
valuable insight into the nature of the flow pattern, and help the iden-—
tification of potential trouble spots, such as excessively strong shock waves
which may cause separation. It also lays the foundation for the extension to
the Navier Stokes equations, since the numerical approximation of the viscous
terms can be accomplished within the same framework, whereas the potential flow
models admit no such extension. Accordingly, I shall concentrate in this paper

on methods of solving the Euler equations.

Some of the principal difficulties of the problem are:

(1) The equations of gas dynamics are nonlinear.

(2) Solutions in the transonic range will ordinarily be

discontinuous: we may expect to find shock waves.
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The solutions will also generally contain contact

surfaces in the form of vortex sheets.

(3) There are regions of the flow in the neighborhood, for
example, of stagnation points, the wing trailing edge
or the wing tip, where the derivatives may become very
large or even unbounded, leading to large discretization

errors.
(4) The equations are to be solved in an unbounded domain.

(5) We are generally interested in calculating flows over
bodies of extreme geometric complexity (including cases where

the domain is multiply connected).

Assuming that our objective 1s to calculate steady flow, the introduction of
a space discretization procedure reduces the problem to the solution of a large
number of coupled nonlinear equations. These equations might be solved by a
variety of iterative methods. Two possibilities in particular are the least
squares method, which as been successfully employed by Glowinski and his co-
workers [11], and the Newton iteration which has recently been used to solve the
two dimensional Euler equations by Giles [17]. There are advantages, however,
to the strategy of using the time dependent equations as a vehicle for reaching
the steady state. Some of these are:

1) Simplicity (with consequent reduction of the risk of programming errors).

2) The possibility of using the same problem to calculate steady and
unsteady flows (should the physical problem not have a steady solution

the program may then simulate the actual unsteady flow).
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None of
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The time dependent problem provides a suitable framework for the design
of non—oscillatory shock capturing schemes which reflect the physics of

wave propagation.

Algorithms, in particular those using explicit time stepping schemes or
iterative procedures at each step of an implicit scheme, can be devised

to take maximum advantage of parallel and vector processing.

these virtues could be considered decisive i1f the convergence of a time

dependent scheme to a steady state were excessively slow in comparison with com—

peting methods. It turns out, however, that this need not be the case when

appropriate acceleration procedures are introduced.

Peter Lax (Baejter Seminar, Princeton, October 1983), has suggested the need

for design principles to guide the development of numerical methods for complex

scientific problems.

Some design principles appropriate to the present problem

are listed below.

(1)

(2)

The conservation laws of gas dynamics should be satisfied
in discrete conservation form by the numerical approximation. (We may

then rely on the theorem of Lax and Wendroff that the correct shock
jump conditions will be satisfied by the solution if it converges in

the limit of decreasing mesh width [18]).

Shock waves are to be captured by the introduction of
approprilate dissipative terms in the discrete approximation

to provide an upwind bias.
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(3) The final steady state should be independent of the time marching
procedure. (I do not wish to exclude the possibility that the
final steady state will depend on the initial state, although there
is evidence provided by numerous flying objects suggesting the
repeatability of a substantial class of steady solutions). This
requirement does, however, exclude the use of a number of popular dif-
ference schemes, including schemes with fractional steps, and the Lax

Wendroff and MacCormack schemes.

(4) Wherever possible, if a quantity is known to be invariant in the true
solution, it should also be invariant in the numerical solution. For
example, the total enthalpy should be constant in the steady state

solution.

(5) Uniform flow should be an exact solution of the difference equations

on an arbitrary mesh.

In order to meet requirement (3) I believe that it is helpful to separate
the space discretization procedure entirely from the time marching procedure by
applying first a semi—discretization. This has the advantage of allowing the
problems of spatial discretization error, artificial dissipation and shock
modeling to be studied independently of the problems of time marching stability

and convergence acceleration.

The following sections discuss the implementation of these ideas in greater
detail. Section 2 reviews alternative space discretization procedures on both

rectilinear and triangular meshes. These are presented in the context of finite
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volume methods, but some of them can equally well be interpreted as finite ele-
ment methods. Section 3 discusses dissipation, its connection with upwinding,
and the construction of total variation diminishing schemes. Time discretiza-
tion is discussed in Section 4, and acceleration by the use of multiple grids in
Section 5. Finally Sections 6 and 7 review the problem of computing the flow

past a complete aircraft, and point the way toward some future developments.
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2. Space Discretization of the Euler Equations

Let p, p, u, v, w, E and H denote the pressure, density, Cartesian velocity

components, total energy and total eanthalpy. For a perfect gas

p 1,2, 2 2
J = —_ = -+
E o-Do + 5 (v +v +w) , H=E p/p

where Y is the ratio of specific heats. The Euler equations for flow of a

compressible inviscid fluid can be written in integral form as

g—t-fffwd9+ff£‘_-d_§=0 (2.1)
Q o)

for a domain @ with boundary 3Q and directed surface element dS. Here w repre-—
sents the conserved quantity and F is the corresponding flux. For mass conser-—
vation

w=p ,F=(pu, pv, pw)

For conservation of momentum in the x direction
w =pu, F= (ou? + p , puv, puw)

with similar definitions for the y and z directions, and for energy conservation
w = pE, F = (pHu, pHv, pHw)

If we divide the domain into a large number of small subdomains, we can use
equation (2.1) to estimate the average rate of change of w in each subdomain.
This is an effective method to obtain discrete approximations to equation (2.1)
which preserve its conservation form. In general the subdomains could be

arbitrary, but it is convenient to use either distorted cubic or tetrahedral

cells. Alternative discretizations may be obtained by storing sample values of



-]1~-

the flow variables at either the cell centers or the cell corners. These

variations are illustrated in Figure 1 for a two~dimensional case.

Figures 1(a) and 1(b) show cell centered schemes on rectilinear and
triangular meshes [12,19]. In either case equation (1) is written for the cell

labelled O as

(2.2)

i
o

d
EE‘(VW) + Q

where V is the cell volume and Q is the net flux out of the cell. This can be

approximated as

Q=1 Kyt S 2.3)
k
where the sum is over the faces of cell 0, Spi is the directed area of the face

separating cell O from cell k, and the flux For is evaluated by taking the

average of its value in cell 0 and cell k.

1
= = + .
B =7 (g * B @4
An alternative averaging procedure is to multiply the average value of the con—
vected quantity, pgk in the case of the continuity equation, for example, by the
transport vector
Q =l(q +q,) ¢ 8 (2.4%)
Ok 2 0 k =0k
obtained by taking the inner product of the mean of the velocity vector q with

the directed face area.

