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1. INTRODUCTION

Aircraft development costs have escalated sharply during
the last 20 years. Greater emphasis must be placed on explo-
ring new configuration concepts aimed at expanding airplane
performance capabilities by analytical and experimental tech-
niques. Thex,present state of the art in aerodynamic analysis
and design requifes extensive configuration iterations.
Repeated wind tunnel testing is costly, time consuming, and
relies heavily on inhouse -experiences and expertise. Signi-
ficant advamees have been achieved in the last ten years in
aerodyriamic computational methods which allow the numerical
simulation of flows around two- and three-dimensional confi-
gurations and components. They provide valuable guides to
those_seeking understanding of specific problems or those
pursuing innovative design concepts.

It is the purpose of this chapter to discuss some nume-
rical techniques for solving hyperbolic systems of partial
differential equations which govern flows which can be solved
by time or space marching. Solution methods for transonic po-
tential flow which have been proved to be very useful, but are
limited in application, have been reviewed in previous chap-
ters. Here, the discussion is limited to solutions of the
Euler equations, although the algorithms which are presented
have been successfully applied also to the Navier Stokes
equations [1].

To solve problems numerically, one must make several
decisions. These include the following: (1) the selection of
an appropriate form of the equations which describe the flow
under consideration (2) an algorithm to calculate the numeri-
cal solution of the equations at interior points of the domain
(3) a technique to properly approximate boundary conditions
along the boundaries of the domain; and (4) the treatment of
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shockwave or contact discontinuities which may occur within
the domain. It is shown that a new combination of a finite
volume discretization in conjunction with carefully designed
dissipative terms, and Runge Kutta time stepping schemes,
vields an effective method for solving the Euler equations in
arbitrary geometric domains. Different types of acceleration
techniques are proposed to improve the convergence speed of
explicit time dependent methods. A large set of computational
results shows the broad application of these methods.

2. GOVERNING SET OF DIFFERENTIAL EQUATIONS
Within the scope of this study we consider only flows

governed by first-order hyperbolic systems of partial diffe-
rential equations. Such a system can be written in general

form in an N-dimensional space X = (xl, xz, ceer Ry g t) as
N-1 oF :
W (€, 372 *+ Ej) = © Ty
j=1 J

where U and E, are vectors of dimension M; F_ is a vector of
dimension M.,Jand C. is an M x M, matrix. Thg coordinate t is
the coordindte diredtion in which the solution is advanced.””
t can be either a time or space coordinate. U is the solution
or state vector of the system. Given the initial conditiens at
t = t_, we seek to solve for U (x,, X,,.0.-, X , t) for

t > t°. In general, C., F., E, are fufictions of the space X
and the elements of v’ Legting I represent the identity matrix
and ¢ the null vector (vector whose elements are all zero) we
say that Eg. (1) is written in strong conservatiofl form (or
divergence law form) if C, = I and E, = ¢ for all j, o¥ weak
conservation form if C, =71 for all jj. Otherwise, Eq. (1) is
said to be in nonconsefvation form. In the following sections
only solution methods for the equations in conservation form
will be discussed.

2.1 Time-Dependent Euler Equations

The time-dependent Navier Stokes eguations reduce to the
Euler equations for inviscid flow if the stress tensor T only
contains a normal stress as the pressure p and if the heat
conductivity is zero. The system of time-dependent eguations
written in strong conservation form for mass, momentum, and
energy in a Cartesian coordinate system of three spatial di-
mensions (x,y,2z) is

oF 9F 3F
3y 1 2 3

where N has been-taken as 4 and
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The marching coordinate is the time t. The velocities in
the coordinate directions x, y, 2z are represented by u, v, w
and the pressure p is obtained from an equation of state as a
function of density p and specific internal energy e

u? + v2 + w?

5 (4)

E
e=—-—
p

where E is the total energy. For an ideal gas, where the ra-
tio of the specific heats y is a constant, the equation of
"state is

p = {y-1) pe ) (5)

Other examples for real gases are shown in Ref. 2.

