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SUMMARY

An explicit multistage finite volume method for the solution of the
compressible Navier Stokes equations has been applied to resolve the
transonic flow through a double throat nozzle. The accuracy and robustness
of the method are shown by the accurate predictions of: extent of
recirculation regions; effects of the Reynolds number on the shock
structure; the viscous-inviscid interaction. The dependency of the solution
upon grid refinement and wall boundary condition is also studied.

INTRODUCTION

The numerical solution of the compressible Navier Stokes equations
(CNS) - is a severe test for most numerical algorithms as far as accuracy and
robustness of the methods are concerned, on account of the complexities of
the flows to be simulated.

In the last decade several implicit or semimplicit algorithms have been
developed [1]-[5]. The progress in high speed computers and in the
development of efficient numerical methods for the solutions of the Euler
equations [6]-[7] have stimulated the application of explicit algorithms to
CNs [8]-[10]. :

In the present work the viscous transcnic flow through a double throat
nozzle is analized by using an explicit multistage finite volume method.
The objective of the work is to assess the accuracy and the robustness of



the method in the presence of recirculation regions and strong
viscous-inviscid interactions.

The numerical algorithm is an extension of that developed for the
solution of the Euler equations by Jameson [11]. A «cell centered
formulation (i.e. the flow variables are defined at cell centers) is
emplocyed so as to use a fully conservative form of the Navier Stokes
equations. However, as already pointed out in Ref. [10], such an approach
requires some interpolation to satisfy Dirichlet boundary conditions for
temperature, as requested in the test cases.

The computations have been performed on H-type meshes, best suited for
the present applications. Two different grid refinements and two different
nodal point distributions have been used to study the influence of the
discretization on the solution.

The test cases require to compute the flow for three different values
of the Reynolds number. The computed results show that the present method
is able to predict the main features of the flow with good agreement with
the results obtained by others.

In the next sections the governing equations are presented, then the
numerical algorithm is discussed together with the treatment of the
boundary conditions and the grid generation technique. Finally the results
and some concluding remarks are given.

GOVERNING EQUATIONS

In the present approach a fully conservative formulation of the
compressible Navier Stokes equations is employed. The dimensionless form of
the equations is obtained by choosing the following reference quantities:
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where L, ¢, Re and Pr are respectively the half throat nozzle height, the
speed of sound, the Reynolds and the Prandtl pumbers.
In a cartesian coordinate system the equations are:
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where w, f, g, P and Q are respectively the vector unknown, the non
dissipative flux components in x and y direction and the diffusive flux

components in x and y, and they are defined as follows:
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where u and v are the velocity components in x and y; e, p and E are
respectively the density, pressure and total energy.
Equation of state
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where e, v and U are respectively the specific internal energy, the ratio
of the specific heat coefficients and the unit tensor.

NUMERICAL SOLUTION

The computational domain is partitioned into arbitrary quadrilateral
cells, The discretized form of the governing equations is obtained by
applying Egn. (l) to each cell and assuming that the flow variables are
uniform within each computational volume. The spatial and temporal terms
are decoupled by using the method of lines [11]-[12], and the system of
governing equations is reduced to a system of ordinary differential
equations (ODE).

The wvolume integrals are approximated by means of the mean wvalue
theorem, and the mid-point rule is employed for the surface integrals. The
following ODE is obtained:
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where n and n are respectively the components of the positive unit

normal f% b andyy.
The numerical flux (f,g) at cell face B is evaluated as the average of

the corresponding values at the two adjacent cells. This definition
guarantees that (f,g) be consistent with (f,g) in the following sense:
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moreover it enhances the computational efficiency and it yields second
order accuracy on a smooth grid. Observe that term I coincides with the
Euler-type flux contribution (RE).

The discretized counterpart of the diffusion fluxes (?,Q) are evaluated
by applying Gauss theorem to a computational volume centered around a grid
node and whose vertices are the centers of the four adjacent cells, so as
to calculate the velocity and temperature gradients [10], [12].