Figures 1(c¢) and 1(d) show corresponding schemes on rectilinear and triangu-
lar meshes in which the flow variables are stored at the vertices. We can now

form a control volume for each vertex by taking the union of the cells meeting at
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that vertex. Equation (2.1) then takes the form
%;'(Z V) w+ Q=0 (2.5)
k k
where Vi and Qg are the cell volume and flux balance for the kth cell in the

control volume. The flux balance for a given cell is now approximated as

L

Q =) .S (2.6)
) R

where Sq¢ 1is the directed area of the &th face, and Fy is an estimate of the
mean flux vector across that face. Fluxes across internal faces cancel when the

sum ) Q is taken in equation (2.5), so that only the external faces of the control
k k

volume contribute to its flux balance.
In the two dimensional case the mean flux across an edge can be conveniently

approximated as the average of the values at its two end points,

Flp =73 (&) +3)
in Figure 1(c¢) or 1(d), for example. The sum XQk in equation (2.5), which then
amounts to a trapezoidal integration rule around the boundary of the control
area, should remain fairly accurate even when the mesh is irregular. This is an
advantage of the vertex formulation over the cell centered formulation, in which
the midpoint of the line joining the sample values does not necessarily coincide
with the midpoint of the corresponding edge, with a consequent reduction of
accuracy on a distorted or kinked mesh (see Figure 2).

Storage of the solution at the vertices has a similar advantage when a
tetrahedral mesh is used in a three dimensional calculation [20,21]. The use of a

simple average of the three corner values of each triangular face

=1
E=3 G E +Ey
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is a natural choice, which is consistent with the assumption that F varies
linearly over the face. The following argument shows that the resulting scheme
is essentially equivalent to the use of a Galerkin method with piecewise linear
basis functions. Consider the differential form of equation (2.1)

ow -
5t +VeeF=0

Multiplying by a test function ¢ and integrating by parts over space leads to

S fff ¢waa = [[[F -Veaa - [ ¢F « as 2.7)
Q 9] 9

Suppose now that we take ¢ to be the piecewise linear function with the value
unity at one node (denoted by O in Figure 3), and zero at all other nodes. Then
the last term vanishes except in the case when 0 is adjacent to the boundary.
Also V$ is constant in every tetrahedron, and differs from zero only in the
tetrahedra with a common vertex at node 0. Since ¢y is constant in a tetra-

hedron it may be evaluated as

b, =¥ JI] o, dxdydz = ¢ Ls, %

X

where V is the cell volume, Sxk and $£ are projected area of the kth face in

the x direction and the average value of ¢ on the kth face, and the sum is taken
over the faces of the tetrahedron. For the given test function $-= 1/3 on the
faces 012, 023, and 031 and zero on the face 123. Also the projected area Sy on
face 123 is equal and opposite to the sum of the projected face areas of the
other three faces. Using the same procedure to evaluate ¢y and ¢,, it follows

that

Vo = - 8/3V (2.8)
where S is the directed area of the face opposite vertex 0. Now treat F as

piecewise linear and use equation (2.8) to evaluate the volume integral on the
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right side of equation (2.7). Then each tetrahedron meeting at node 0 introduces a

contribution CE * S)/3 where E: is the average value of F in the cell. For the

cell illustrated in Figure 1, for example,

— 1
F =7 (Fy +F) +Fy +Ey)

1

Summing over all cells meeting at node O leads to the total contribution

1
3'% Be® %

Since the control volume is closed, however,
s, =0
K k

Therefore the contribution of Fp to %k can be discarded, leading to a sum over

the faces multiplied by a constant. Thus if we write

i 2

1
3 (B + I + E3)
for the average value of F on the face opposite vertex 0 we find that the right-

hand side of equation (2.7) can be replaced by

k §k

1= 2

:

=

On the left hand side of equation (2.7) we take w to be constant inside the control
volume. Since ¢ is piecewise linear, the volume average value is 5-= 1/4.
The factor 1/4 cancels on each side and the approximation to equation (2.7)
can therefore be written as

g—(i V)w+ | Fes =0 (2.9)

dt k -k -k

k k

which is equivalent to equation (2.5)

Referring to Figure 4, which illustrates a two dimensional mesh, it may be
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seen that with a triangular or tetrahedral mesh, each face is a common external
boundary to exactly two control volumes. Therefore each internal face can be
associated with a set of 5 mesh points consisting of its three corners 1, 2 and
3, and the vertices 4 and 5 of the two tetrahedra based on the face, as
illustrated in Figure 5. Vertices 4 and 5 are the centers of the two control
volumes influenced by the face. It is now possible to generate the approxima—
tion (2.9) by presetting the flux balance at each mesh point to zero, and then
performing a single loop over the faces. For each face one first calculates the
fluxes of mass, momentum and energy across the face, and then one assigns these
contributions to the vertices 4 and 5 with positive and negative signs respec-—
tively. Since every contribution is transferred from one control volume into
another, all quantities are perfectly conserved. Mesh points on the inner and
outer boundaries lie on the surface of their own control volumes, and the accu-
mulation of the flux balance in these volumes has to be correspondingly
modified. At a solid surface it is also necessary to enforce the boundary con—
dition that there is no convective flux through the faces contained in the sur-

face,
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Figure 1

Alternative discretization schemes



Figure 2

Comparison of discretization schemes on a kinked mesh.
Evaluation of F at P by averaging F] and F2
is more accurate that averaging Fa and Fg.
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Figure 3

One tetrahedron of the control volume centered at node 0.



Figure 4

A triangular mesh in 2 directions: The control
volume at P is the union of triangles 1, 6, 10, 7
and 2, while that at Q is the union of triangles 4,
8, 11, 12, 9 and 5. The flux across the edge AB 1is

from the control volume at P to the control volume
at Q.



Figure 5

Flux through face defined by nodes 1, 2 and 3 is
out of the control volume centered at node 4 and
into the control volume centered at node 5.



-16-

3. Dissipation, Upwinding and Total Variation Diminishing Schemes

Equations (2.2) or (2.5) represent nondissipative approximations to the
Euler equations. Dissipative terms may be needed for two reasons. First there
is the possibility of undamped oscillatory modes. For example, when either a
cell centered or a vertex formulation is used to represent a conservation law on
a rectilinear mesh, a mode with values *1 alternately at odd and even points
leads to a numerically evaluated flux balance of zero in every interior control
volume. Although the boundary conditions may suppress such a mode in the steady
state solution, the absence of damping at interior points may have an adverse

effect on the rate of convergence to the steady state.