2.2 Transformed Equations

It is often convenient for both analytical and/or compu-
tational purposes to transform a system of equations into a
new coordinate system more natural to the fluid domain. One
simple example is the transformation intc a cylindrical coor-
dinate system (see, e.g. Kutler at al in Ref. 3). For more
general curvilinear coordinate systems these transformations
become very complex. However, as shown by Viviand in Ref. 4,
this will not change the conservation properties of the gover-
ning equations. Since we will only discuss finite volume me-
thods in the present paper, no coordinate transformation is
needed, as is shown in the following section.

2.3 Finite Volume Approach

The form we now consider is the integral form of a system
of hyperbolic equations which can be expressed in conservation
form. It is a useful form for both physical and computational
purposes. If the hyperbolic system is expressed as

>
> N-1 3F.
-a—p--r 1 —L=0 (6)
ot . ox
j=1 73,
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N-1
s s = > - -
then by defining the flux-tensor H= I F. i,, where lj are
=1
unit vectors in the x. coordinate directions, we can rewrite
the system as J

£ +vE=0 - (N

Integrating this equation within a volume V enclosed by the
surface S yields

mu

(8)

m}o:

TEA

for volumes or meshes fixed in time where the direction of ds
is that of the outer normal to the surface S. For meshes moving
in time Eg. (8) has to be written as

8 f DBav+[] FR-f T-Ta-=o0 (9)
v(t) s(t) s(t)
with A as local velocity of ds (mesh velocity).

Eg. (8) and (9) express the total flux balance in aﬂgpﬁ—
trol volume. They describe the natural physical model of con-
servation of mass, momentum and energy within a discrete vo-
Jume.

2.4 Relation at Discontinuities

Following the analysis of Lax [5], a soluticn of a system
of differential equations in a domain is called genuine if it
and its first partial derivatives are continuous everywhere in
the domain D. A weak solution is also a solution of the system
but is genuine only in subdomains of D. The subdomains are se-
parated by surfaces in D across which the solution is allowed
to be discontinuous. Relations governing jumps in the values
of the dependent variables across discontinuities may be ob-
tained for systems in conservation form by integrating the sy-
stem about a small veclume containing a portion of the surface.
For example, a surface of slope tan ¢ in the (x P Xy ) plane is
shown in Fig. 1.
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Fig. 1: Two subdomains separated by a surface at
- which the solution Fu is discontinuous.

For simplicity, the surface is assumed to be orthogonal
to all the other coordinate directions. Using the conservation
equations from the previous chapter we obtain with the areas
of the surfaces S, and §, » O:

3 4

> > +> > > > > >
F i -ns + F. 1.'ns + FOL '1a-ns + F. 'l.'ns =0
R T | I 2 2 Jp 3 5
or

-1 -

(Fa _Fa ) (tan¢) =F, -~-F,

2 % I I

The above jump relation is commonly known as the Rankidgf
Hugoniot equation. If x_ = t, then (tan¢) 1 =y, the speed of
the discontinuity (shocﬁ wave speed), and the relation dgter-
mines the jump across a moving discontinuity. If x is a spa—‘,=
tial coordinate, the relation specifies the jump across a ;
steady oblique discontinuity.

3. NUMERICAL DISCRETISATION

The discretization procedure which we propose for Eg. (8)
or (9) follows the method of lines in decoupling the approxi-
mation of the spatial and time dependent terms. The comput-
ational domain is divided into quadrilateral cells for two-
dimensional flows or hexahedrons for three-dimensional flows.
For simplicity the spatial discretization will be dicussed
for two-dimensional flows only.

A system or ordinary differential equations is obtained
by applying Eq. (8) or (9) to each cell separately. The result-
ing equations can then be solved by several alternative time
Stepping schemes. The present paper will only discuss central
Approximations and Runge-Kutta-type stepping schemes since
they proved to be extremely effective in practice. The most
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widely used schemes are those of MacCormack, e.g. see Ref. [6[

or Lax-Wendrcff [7]..Detailed descriptions of these schemes
can be found in the cited literature.