Adaptive dissipative terms, proportional to the second and fourth
differences of the variables, are added to the discretized governing
equations to prevent even/odd decoupling and to inhibit expansion shocks
[11], when solving the Euler equations. The Navier Stokes equations contain
physical dissipative terms. However some adaptive dissipation is still
added to guarantee the proper behaviour of the scheme in regions where the
convection and diffusion contributions are not of the same order. Hence
Eqn. (2) is augmented by adding adaptive dissipation terms similar to the
ones employed in Euler calculations [10]-{11], yielding:

d .
it (Vw)ij = - RE(W) - D(V) - AD(w) (3)
where D represents term II of Eqn. (2), and AD is the adaptive dissipation.

The time integration of Eqn. (3) is obtained by employing an explicit
3-stage Runge-Kutta scheme as that used in ref. [10]. To enhance the
computational efficiency both the physical and artificial dissipative terms
are evaluated once per time step. The solution is then advanced in time as

follows:
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The efficiency of the method is further increased by use of local time

stepping and implicit smoothing.

Mesh Description

The mesh used in the computations is a body fitted H-mesh obtained by
solving the Laplace equation for the stream function (¢) on an equally
spaced grid that covers the physical domain. The coordinates of the nodes
are obtained by finding lines of constant ¢ (the velocity potential) and
constant ¢, yielding a system of orthogonal grid coordinate lines.

To improve viscous layer resolution the grid is refined near the wall.
The refinement is accomplished. by use of the following nodal point
distribution (along ¥) [13]:
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where D measures the rate of deviation from a uniform linear distribution

with slope m.

Boundary Conditions

At the wall no slip boundary conditions are imposed on the velocity

components, i.e.
u*n=0
u*t=20

The temperature is set equal to the stagnation value as requested in

the test cases.
The pressure is needed at the wall when evaluating the momentum balance

equation for the cells adjacent to the solid boundary. For this purpose two
different boundary conditions are investigated:

Vp - n = 0 | (4)
(=vp +V*+0o )*n =0 (5)

Computations performed using either Eqn. (4) or (5) have shown negligible

differences in the results. :
Due to symmetry of the flow, symmetry boundary conditions are imposed

along the centerline axis.
At the upstream boundary the viscous effects are neglected and the

following boundary conditions are imposed (being MO < 1):
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where n , n are the components of the normal to the surface, positive if
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peinting oatward; q , qt, H and s are respectively the normal and

tangential velocity components, the total enthalpy and the entropy.

Eqn. (8) corresponds to a boundary condition for the outgoing Riemann
invariant. Eqn. (9) implies that the flow be parallel to the centerline
axis.

At the downstream boundary, numerical boundary conditions are obtained
by extrapolation from the interior in the direction normal to the outflow



surface, i.e.
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where ~ stands for numerical discretization.
Observe that Eqn. (13), valid only for locally supersonic flow, is used
also in the subsonic case, as required in the specifications of the test

cases.

RESULTS

The calculations for the three test cases at Re = 100; 400; 1600 have
been performed on a 152x32 grid (Fig. 1) with the nodal point distribution
of Fig. 2. The effects of mesh refinement and those due to the two
different wall pressure boundary conditions (Eqn. (4)-(5)) have been
studied at Re = 100.

All the computations have been performed on a GOULD 3267 (2 Mbytec CPU
memory, 2 Mips). The computational times are given in table 1 and they
correspond to a number of time steps N = 300/hr, on a 152x32 grid without

multigrid.

Re = 100 (CASE 1.A)

The flow variables have been initialized assuming uniform conditions
corresponding to an inlet Mach number of .4. To drive the flow to a fully
expanded situation all but Eqn. (13) are imposed at the outflow. Indeed the
fourth boundaryi conditions has been set by imposing a pressure
corresponding to an isentropic Mach number equal to 1.3 until a supersonic
region develops. .After that the outflow boundary conditions (Egns.
(10)-(13) are imposed.