The second reason for introducing dissipative terms is to allow the clean
capture of shock waves and contact discontinuities without undesirable oscilla-
tions. Following the pioneering work of Godunov [22], a variety of dissipative
and upwind schemes designed to have good shock capturing properties have been
developed during the past decade [23-33]. The one-dimensional scalar conser-

vation law

du a _
-a—t—:'+'a‘;f(u) =0 (3.1)

provides a useful model for the analysis of these schemes. The total variation

o

v = [

—CO

Ju

o dx

of a solution of (3.1) does not increase, provided that any discontinuity
appearing in the solution satisfies an entropy condition [34]. The concept of
total variation diminishing (TVD) difference schemes, introduced by Harten [28],
provides a unifying framework for the study of shock capturing methods. These

are schemes with the property that the total variation of the discrete solution
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[=<]

- A\
TV = L

-—C0

cannot increase. The general conditions for a multipoint one-dimensional scheme
to be TVD have been stated and proved by Jameson and Lax [35]. For a semi-

discrete scheme expressed in the form

d Qfl i) ( ) (3.2)
dat V3 .t QP Vi T Vigm1 .
j=-Q
these conditions are
c_l(j—l) > c_z(j—Z)... > c_,(3-Q) >0 (3.3a)
J
and
-co(j) > —cl(j+l)-.. > —cQ_l(j+Q—l) >0 (3.3b)

Specialized to a three point scheme these conditions imply that the scheme

é-"'V =c (v -v,) - ¢ (v, - v, )
dt 'j j+1/2° 7 §+1 j j=1/2%"j j-1
is TVD if Ci1/2 > 0, Cim1/2 > 0.

A conservative semi~discrete approximation to equation (3.1) can be derived
by subdividing the line into cells. Then the evolution of the value vy in the

jth cell is given by

Ax é—-v, + h 0 (3.4)

at V5t hye1s2 T P12 T

where h is the estimate of the flux between cells j and j + 1. Conditionms

i+1/2
(3.3) are satisfied by the upwind scheme

f(vj) if aj+l/2 >0

hj+1/2 = (3.5)
£( <0

Vir1) 1 354172

where aj+1/2 is a numerical estimate of the wave speed a = 3f/du,
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f‘+l— £,
] if v, v
V., 1= V. j+l1 j
a ={ I (3.6)
j+1/2
af oy =
ov 15 Vi VJ
= v.
J
More generally, if one sets
1
Birry2 =7 Ggap HE) ¥ a0 vy = vy) (3.7
where aj+l/2 is a dissipative coefficient, the scheme is TVD if
o > L a (3.8)
j+1/2 ~ 2| “3+1/2
since one can write
1
hiprzz = Byt 7 Bypy 7 E9) = oy p Gy = vy)
= f, + (l-a -a Y(v - v,)
3 2 “§+1/2 3+1/27 7 3+1 j

and
1
VR I A R VA R B

1
37 G agoyyn oy vy T vp)

Thus the use of a dissipative coefficient with a magnitude of at least half the

= f

wave speed produces a TVD scheme, while the minimum sufficient value produces

the upwind scheme.

TVD schemes preserve the monotonicity of an intially monotome profile,
because the total variation would increase if the profile ceased to be monotone.
Consequently, they prevent the formation of spurious oscillations. In this
simple form, however, they are at best first order accurate. Harten devised a
second order accurate TVD scheme by introducing antidiffusive terms with flux
limiters [28]. The use of antidiffusive terms and flux limiters to improve
shock resolution can be traced to the work of Boris and Book [23]. The concept

of the flux limiting was independently advanced by Van Leer [24].
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A particularly simple method of constructing a second order accurate TVD
scheme is to introduce flux limiters directly into a higher—order dissipative

term [33]. Define the numerical flux in equation (3.4) as

1

hiv172 = 5'(tj+1 - fj) * diry/2 (3.9)
where dj+l/2 is a dissipative flux. Suppose that this is constructed
as

= — <+ .

diri/2 = %5372 T %e54172 T 85172 (3.10)
where

€5+1/2 © o‘j+1/2(vj+1 - Vj) (3.11)
and aj+l/2 is a positive coefficient. According to equations (3.10) and (3.11)

the dissipative flux is a quantity of third order. Now equation (3.4) becomes

dv, 1 1
A G T T3 244072 Bye1/27 T 34-172 By-1/2

- + - +
%rzs2 Y532 T3 Yarg2 Bz T 3%5-12 Be12 t %5372 B4-302

where

A = -
4172~ V341 T Vg

This does not satisfy conditions (3.3) because the coefficients of Aj+3/2 and
Aj_3/2 have the wrong sign. In order to correct this we can modify the dissipa-—
tive terms by the introduction of flux limiters. Denote the ratio of successive
increments by

e.
j+1/2
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and define the function

0, r <0
o(r) = r, 0 <r«<l1l (3.13)
1, £>1
Also let
() = 9(2) (3.14)

Since ¢ satisfies the symmetry condition

r () = 4(x)

it follows that

r y(r) = ¢(r) <1

Denoting ¢(rj) by ¢j and w(rj) by wj the dissipative flux is now redefined as

d (3.15)

34172 = O541 ©543/2 T 2854172 T V5 &4-1/2

According to equation (3.12)

e,
- _Jt1/2 =
€5+3/2 Ti » €4-3/2 T Ty-1 ®5-1/2

Therefore equation (3.4) now yields

dv, 1 1
b g T T 7 854172 Aye1/2 T2 34-1/2 By-1s2
¢,
+1
+2-—L= +9)a, ., A,
+
rj+l i j+l/2 T3j+1/2

-2 - Tiog Y4-1 F lpj) %i-1/2 Y4-1/2
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Since

0 < ¢(r) <1 , 0%

and
0<9(r)y <1 , 0 <ry(r) <1
it follows that conditions (3.3) are satisfied if condition (3.8) holds.

In a region where the solution is smooth

=
i

1 + 0(Ax)

with the result that

9. 1 + 0(Ax)

1 + 0(Ax) .
] » ¥4
and the modification of equation (3.10) is of second order.

A convenient way of applying these ideas to a system of equations was pro-
posed by Roe [26]. Let Aj+l/2

ference satisfies the relation

be a matrix with the property that the flux dif-

f(Wj+l) - f(wj) = A - wj) (3.16)

j+l/2(wj+l
Roe gives a method for the construction of such a matrix, which is a numerical

approximation to the Jacobian matrix 9f/%w. Its eigenvalues kz are thus numeri-

cal estimates of the wave speeds associated with the system. Now decompose the

difference wj+] ~ Wj as a sum of the eigenvectors ry of Aj4]1/2,

W, -w, = Z a r, (3.17)

Then
£, —f, =) A, @ T, (3.18)
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and the desired dissipative term can be constructed as

) uz ag rx (3.,19)
where
u > 1 lx ‘ (3.20)
2 2 £

This method amounts to constructing separate dissipative terms for the charac-—
teristic variables defined by the eigenvectors of Ayt /2. It is closely related
to the concept of flux splitting first introduced by Steger and Warming [25], in
which the flux vector itself is split into components corresponding to the wave
speeds, and backward differencing is used for the part propagating forwards, while
forward differencing is used for the part propagating backwards. Alternative
methods of flux splitting which lead to excellent shock capturing schemes have

been proposed by Osher [27] and Van Leer [31].

These concepts can be applied to two and three dimensional problems by
separately applying the one-dimensional construction in each coordinate direc—
tion. There is no theoretical basis for this, but it generally leads to good
results in practice. The cell centered finite volume formulation is readily
adapted to this kind of construction. A first order upwind scheme can be
constructed by splitting the flux across each face into components corresponding
to forward and backward propagation, and then evaluating each component by

taking values from the cell on the upwind side of the face.