3.1 Central Space Approximations

The physical space is discretised into a mesh of quadri-
lateral cells as sketched in Fig. 2

a) CELL CENTRED SCHEME b) NODAL POINT SCHEME
1.301 -1, 31 % »#
x S ( ¥
-1 1 e

o __.—-ah\x
e -1y M

[

{.9-1

& Flowproperty U
Fig. 2: Pinite Volume Schemes x Faxgmntiy  H U -8

Let the values of the quantities associated with each
cell be denoted by i, j. Fig. 2a represents a cell-centered
scheme where these can be regarded as values at the cell cen-
ter, or

[ fuavol
U, = (10)
+J ff dvol
For each cell Eg. (8) can be expressed as
& wv)+Q-u=o0 (11)
at B

where V is the cell area, and the operator Q represents an
approximation to the boundary integral defined by the second
integral in Egq. (8). This is defined as follows. Let Ax, and
Ay, be the movements of x and y along side k of the celf, with
appropriate signs. Then the flux balance for, say, the x-mo-
mentum component, is represented as -

4

a2 + - . - ’
s (gu) kfl ijguk+Ayk.pk) =0 (12)
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Where Qk is the flux velocity

Q = Aykuk—Axkvk (13)

and the sum is over the four sides of the cell. Each quantity
such as p. or (pu) is evaluated as the average of the values
in thé ce%ls on the two sides of the face. For example

1
), = 5{(1;>u)i,j + (pu)y 3)} (14)

The scheme reduces to a central difference scheme on a Car-
tesian grid, and is second order accurate provided that the
mesh function is smooth enough.

A similar nodal point scheme can be constructed as shown
in Fig. 26. Now all U are defined in the nodal points i,j, it-
self and the first integral in Eq. (8) is approximated as

d d 1
ol = — {— +] +] . Vv 15
at J vavel = g {3 Oy %05y 5*05 5%, 5200 © VE U9

A

Consequently, the quantities such as Py pu, are now evalua-
ted as the averages

1 _ -
(pu), = 5'{(pu)i’j_1 + (pU)i,j} 418)

3.2 Dissipative Terms

To suppress the tendency for odd and even point decoup-
ling, and to prevent the appearance of wiggles in region con-
taining severe pressure gradients in the neighborhood of shock
waves or stagnation points, it proves necessary to augment the
finite volume scheme by the addition of artificial dissipative
terms. Therefore equation (11) is replaced by the equation

d
3o (V) + QU -DU =0 a7

where Q is the spatial discretization operatcr defined by
equations (12-14), and D is a dissipative operator. Extensive
numerical experiments have established that an effective form
for DW is a blend of second and fourth differences with coef-
ficients which depend either on the local gradient of the
8tatic or total pressure or else on the local entropy produc-
tion rate.

-7
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The construction of the dissipative terms for each of the,
four dependent variables is similar. For the density equation -

Dp = Dxp + Dyp (18)

where D p and D p are corresponding contributions for the two
coordinate diregtions, written in conservation form

Do =14 1/2,5 " %i1/2,5) (19)

Dp={a }

v i,3+1/2 ° di,j-1/2

The terms on the right all have a similar form:
for example

(2)

€i+1/2,3 41,575,

: Vi+1/2 3 j
89,12, " ae ! (20)
! (4)
) | TFiv1/2,3 ©541,573P141,57°5,97P1-1, 5
where V is the cell volume, and the coefficients 5(2) and
5(4) are adapted to the flow. Define
v Ty T B E 1)
i, =7
s TFi+1'jT+ 2 TFi’j{ + [Fi_l';l

where F can be either static pressure p, total pressure p.,
or a measure for entropy. ot

Then

(2) - (2)

€ 1+1/2,5 =k max (v

i+1,3" Vi,5 (22)

and

s(4) 4) 2
i+1/2,3

= max {0, {(k ~ e( )i+1/2,j)} (23)
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where typical values of the constants « and x are

(2 _ 1 4) _ 1 _ (2 _
K =7 K = 258 for F=p or x = 2.5 for F

based on entropy-

The dissipative terms for the remaining equations are
obtained by substituting pu, pv and E for p in these formu-
las.

The scaling V/At in equation (19) conforms to the inclu-
sion of the cell area V in the dependent variables of equa-
tion (11). Since equation (19) contains undivided differences,

it follows that if €2 = 0(Ax?) and ¢ ?) = 0(ax"), then the

added terms are of order Ax3. This will be the case in a re-

gion where the flow is smooth. Near a shock wave s<2) = 0O (Ax),
and the scheme behaves locally like a first order accurate
scheme.