Figs. 3-11 show the strong influence of the viscous effects and an
extended recirculation region between the two throats as indicated by the
wall skin friction distribution and the velocity profiles vs x.The flow
separates at xs=2.9788 and reattaches at Xy = 4.8343. Observe that for this
case, strong recompression regions are absent



Effects of Mesh Refinement (CASE 1.B-C)

Results obtained on a 152x32 grid with a high mesh refinement near the
wall (see Figs. 30-35) indicate that, at least for such a low Reynolds
number, it is not necessary to concentrate as many grid points near the
wall. The 1level of convergence is worse than in the previous case as
observed by comparing the mass flow rate along the channel for the two

cases

Comparison of the results obtained on the coarser mesh (102x22) show
that the overall resolution of the flow field is adequate except through
the compression region located downstream of the first throat ( see

Figs.36-41). Further differences are observed in the distribution of the
heat flux coefficient vs x. However the differences seem due to the higher

convergence reached on the 102x22 mesh.

Effects of the Wall Pressure Boundary Conditions (CASE 1.D)

Figs. 42-44 show the results obtained with the wall boundary conditions
on pressure Vp *n = 0. The results indicate that the boundary 1layer
approximation is adequate when using a highly refined mesh near the wall.

Re = 400 (CASE 2)

The flow variables have been initialized from the converged solution
obtained at Re = 100. The isobar and isomach lines (Figs. 12-14), as well
as the pressure and Mach distributions on the centerline (Figs. 15-20),
show the formation of a rather strong shock. The interaction of the latter
with the viscous zone is responsible for the delay in the flow reattachment
as observed from Fig. 18 (XS=3.0025; xR=6.2829). Due to the viscous layer
thickness reduction, the mass flow rate increases with respect to the one
at Re = 100, as it appears from Fig. 19, which also shows the good

convergence of the computation.

Re = 1600 (CASE 3)

The flow field has been initialized starting from the converged
solution at Re = 400. At the Reynolds number 1600, apart from the viscous
zone, the flow is supersonic from the first throat to the outlet section.
The shock structure becomes oblique and the extent of the recirculation
zone between the two throats is reduced: x =3.4006; x =4.7669 (see Figs.
21-29). A second recirculation bubble appeaé% just downstream of the second
throat due to the interaction between the impinging oblique shock and the
viscous layer (xs=8.0326; xR=8.256O).



CONCLUSIONS

An explicit 3-stage finite wvolume method for the solution of the
compressible Navier Stokes equations has been applied to resolve the
transonic flow through a double throat nozzle at different Reynolds
numbers. The efficiency of the method is increased by using local time
stepping, implicit smoothing and a cell centered formulation. The main
features of the flow (extent of recirculation regions, location of the
points of separation and reattachment, effects of the Reynolds number on
the shock structure, viscous-inviscid interaction) have been accurately
predicted.

The effect of different mesh refinements and different nodal point
distributions have been studied at Re = 100. At this Reynolds number, the
computed results show no need for using very refined meshes. However an
adaptive local mesh refinement should be used to improve the accuracy [l4],
[15] at higher Reynolds numbers, where the flow structure is such that
large gradients of the variables arise in small regions.

To enhance the computational efficiency of the method a multigrid

technique should also be used [10], [11].
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Table 2 - RE = 100
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Table 3 - RE = 400
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Fig. 21 - Pressure Contours (DP = .02)

Table 4 - RE = 1600

' x 2 -10 : -4 : 0 : 4 3 7 : 13

‘plpe | 99625 .98005 | .49071 | .19565 © .12673 . .014435
WALL T , . , , .