An alternative approach is as follows., Consider a two-dimensional scalar
conservation law of the form

av
5—-+

|cu

£(v) + %}; g(v) =0 (3.21)

Qo

X
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The mesh may be either rectilinear or triangular, as sketched in Figure 1.
Assume that the evolution equation at the mesh point O depends on contributions
from the nearest neighbors, numbered as in the figure. Suppose that this is
expressed in the form

dv

T ) c, (v, (3.22)
k

- VO)

where the sum is over the neighbors. Then we require all the coefficients to be
nonnegative

e 2 0, k =1,2... (3.23)
This condition on the signs of the coefficients, which is a direct generaliza-
tion of the conditions for a one dimensional three point scheme to be TVD,
assures that a maximum cannot increase. Finite volume approximations to
equation (3.21) can be reduced to the form (3.22) by making use of the fact
that the sums E Ax and X Ay taken around the perimeter of the control area

k

are zero, so that a multiple of f(vg) or g(v() can be subtracted from the flux.
Consider, for example, a formulation in which v is stored at the vertices of a

triangular mesh, as in Figure 1(d). Then equation (3.21) is replaced by

dv
0,1y, -
Sac T ?% (e £ DO )~ Bt B Xt = 0 (3.24)

where k ranges from 1 to 6,and S is the area of the polygon. This can be

rearranged as

de i _
S * %{f(vk)Ayk - g(vk)Axk} =0
where 1 1
bx =5 ™ Beo)s Ay T 7 O™ Niemp)s

and this is equivalent to
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dv
S HEQ-+ % {(f(vk) = £y Dy + (glvy ) - g(vo))AXk} =0 (3.25)

Define the coefficient apg as

(fk—fO)Ayk - (gk—go)Axk

v, ¥V
vy Yo k 0
av Tk v k| v o= ) ’ k 0
Then equation (3.25) reduces to
de ‘
S g ) akO(Vk = vy) = 0.

k

To produce a scheme satisfying the sign condition (3.23), add a dissipative term

on the right hand side of the form
Z o, (v. - v.)
K k0 "k 0
where the coefficients ayp satisfy the condition

} .
%o * | & | (3.27)
The definition (3.26) and condition (3.27) correspond to the definition (3.6)
and condition (3.8) in the one dimensional case. The extension to a system can
be carried out with the aid of Roe's construction. Now ayg is replaced by the
corresponding matrix Apg such that

Ao = Wo) = (fy = £o) by = (g~ gg) bx
Then wy - wo 1s expanded as a sum of the eigenvectors of Ay, and a contribution

to the dissipative term is formed by multiplying each eigenvector by a positive

coefficient with a magnitude not less than that of the corresponding eigenvalue.

The use of flux splitting allows precise matching of the dissipative terms

to introduce the minimum amount of dissipation needed to prevent oscillations.
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This in turn reduces the thickness of the numerical shock layer to the minimum
attainable, one or two cells for a normal shock. In practice, however, it turns
out that shock waves can be quite cleanly captured without flux splitting by
using adaptive coefficients. The dissipation then has a low background level
which 1s increased in the neighborhood of shock waves to a peak value propor—
tional to the maximum local wave speed. The second difference of the pressure
has been found to be an effective measure for this purpose. The dissipative
terms are constructed in a similar manner for each dependent variable by intro-—

ducing dissipative fluxes which preserve the conservation form.
For a three dimensional rectilinear mesh the added terms have the form

- + -
div172,5,%6" Y-172,5,k" Y4, 54172,k 44, 9-1/2,k

(3.28)

+ d -
1,3,0+1/27 %,5,k-1/2

These fluxes are constructed by blending first and third differences of the
dependent variables. For example, the dissipative flux in the i direction for

the mass equation is

_ (2 @) 2 _
di41/2,3,6 R e 80,5k T P,y 329

where Gi is the second difference operator, e(2) and (%) are the adaptive
coefficients, and R is a scaling factor proportional to an estimate of the maxi-
mum local wave speed. For an explicit scheme the local time step limit At* is a
measure of the time it takes for the fastest wave to cross a mesh interval, and
R can accordingly by made proportional to l/At*., The coefficient e(4) provides
the background dissipation in smooth parts of the flow, and can be used to

improve the capability of the scheme to damp high frequency modes. Shock cap-
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turing is controlled by the coefficient 8(2), which is made proportional to the

normalized second difference of the pressure

- +

pi+l’j’k zpi’j)k pi—]-’j)k
¥ ¥

pi+l’j’k zpi’j’k pi—lsj,k

v, . =
i,j,k

in the adjacent cells.

The realization of dissipative terms of this type on a triangular mesh is
illustrated in Figure 6. The simplest form of dissipation is to add a term
generated from the difference between the value at a given node and its nearest

neighbors. That is, at node 0, we add a term

_v (1) -
Dy = % €00 (wk W) (3.30)

where the sum is over the nearest neighbors. The contribution e(l)ko(wk - WO)

is balanced by a corresponding contribution e(1),(Wwy = w) at node k, with the

result that the scheme remains conservative. The coefficients s(l)ko may incor-

porate metric information depending on local cell volumes and face areas, and
can also be adapted to gradients of the solution. A more accurate scheme is

obtained by recycling the edge differencing procedure. After first setting

EO = Z (Wk - WO) (3.31)
k
at every mesh point, one then sets
= -5 2 -
D, = ) o B ~ Eg) (3.32)

k
An effective scheme is produced by blending formulas (3.30) and (3.32), and adapting

(1)

Ok to the local pressure gradient. This is accomplished by calculating
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7 | P %o
O | P Po

at every mesh point, and then taking s(l)Ok proportional to max (Pp, Py).

The required sums can be efficiently assembled by loops over the edges.

Schemes constructed along these lines combine the advantages of simplicity
and economy of computation, at the expense of an increase in thickness of the
numerical shock layer to three or four cells. They have also proved robust in
calculations over a wide range of Mach numbers (extending up to 20 in recent

studies [36]).
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Figure 6

Construction of dissipation from differences along
edges in a two—dimensional mesh.
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4., Time Stepping Schemes

The discretization procedures of Section 2 lead to a set of coupled ordinary

differential equations, which can be written in the form

g§-+ R(w) = 0 (4.1)
where w is the vector of the flow variables at the mesh points, and R(w) is the
vector of the residuals, consisting of the flux balances defined by equations
(2.2) or (2.5), together with the added dissipative terms. These are to be
integrated to a steady state. Since the objective is simply to reach the
steady state and details of the transient solution are immaterial, the time
stepping scheme may be designed solely to maximize the rate of convergence
without having to meet any constraints imposed by the need to achieve a spe-
cified level of accuracy, provided that it does not interfere with the defini-
tion of the residual R(w). Figure 7 indicates some of the principal time

stepping schemes which might be considered. The first major choice is whether

to use an explicit or an implicit scheme.