It has been found that in smooth regions of the flow, the
scheme is not sufficiently dissipative unless the fourth dif-
ferences gye included, with the result that calculations will
generally not converge to a completely steady state. Instead,
after they have reached an almost steady state, oscillations
of very low amplitude continue indefinitely (with
(90,

F9p 3
max;(at’local ~ 10°, for example).

Near shock waves it has been found that the fourth diffe~-
sxences tend to induce overshoots, and therefore they are swit-—

2) from K(4)

ched off by subtracting € in equation (22).
Numerous numerical experiments have proven that this type
of dissipation produce insignificantly small total pressure

losses or entropy changes.

Special attention has to be given to the formulation of
the dissipative terms near boundaries. Improper treatment will
lead to distortions of the flux balances which will not conser-
ve circulation, for example, and may result in the wrong lift.

3.3 Time Stepping Schemes

Stable time stepping methods for equation (10) can be
pPatterned on standard schemes for ordinary differential equa-
tions. Multistage two level schemes of the Runge Kutta type
have the advantage that they do not require any special start-
ing procedure, in contrast to leap frog and Adams Bashforth
methods, for example. The extra stages can be used either
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(1) +to improve accurscy, OF

(2) to extend the stability region. )
An advantage of this approach is that the properties of

these schemes have been widely investigated, and are readily

available in textbooks on ordinary differential equations.

Consider a linear system of eguations

au

At + AU = O (2%)

Suppose that A can be expressed as A = TAT‘x where T is the
metrix of the eigenvectors of A, and A is diagonal. Then set-
ting v = v-1U yields separate eguations

d _ v
at kT AR T O (25)

for each dependent variable vy. The stability region is that
region of the complex plane containing values of AAt for which
the scheme is stable. Consider now the model problem

—+ac-+ekx—=0

3u du 32u
_wort ax 2 . (26)

3x
on-an uniform mesh with interval Ax, with a dissipative term

sof order Ax. This can be reduced to & system of ordinary daif-
ferential equations by introducing central-difference appro-

ximations for gﬂ'and éi— :
9x ax2
dui a €
Tt ax Bpa ) T Gga By =0 D

Taking the Fourier transform in space

__l__ iwx 8 7
8= {mue dx | (28)
this becomes
dﬁ A—
 t A =0 (29)
where
21 s . _ .2 Wwhx
M= ‘1 a sin wbx - be sin —5—) (30)

- 10 -
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It can be seen that the maximum allowable value of the
imaginary part of AAt determines the maximum value of the

Courant number a {%%} for which the calculation will be stable,

while the addition of the dissipative term shifts the region
of interest to the .left of the imaginary axis.

{p)

i
-6 5 -4 -3 -2 -1 O Re{z).
(L) non-standard schemes of order 4,5,6

(Lawson, 1966)

(a) standard schemes of order 1,2,3,4
¥, (Stetter, 1973

Fig. 3 —S?ability regions for various Runge-Kutta time-stepping schemes

In the presenf case, if the grid is held fixed in time so
thqﬁ”fhe cell area V is constant, the system of equations (11)
has the form

Ed

au _
E'E + PU =0 (31)

where if Q is the discretization operator defined in Section
3.1, and D is the dissipative operator defined in Section 3.2,
the nonlinear operator P is defined as

PU = (QU - DU) (32)

<j=

Our investigations so far have concentrated on time step-
ping schemes with three to six stages. Since three stage
schemes are discussed by A. Rizzi in a following chapter of
the present book, we limit ourselves to the four stage scheme
which we have found to be the most efficient one so far. Va-
riations of the three stage scheme have been proposed by Gary
[8], stetter [9], and Graves and Johnson [10]. It can be re-
garded as a Crank Nicolson scheme with a fixed point iteration

- 11 -
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to determine the solution at time level n+1, and the itera-
tions terminated after the third iteration. It is second order -
accurate in time.

The scheme which has been extensively investigated is the
clessical fourth order Runge Kutta scheme, defined as follows:
At time level n set

ul® o ym
o) 2 (0) _ st py(0)
o) - ) _ st (1)
2 (33)
o3 2 (0) _ 4y py(@
o) 2 y0) 88 (50 | opy(1) L ppy(2) , py(3))
U_n+1 - U(bf)

Variations can be obtained by using different coefficients in
the stages.