Dcg | .21724E-3] .0021475 | .02526 ‘-.67258E-3 .013253  .004195
VALUES : : : : : :

¢, | .24654E-6° .25331E-4’ 0019085 | .35770E-3] .0014171 | .68152E-3

: H . : . : . 7 b . : . H . P
oporRy P/Pe | 99317 L .96640 [ .56657 | .004517 | .33586  .050162
AXIS “u P o.009733 . .22163  .93948  2.19385 [ 1.30375 | 2.55742

VALUES = 5 % lggwss | L. P 95976 © .99964 © 1.0265 . 1.0254




0.60 0.80

0.40

[

-

©
©

-i13.C2  -5.0C ~6.CC -1.cc 3.0 7.0

.o

Fig. 24 - Centerline Pressure

5.2

0.60 0.80

0.40

.o
%

26 - Wall Pressure

9.64

9.56

107"
9.62

Q

9.48

4

-
-
ol

e
-

1

-13.00

-8.,8C

=-6.60

-1.00

X

3.0 7.0

Fig. 28 - Mass Flow Rate

»107?

CH

7. 40

2.00

0.80

Saz0c  -B.C -6.00 -1.C

3.ct

Fig. 25 -

7.00

Centerline Mach Number

-6.0C -1.0C 3.00 7.0

Fig. 27

0.50

11.02

- Wall Skin Friction

15.00

0.30 0.40

0.10

8

S1s.00

-8.00

-5.00

-1.00 % | .00 | 1500

X

16.00

Fig. 29 - Wall Heat Flux



CASE 1.B

NN N \\\

\\\‘
SR

VWA \
RN
\\,\\'s \ \

Fig. 30 - Pressure Contours (DP

.02)

0.1t
R

3.09

CF

0.5

0.07

P A T
—_—
J—

.03

A AL B
~—

!
3 S S—
I—IS.CC -8.cC -5.0C ~1.00 va.m ?.00 11.00 15.00
Fig. 32 - Wall Skin Friction
g
g
t o
5 8
bc
*
]
Lol
o
3
o
8
0-13.00 -$.00 -5.00 -Yl.m SV.CKJ 7.0 .00 15.00
X
Fig. 34 - Wall Heat Flux

8
0.-23 ac S.C?— -5.00 -1.0C ‘_3 [}e} 7. 1:.00 15.00
'
Fig. 33 - Wall Pressure
i
8
-F coooom"ouu
J oocc
g
s =
1 °
8
o
.| ul
N ]
e 0
° 1
e ;
gl ° ‘
)
o
8
%.00 0.20 0.40 0.60 0.8 1.00
J/JL )
Fig. 35 - Mesh Point Distributien



CH

CASE 1.C

Fig. 36 - Pressure Contours (DP = .02)

47,

7,

-
a

Fig. 37 - Mach Contours (DM = .1)

0.:t

0.09

0.07
RS W S U

CF

x}l 02

] ‘ 4

B \ ‘ %

51 / K . \

i N )

8 o

o] c":

] i

5 N
S . o
2 ]
s — — — 8]

L13.0c -9.0¢  -6.00  ~1.0C xs.c: 7.0 e 5. ©13.00 -9.00  <6.02  -1.00 3.0 7.0 1.0 16.20
Fig. 38 ~ Wall Skin Friction Fig. 39 - Wall Pressure

8 8 ‘
- - 1]

o0 ©
- oo
g e o®
© o 0.
1 o
-]

R ] b

[} © 14

1 ] S )
g > °
S 3 =

1 [}
K] £ °
(-] © o

p e
e, /. 8}
©i3.00 -8.00 .00 100 3.00 7.0 1.0 16.%0 .0 0.20 0.0 0.60 0.0 1.0

X (740 T i

41 - Mesh Point Distribution

o
}_l
6a
I
o
|
X
v
'_l
fo
o]
0
v
[ d
&
l—l
i
v
'y
.-I
0



CASE 1.D

T
g &
2 2
§ £
58 | g
c \ c
4 \ I
€ g
s | ¢
3 &)
(=] (-]
3 g
13,00 -s.oc -1.00 Si3.00  -s.oo
Fig. 42 - Wall Skin Friction Fig.

%1072

CH

i
|

4
}
g:
5
e
i

-5.00

>(

7.

Fig. 44 - Wall Heat Flux

-5.0C -1.0C a.es 7.0

43 - Wall Pressure

1.

oc