A very widely used explicit scheme is that proposed by MacCormack [37],

which uses the predictor and corrector steps

*
w

+ +

wh - A 7+ D g™ (4.2a)
X y

and

nt+l n _ At .+ .0 + n At - % - %
= - — 4 .
w w 5 (DX £+ Dy g ) 7Z._.(DX f Dy g ) (4.2Db)

- + -
where D; R DX s Dy and Dy are forward and backward difference operators

approximating 3/9x and 3/9y. This minimizes the number of computer operations

needed to realize a second order accurate scheme. The use of different approxi-
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Time Stepping Schemes

* facilitates vector and parallel processing
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mations for 9f/9x + 3g/3y in the two stages leads, however, to a dependence of

the steady state solution on At.

If one regards equation (4.1) as a set of ordinary differential equations in
which R(w) has a fixed form, then the steady state solution is unambiguously
R(w) = 0. Explicit schemes which might be considered include linear multistep
methods such as the leap frog and Adams—Bashforth schemes, and one step multi-
stage methods such as the classical Runge—Kutta schemes. The one step multi-
stage schemes have the advantages that they require no special start up
procedure, and that they can readily be tailored to give a desired stability
region. They have proved extremely effective in practice as a method of solving

the Euler equations.

n
Let w be the result after n steps. The general form of an m stage scheme is

w(0) = W

w(l) = w0 - o; At r(O)

. (4.3)
w(m1l) = L (0) - ag-] At R(m-2)

wm) = w(0) - aA¢ r(m-1)

St o (m)

The residual in the q+lst stage is evaluated as

q
r(1)- Yy B R(w(E)) (4.4)
r=0 ar
where q
L, 8 =1
r=0 ar
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In the simplest case

R4 R(wd?)
It is then known how to choose the coefficients dq to maximize the stability
interval along the imaginary axis, and consequently the time step [38]. Since
only the steady state solution is needed, it pays to separate the residual R(w)
into its convective and dissipative parts Q(w) and D(w). Then the residual in

the (q+l)st stage is evaluated as

(@ _ ¢ (r)y _ )y
R rEO {quQ(w ) yqu(é )} (4o4%)
where

Blended multi-stage schemes of this type, which have been analyzed in reference
39, can be tailored to give large stability intervals along both the imaginary

and negative real axes.

The properties of multi-stage schemes can be further enhanced by residual
averaging [13]. Here the residual at a mesh point is replaced by a weighted
average of neighboring residuals. The average is calculated implicitly. 1In a

one dimensional case R(w) is replaced by §kw), where at the jth mesh point

- éﬁ, + (1+2€)§: - € R, = R,
j=1 h| j+l 3

It can easily be shown that the scheme can be stabilized for an arbitrarily
large time step by choosing a sufficiently large value for £. In a non-—

dissipative one dimensional case one needs

1

At (2
e > ((F@) - D
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where At* is the maximum stable time step of the basic scheme, and At is the
actual time step. The method can be extended to three dimensions by using

smoothing in product form

(1 -€ 82)(1 -¢ 65)(1 —¢ 6°) R =R (4.5)
X X vy zZ z

2 2 2 R .
where GX, Gy and GZ are second difference operators in the coordinate directions,

and €4, €, and €, are the corresponding smoothing coefficients. Residual averaging

y
can also be used on triangular meshes [19,20]. The implicit equations are then

solved by a Jacobi iteration.

One can anticipate that implicit schemes will yield convergence in a smaller
number of time steps, since the time step is no longer constrained by a stabi-
lity limit., This will only pay, however, if the decrease in the number of time
steps outweilghs the increase in the computational effort per time step con-
sequent upon the need to solve coupled equations. The prototype implicit scheme
can be formulated by estimating 9w/d0t at t + pAt as a linear combination of
R(w®) and R(wn+l). The resulting equation

W= G - ag{ ) R+ RG] (4.6)

can be linearized as

(1 + uAt%%) Sw + At R(wD) = 0 4.7)

Equation (4.7) reduces to the Newton iteration if one sets p = 1 and lets At » &,
In a three dimensional case with an NxNxN mesh its bandwidth is of order N2.
Direct inversion requires a number of operations proportional to the number of
unknowns multiplied by the square of the bandwidth, that is o(8/). This is pro—
hibitive, and forces recourse to either an approximate factorization method or

an iterative solution method.
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The main possibilities for approximate factorization are the alternating
direction and LU decomposition methods. The alternating direction method, which
may be traced back to the work of Gourlay and Mitchell [40], was given an elegant

formulation for nonlinear problems by Beam and Warming [41}. In a two dimen—

sional case equation (3.7) is replaced by

(T + uAtDXA)(I + uAtDyB)Gw + At R(w) =0 (4.8)

where Dy and Dy are difference operators approximating 3/9x and 3/9y, and A and

B are the Jacobian matrices. This may be solved in two steps:

(1) (I + uAthA)GW* = — At R(w)

*
(2) (1 + uAtDyB)Sw = 8w

Each step requires block tridiagonal inversions, and may be performed in 0(N2)
operations on an N x N mesh. The algorithm is amenable to vectorization by
simultaneous solution of the tridiagonal equations along parallel coordinate
lines. The method has been refined to a high level of efficiency by Pulliam and
Steger [l4], and Yee has extended it to incorporate a TVD scheme [32]. Its main
disadvantage is that its extension to three dimensions is inherently unstable

according a Von Neumann analysis.
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The idea of the LU decomposition method [42] is to replace the operator in
equation (4.3) by the product of lower and upper block triangular factors L and
u,

LU 8w + At R(w) = 0 (4.9)
Two factors are used independent of the number of dimensions, and the
inversion of each can be accomplished by inversion of its diagonal blocks. The
method can be conveniently illustrated by considering a one dimensional example.
Let the Jacobian matrix A = 3f/3w be split as
A =AY + A
where the eigenvalues of At and A~ are positive and negative, respectively. Then

we can take

_+ +_
L I+uAtDXA , U I+uAthA (4.10)

+ o
where DX and DX denote forward and backward difference operators approximating
d9/9x. The reason for splitting A is to ensure the diagonal dominance of L and
U, independent of At. Otherwise stable inversion of both factors will only be

possible for a limited range of At. A crude choice is

+
AT = 2t D)

where p is at least equal to the spectral radius of A. If flux splitting is
used in the calculation of the residual, it is natural to use the corresponding
splitting for L and U. An interesting variation is to combine an alternating

direction scheme with LU decomposition in the different coordinate directions

[43,44].

If one chooses to adopt the iterative solution technique, the principal

alternatives are variants of the Gauss—Seidel and Jacobi methods. These may be
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applied to either the nonlinear equation (4.6) or the linearized equation (4.7).

A Jacobi method of solving (4.6) can be formulated by regarding it as an equation

()

w - W + uAt R(w) + (1-u) At R(W(O)) =0

to be solved for w. Here w(0) is a fixed value obtained as the result of the
previous time step. Such a procedure is a variant of the multi—stage time
stepping scheme described by equations (4.3) and (4.4). 1t has the advantage
that it permits simultaneous or overlapped calculation of the corrections at
every mesh point, and is readily amenable to parallel and vector processing.