These schemes are fourth order accurate in time, and for the
model problem (25) with € = O, they are stable for Courant
numbers

2% <2 /2

Its stability region, which is displayed in Fig. 3 taken
from page 176 of Ref. [9], for example, also extends well to
the left of the imaginary axis, allowing latitude in the in-
troduction of dissipative terms.

A1l these schemes have the property that if PUZ = O then’

U(1) = U(O), and so on, so that Un+1 =u" end the steady
state solution is

PU=O

independent of the time step At. This allows a variable time
step determined by the bound on the local Courant number to
be used to accelerate convergence to a steady state without
altering the steady state.

The expense of re—evaluating the dissipative terms at
every stage of these schemes is substantial. One method of
avoiding this is to introduce the dissipative terms in a se-
parate fractional step after the last stage of the Runge Kutta

- 12 -
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scheme. Then equation (32) is replaced by

1
7w (34)

PU =.
and the fourth order Runge Kutta scheme defined by equation
(33), for example, is modified by setting

gt =yt 4 Lt (W) (35)

This method has the advantage that the stability proper-
ties for the two fractional steps are independent, so that
the scheme will be stable if each fractional step is stable.
It has the disadvantage that the steady state solution is no
longer independent of the time step.

An alternative approach which has proved successful in
practlce, is to freeze the dissipative terms at their values
in the first stage. Thus the fourth order Runge Kutta scheme
is modified so that it has the form

U(O) TLUD

u(1) o (O g_;chU(o) + At ,(0)

. oV

(2) _ .(0) _ bt A (T) . ot _.(0)
u K oy W Tty U (36)
U(3)};= u(0) _43 QU(2) . é—tDU(O)
R P L N I B E S P
) )

The operators Q and D require roughly equal amounts of
computation. Assigning to each 1 unit of work, and assuming
that dissipative terms would be required in the leap freog or
Mac Cormack schemes, both of which have maximum time steps
bounded by a Courant number of one, one obtains the follow-
ing table for the relative efficiency of the schemes:

_13_
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Scheme Evalustions Evaluations Maximum Efficiency

of QU of DU Work Courant =time step
Number work

Leap frog 1 1 2 1 1/2

MacCormack 2 1 3 1 1/3

3 stage 3 3 6 2 1/3

4 stage L N 8 2.8 .35

4 stage L 1 5 2.8 .56

(frozen DU)

3.4 Boundary Conditions

Improper treatment of the boundary conditions can lead
to serious errors and perhaps instability. In order to treat
the flow exterior to a profile one must introduce an arti-
ficial outer boundary to produce a bounded domain. If the flow
is subsonic at infinity there will be three incoming charac-
teristics where there is inflow across the boundary, and one
ocutgoing characteristic, corresponding to the possibility of
escaping acoustic waves. Where there is outflow, on the other
$hand, there will be three outgoing characteristics and one in-
coming characteristic. According to the theory of Kreiss [11],
three conditions may therefore be specified at inflow, and one
st outflow, while the remaining conditions are determined by
sthe solution of the differential equation. It is not correct
to specify free streem conditions at the outer boundary.

For the formulation of the boundary conditioms it is
convenient to assume a locel transformation to coordinates X
and Y such that the boundary coincides with a line ¥ = con-
stant. Using subscripts X and Y to denote derivatives, the

Jacobian

h = X,¥y = Xy (37)

corresponds to the cell area of the finite volume scheme.
Introduce the transformed flux vectors

G, f YeFxyFos Gy = Xy FoyyFy - (38)

where Fy and Fp are defined by Eq. (2). In differential form
Eq. {2) then becomes

) 3G, 26,
S?(hU)+-33(—+—a-Y—=o (39)

- 14 -
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a. Far Field Conditions

Stable boundary conditions have been given by Gottlieb
and Turkel [12] and Gustafsson and Oliger [13] for a variety
of difference scheme. The treatment of the outer boundary con-
dition adopted here follows similar lines. The equations are
linearized about values at the end of the previous time step,
and the cheracteristic variables corresponding to outgoing
characteristics are then determined by extrapolation from the
interior, while the remaining boundary conditions are speci-
fied in a manner consistent with the conditions imposed by
the free stream. Let