A symmetric Gauss—Seidel scheme has been successfully employed in several
recent works[15,45]. Consider the case of a flux split scheme in one dimen—
sion, for which

R(w) = D+ f (W) +D f+(w)
X X

where the flux is split so that the Jacobian matrices

have positive and negative eigenvalues, respectively. Now equation (3.7) becomes
+ - -+
{T+use (A +D_AD} sw+ ot R(w) = O.

At the jth mesh point this is

+ - - +
I+a(A, —A))} 6w, +a A, , 6w, ., —aA, . 8w, . +AtR, =0
{ J J } J j+l Ui+l -1 751 J
where
At
&= ¥Ry
Set 5W§0)= 0. A two sweep symmetric Gauss—Seidel scheme is then

J



(1)

D) {I + a(AT - AT)} Sw, "= « AT ng
] J J-

+ _ - (2) - (2) + (1)
-+ —_ + —_— =
(2) {1 a(Aj Aj)} 8w O A Sl AL Swi gt ARy =0

Subtracting (1) from (2) we find that

(2)

{1+ a(A; - A; 1 ij (1)

—_ (2) _ + 3 -
+ o Aj+l 6Wj+l = {I + OL(Aj Aj)}éwj

Define the lower triangular, upper triangular and diagonal operators L, U and D

as

- - +
L=I1I-aA + ut DX A

+ + -
U=z1+aA + ut DX A

D=1+alA -AD)
It follows that the scheme can be written as
LD YU Sw= - At R(w)
Commonly the iteration is terminated after one double sweep. The scheme is then
a variation of an LU implicit scheme.
Some of these interconnections are illustrated in Figure 7. Schemes in
three main classes appear to be the most appealing:
1) Varations of multi-stage time stepping, including the application of a

Jacobi iterative method to the implicit scheme, (indicated by a single

asterisk).

2) Variations of LU decomposition, including the application of a
Gauss—Seidel iterative method to the implicit scheme (indicated by a

double asterisk).
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3) Alternating direction schemes, including schemes in which an LU decom—
position is separately used in each coordinate direction (indicated by

a triple asterisk).

The optimal choice may finally depend on the computer architecture. One might
anticipate that the Gauss—Seidel method of iteration could yield a faster rate
of convergence than a Jacobi method, and it appears to be a particularly natural
choice in conjunction with a flux split scheme which yields diagonal dominance.
This class of schemes, however, restricts the use of vector or parallel pro-—
cessing. Multistage time stepping, or Jacobi iteration of the implicit scheme,
allow maximal use of vector or parallel processing. The alternating direction
formulation removes any restriction on the time step (at least in the two dimen-
sional case), while permitting vectorization along coordinate lines. The ADI-LU

scheme is an interesting compromise.
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5. Acceleration Methods: Multigrid Technique

Clearly one can anticipate more rapid convergence to a steady state as the
time step is increased. Accordingly, the rate of convergence of an explicit
scheme can generally be substantially improved by using a variable time step
close to the local stability limit throughout the flow field. Assuming that the
mesh cells are clustered near the body and expand as one moves away from the
body, this effectively increases the rate at which disturbances are propagated
through the outer part of the mesh. A similar strategy also pays with implicit
schemes. In this case the terms in At2 or At3 resulting from factorization
become dominant if At is too large, and the optimum rate of convergence is typi-
cally realized with a time step corresponding to a Courant number of the order

of 10.

Radical further improvements in the convergence rate can be realized by the
multigrid time stepping technique. The concept of acceleration by the introduc-
tion of multiple grids was first proposed by Federenko [46]. There is by now a
fairly well developed theory of multigrid methods for elliptic equations [47-48],
based on the concept of the updating scheme acting as a smoothing operator on
each grid. This theory does not hold for hyperbolic systems. Nevertheless, it
seems that it ought to be possible to accelerate the evolution of a hyperbolic
system to a steady state by using large time steps on coarse grids so that
disturbances will be more rapidly expelled through the outer boundary. Several
multigrid time stepping schemes designed to take advantage of this effect have
been proposed [49-56]. 1In each of them some of the task of tracking the evolution

of the system is transferred to a sequence of coarser grids. Aside from helping
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to establish equilibrium more rapidly, this has the advantage that the com—
putational effort per time step is reduced on a coarser mesh. The interpolation
of the corrections back to the fine grid will introduce errors, however, which
cannot be rapidly expelled from the fine grid, and ought to be locally damped if
a fast rate of convergence is to be attained. Thus it remains important that
the driving scheme should have the property of rapidly damping out high fre-

quency modes.

A multigrid time stepping scheme may be organized as follows. Suppose that
successively coarser auxiliary grids are introduced, with the grids numbered
from 1 to m, where grid 1 is the original mesh. Then after one or more time
steps on grid 1 one passes to grid 2. Again, after one or more steps one passes
to grid 3, and so on until grid m is reached. For k > 1, the evolution on grid
k is driven by a weighted average of the residuals calculated on grid k-1, so
that each mesh simulates the evolution that would have occurred on the next
finer mesh. When the coarsest grid has been reached, changes in the solution
calculated on each mesh are consecutively interpolated back to the next finer
mesh. Time steps may also be included between the interpolation steps on the
way back up to grid 1. In practice it has been found that an effective
multigrid strategy is to use a simple saw tooth cycle, with one time step on
each grid on the way down to the coarsest grid, and no Euler calculations bet-

ween the interpolation steps on the way up.

In general one can conceive of a multigrid scheme using a sequence of inde-
pendently generated coarser meshes which are not associated with each other in

any structured way. Here attention will be restricted to the case in which
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coarser meshes are generated by eliminating alternate points in each coordinate
direction. Accordingly, each cell on grid k coincides either exactly or approxi-
mately with a group of four cells on grid k-1 in the two dimensional case, or
eight cells in the three dimensional case. This allows the formulation of
simple rules for the transfer of data between grids.

In order to give a precise description of the multigrid scheme it is con—
venient to use subscripts to indicate the grid. Several transfer operations

need to be defined. First the solution vector on grid k must be initialized as

0)_ o

Yk k,k=1 "k-1

where wy-] is the current value on grid k-1, and Tk,k—l is a transfer operator.
Next it is necessary to transfer a residual forcing function such that the solu-
tion on grid k is driven by the residuals calculated on grid k—-l. This can be

accomplished by setting

- _ (0)
P ™ Q-1 B Wiemr? ~ Relw )
where Qk,k—l is another transfer operator. Then Ry (wy) is replaced by
Rk(Wk) + Py in the time stepping scheme. For example, the multi-stage scheme

defined by equation (3.3) is reformulated as

Wél) = wéo)— alAtk (Ré0)+ Pk)
wéGHl) _ WlEO)_ - e, (R(il{)Jr P

LI

The result w(m)then provides the initial data for grid k+l. Finally, the

k

+
accumulated correction on grid k has to be transferred back to grid k-1. Let W

be the final value of wy resulting from both the correction calculated in the

time step on grid k and the correction transferred from grid k+l. Then one sets
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+ + (0)

= + —
Wl = Veer T Lo ke T v
where wi—-] 1s the solution on grid k-1 after the time step on grid k-1 and

)

before the transfer from grid k, and Ik—l,k is an interpolation operator.

In the case of a cell centered scheme the solution transfer operator Tk k-1

is defined by the rule

T = ()

Kkl Yiel = @ Vi W)Y

where the sum is over the constituent cells on grid k-1, and V is the cell area
or volume. This rule conserves mass, momentum and energy. The residual trans—

ferred to grid k is the sum of the residuals in the constituent cells

R =) R

Qk,k—l k-1 l k-1

The corrections are transferred up using either bilinear or trilinear inter-
polation for the operator Tk-1,k-

When the flow variables are stored at the cell vertices the solution

transfer rule is simply to set wéo)to W1

at the coincident mesh point in grid
k—-l. The residual transfer rule is a weighted sum over the 9 nearest points in
two dimensions, or the 27 nearest points in three dimensions. The corresponding

transfer operator Qk,k—l can be expressed as a product of summation operators

in the coordinate directions. Let uy denote an averaging operator in the x
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direction:
(u. R) - ix + R )
x i+1/2,3,k  2°°1,5,k ¢ i+l, i,k
and
2 1 1 1
e Bk T F Rt 5,0 T R Y F RaL gk

Then in the three dimensional case

- 2 2 2
Qk,k—l =8 Px uy e

The interpolation operator Ik—l,k transfers the corrections at coincident mesh
points, and fills in the corrections at intermediate points by bilinear or tri-

linear interpolation.

To illustrate the power of the multigrid time stepping technique Figure 8

shows a solution of the inviscid Burger's equation

The boundary conditions were set to allow a (nonunique) steady state solution,
and adaptive dissipative terms were included to provide an oscillation free
shock wave [39]. The calculation was performed by a three stage time stepping
scheme in which the dissipative terms were evaluated twice. The fine mesh had
128 cells, and 5 levels were used in the multigrid scheme. Figure 8(a) shows
the evolution of the solution of the first 10 steps, starting from the initial

data at the bottom of the figure.

It can be seen that by the completion of the sixth step the solution is
indistinguishable from the final steady solution, illustrated in Figure 8(b).
In this case the symmetry of the initial data results in a shock wave with no

interior points. The rate of convergence measured by the average value of

ou 9



Figure 9 shows the result of a multigrid calculation of
three dimensional transonic flow past a swept wing.

The vertex formulation described by equations (2.5) was used for the discre-
tization of the Euler equations. A five stage time stepping scheme was used in
conjunction with a simple saw tooth multigrid cycle. Implicit residual
averaging as defined by equation (4.5) was also used. The mesh was of C type in
streamwise vertical planes, generated by the introduction of sheared parabolic
coordinates. A mesh of this type contains a singularity where it folds beyond
the wing tip, and the cells adjacent to the fold line are badly distorted.

These cells, which have a very high aspect ratio and a triangular cross sec-
tion, present a severe test of robustmness of the multigrid scheme. Figure 9
shows a typical result for the well known ONERA M6 wing at a Mach number of .840
and an angle of attack of 3.06 degrees®. The mesh contained 96 cells in the
chordwise direction, 16 cells in the direction normal to the wing, and 16 cells
in the spanwise direction, and the calculation was performed in two stages. A
result was first obtained on a 48x8x8 mesh using three levels in the multigrid
scheme. This was then used to provide the initial state for the calculation on
the 96x16x16 mesh in which four levels were used in the multigrid scheme. Table

1 shows the rate of convergence over 100 multigrid cycles on the 96x16x16 mesh,

*Calculated on a Cray 1 computer at Grumman: 1 am indebted to G. Volpe for his
assistance in optimizing the computer program to run on the Cray and preparing
the graphic display of the result.
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measured by the average rate of change of density, together with the development
of the lift and drag coefficients CL and CD. It can be seen that these are con—
verged to four figures within 20 cycles. Table 2 shows the result of a similar
calculation using a sequence of three meshes containing 32x8x8, 64x16x16 and
128x32%x32 cells, respectively. Three levels were used in the multigrid scheme on
the first mesh, four on the second, and five on the third. After 10 cycles on
the 32x8x8 mesh, 10 cycles on the 64x16x16 mesh and 5 cycles on the 128x32x32
mesh, the calculated force coefficients were CL = ,3145, and CD = .0167., These
are barely different from the final converged values CL = .3144 and CD = .0164,
The discretization errors, which may be estimated by comparing fully converged
results on the sequence of three meshes, are, in fact, substantially larger than
these differences. Thus convergence well within the discretization error can be

obtained in 5-10 cycles.
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Table 1

Calculation of the flow past the ONERA M6 wing at Mach .840, and 3.060 angle
of attack on a 96x%16x16 mesh.

Cycle

10
20
30
40
50
60
70
80
90

100

Average dp/dt

.916
.158
«243
«245
.353
«528
772
124
«241
.363

.528

10-1
102
10-3

10~4

CL

.3110
3118
.3118
.3118
.3118
.3118
.3118
.3118
.3118

.3118

Ch

.0205
.0203
.0203
.0203
.0203
.0203
.0203
.0203
.0203

.0203

Average reduction of

dp/dt per multigrid cycle: .807.




Figure 8(a)

Initial state and first 10 cycles in evolution
of Burger's equation (reading upwards)
Adaptive dissipation (scheme la)

128 cells 5 grids A= 2,0
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Figure 8(b)

Final State of Burger's equation
after 20 cycles of the multigrid scheme
Residual .5327 10-8
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Figure 8(c)

Convergence history for Burger's equation
Adaptive Dissipation (scheme la)
128 cells 5 grids A = 2.0
Mean rate of error reduction .3587 per cycle.
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Figure 9

Constant pressure contours of flow over the ONERA M6 wing
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6. Airplane Calculations

A major pacing item of the emergence of a capability to treat a complete
aircraft has been the development of a suitable method of mesh generation. For
simple wing body combinations it is possible to generate rectilinear meshes
without too much difficulty [13]: for more complicated configurations con-
taining, for example, pylon mounted engines, it becomes increasingly difficult
to produce a structured mesh which is aligned with all solid surfaces.
Multiblock methods have been proposed as a method of generating meshes in very
complex regions. In these the mesh 1s partitioned into smaller blocks so
that the mesh generation problem in each individual block is simplified. The
difficulty of defining the mesh, and ensuring contiguity of mesh lines at the
various interfaces is still considerable. The constraints on each block can be
relaxed by allowing the blocks to overlap, at the cost of the need for complex

transfer procedures between the blocks.

Since an arbitrary set of polints admits a triangulation, the problem can be
simplified by separating the procedure for generating mesh points from the pro-
cedure for triangulating them. In this approach a cluster of mesh points
surrounding the aircraft can be created in any convenient manner. An efficient
method is to take the union of the points belonging to separately generated
meshes around each component. No regularity is required in the initial point
distribution, only that a reasonable point density 1s created corresponding to
the anticipated variation in the flow field. The swarm of mesh points is then
connected together to form tetrahedral cells which provide the basis for a

single finite element approximation for the entire domain. This use of triangu-
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lation to unify separately generated meshes bypasses the need to devise inter-
polation procedures for transferring information between overlapping grids. The
triangulation of a set of points to form disjoint tetrahedra is, in general, mnonu-
nique: one procedure is to generate the Delaunay triangulation [57-61]. This

is dual to the Voronoi diagram that results from a division of the domain into
polyhedral neighborhoods, each consisting of the subdomain of points nearer to a
given mesh point than any other mesh point. The implementation of this method
and the need to maintain the integrity of solid surfaces present a number of

interesting problems.

A strategy that has proved effective in practice is to triangulate the
entire space including the interior of the aircraft as well as the exterior. It
is then important to identify interior tetrahedra correctly, as these must be
removed before carrying out the flow calculation. Furthermore, it 1s necessary
to prevent connections from exterior points breaking through the aircraft sur-
face. We start the triangulation by iIntroducing the outer boundary and then the
aircraft surface points, component by component. After all the surface points
have been introduced the interior tetrahedra are identified. Subsequently, if
the insertion of a new point would cause a reconnection penetrating the surface,
that point is rejected from the triangulation. This will occur if the point
lies inside the DeLaunay sphere of an interior tetrahedron. To allow the intro-
duction of points close to the surface it is therefore essential to make sure
that the DeLaunay spheres of all the interior tetrahedra are sufficiently small.
After the initial triangulation of the surface points we check the size of the

DeLaunay spheres. Then, i1f any of these exceed a predetermined threshold, we
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introduce additional surface points until no excessively large spheres remain
before proceeding to the introduction of the flow field points. This approach
to mesh generation has been implemented at Princeton University, and the finite
element method outlined in Section 2 has been used to perform transonic flow

calculations for complete aircraft [20].

Figure 10 shows the result of a transonic flow calculation for a Boeilng
747-200 flying at Mach .84 and an angle of attack of 2.73 degrees. The result
is displayed by computed pressure contours on the surface of the aircraft.

Flow is allowed through the engine nacelles which are modelled as open tubes.
The mesh contains 24685 points and 132793 tetrahedra. The calculation was per—
formed at Cray Research on a Cray XMP 216: the complete calculation took 3924
seconds. Of these 1448 seconds were spent in generating the mesh points and
triangulating them. The remaining 2476 seconds were spent in the flow comr
putation. This was performed with 400 cycles of the three stage scheme.
Implicit smoothing with a smoothing parameter € = 1 allowed the use of time
steps corresponding to a nominal Courant number of 5. The number of supersonic
points was frozen after 200 cycles, and the average residual was reduced from
.335 102 to .161 1073 after 400 cycles. Although the mesh is fairly coarse, the
significant features of the flow are evident, including the interference effects
of the wing and tall on the body, and the mutual interference of the wing,

nacelle and pylon.

Calculations with this number of mesh points require slightly more than 8
million words of memory. Within the limit of 16 million words available on a

Cray XMP 216 it should be possible to introduce nearly twice as many mesh points
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to produce a mesh with about 1/4 million tetrahedrons. This should be suf-
ficient to resolve the main features of the flow over the complete con-
figuration. Eventually, in order to provide a detailed representation of the
aircraft, we anticipate the need to increase the number of mesh points by a fac-
tor of between five and ten. This will require access to machines with a much

larger memory, such as the Cray 2.



Figure 10

Surface Pressure Contours
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7. Directions of Improvement

The results for the Boeing 747 clearly establish the feasability of per—
forming transonic flow calculations for complete aircraft with the new genera-
tion of computers now becoming available. The present finite element method can

benefit from a varliety of improvements and extensions. These include:

(1) Vectorization

Vectorization of the main loops has already been achieved by separating the
cells, faces and edges into groups such that no vertex at which contributions
are being accumulated is referred to more than once in each group. Using this
procedure, rates of computation ranging from 17-38 megaflops have been realized on
a Cray XMP computer, depending on the mesh. These variations stem from
variations in the sizes of the groups and the associated vector lengths. The
efficiency can be improved by making sure that no group is too small. The ana-
lysis of the associated sorting problems leads to some general map coloring
problems: for example, what is the minimum number of colors needed to color the
tetrahedra in such a way that tetrahedra meeting at the same vertex do not have

the same color.

(2) Improved Distribution of Mesh Points

The DeLaunay triangulation procedure connects an arbitrary cluster of points
to form a tetrahedral mesh. It can be anticipated, however, that the accuracy
will be improved by ensuring a favorable distribution of the points, with suf-
ficient concentration in the neighborhood of the surface, and particularly in
critical regions such as the pylon wing intersection. The present mesh
generating procedure needs to be improved to provide better control of the size

and aspect ratio of the tetrahedra.
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(3) Adaptive Mesh Refinement

The unstructured tetrahedral mesh provides a natural setting for the intro-
duction of an adaptive mesh refinement procedure in which additional mesh points
are inserted in regions where there are rapid variations in the flow, or an indi-
cation of relatively large discretization error. This provides a method of
reducing the thickness, for example, of a computed shock layer. The promise of
this approach has already been demonstrated in the work of Lohner, Morgan and

Peraire [62], and Holmes and Lamson [63].

(4) Multigrid Acceleration

It should be possible to make a further reduction in the cost of the flow
calculation by using multiple grids to accelerate the convergence to a steady
state. Since the meshes are unstructured, no simple relationship can be assumed
between a coarse and a fine mesh, and rather complex procedures must be used to

transfer data between the meshes.

(5) Extension to Navier Stokes Equations

By using the weak form, equation (2.7), the viscous terms of the Navier Stokes
equations can rather easily be approximated within the present framework. Then,
as a result of the integration by parts, only first derivatives of the veloci-
ties are needed to evaluate the rate of strain and stress tensors. These may be
taken as constant in each tetrahedron, consistent with the assumption of linear
variation in each element. A new version of the program containing additional

subroutines to evaluate the viscous terms 1s currently under development.
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(6) Simulation of Engine Power Effects

The present model allows free flow through the engine nacelles. A more
realistic simulation can be achieved by Iintroducing source terms to represent

the engine power effects.
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8. Conclusion

Finite element methods on unstructured tetrahedral meshes, subject to some
of the improvements outlined in Section 7, should provide a useful working tool
which will allow engineers to assess the merits of proposed new designs.
Parallel improvements in discretization and mesh generating methods for rec—
tilinear meshes can also be anticipated. Thus we can look forward to an era in

which transonic flow will routinely be computed for complete aircraft.
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