A=—t, B=—2 o (%0)

Since the boundary is & line Y = constant, the eigen-
values of B determine the incoming and outgoing characteri-
stics. If q, and g are the velocity components normal and
tengential to the boundary, and c¢ is the speed of sound,
these eigenvalues are q,, Q¢» 9,7C» and q,+tc. Let values at
the end of the previous step be denoted by the subscript o,
and let To be the eigenvector matrix of Bo. Then By is reduced
to d¥agonal form by the transformation AO = T;1 BOTO, and set-

ting v = T;‘U the linearized equation assumes the form

B -1 v v _
v (hv) + To AOTO 5t Ao 2y 0] . (k1)

The chagacteristic varisbles are the components of v. These
BTe PTC Py Qs PTPCA &nd p°+pocoqn.

Let values extrapolated from the interior and free stream
values be denoted by the subscripts e ‘and «. Then at the in-

flow boundary we set
20 =2p -c¢2 (Lea)

q = citm (42b)

P~ Pty = Pa T Pofoly (hae)

P*PColy™Pe ¥ pocoqne (k24)
yielding

-15_
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p = %'(pe +p,* e, (o, ~q )) (43)
e @
PP,
QY=Y ¥ p_c
o Q0

The density can be determined from (U2a). For steady
state calculations it can alternatively be determined by spe~
cifying that the total enthalpy H has its free stream value.

At the outflow boundary one condition should be speci-

fied. If the flow i; a parallel stream then %E-= O, so for an
open domaln y

p=p, )

A non reflecting boundary condition which would eliminate in-
coming waves is

£ ) o

Thid does not assure (U4L). Following Rudy and Strikwerda
[14), Eq. (44) and (L45) are therefore combined as

2 (p-p e a,) + alo-p,) = o (46)

where a typical value of the parameter o is 1/8. The velocity
components and energy are extrapolated from the interior.

A very simple set of quite efficient boundary conditions
can be found by using the flux variasbles plus the characteri-
stics to decide upon the number of conditions to be specified.
For flows entering the fluid domain at a boundary only one
varisble can be extrapolated from inside, e.g. demnsity. If to-
tal enthalpy, flow direction, end total pressure are prescri-
bed at the boundary, pu, pv, and p can be computed. For flows
leaving the fluid domain a set of exit conditions is derived
by prescribing only static pressure p, extrapolating pu, pv,
E, and computing p from the energy equation.

For turbomachinery cascades only periodicity-conditions
have to be applied rather than the external far field condi-

tions.

For cases with detached bow shocks it can be desirable to
use a moving mesh aligned with the bow shock for better ac-

- 16 ~
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curacy. All the relations discussed in the previous chapter
apply also for such cases if Eq. (9) is discretized. Only the
mesh velocity based on the moving bow shock is required as
additional information. Basically, two solution processes are
of prectical use:

- characteristic relations; for details see Ref.{16] and [17]
for two-dimensional flows and Ref.[18] for three space
dimensions

- extrapolastion of the pressure from inside the domain to
the rearward facing side of the shock and application of
~the classical shock relations as discussed in section 2.4.

Comparisons of both approaches in Ref. 19 indicate that
the second approach especially in three space dimensions is
superior due to its much easier and faster coding for nearly
the same accuracy.

Various other boundary conditions designed to reduce
reflections from the outer boundary have been proposed by se-
veral authors [19], [20], but it seems that although it would
be wdrth while to test some more alternatives, the proper
treatment of the dissipative terms described in section 3.2 at
the outer boundaries is much more important, especially for
1ifting flows. The wiolation of flux balance at the boundaries
can ceuse serious circulation losses.

-
P

f Since the full equations of motion do not have any built-
in mechanism to comserve circulation as for instance full po-
_tential methods; the far field has to be placed either far
“enough away to permit the flow direction upstream to be undi-
sturbed, or a vortex term has to be added at the boundary. For
three-dimensional flows with longitudinal vortices the down-
stream pressure can not be set constant any more but must al-
low for variation in the cross flow plane based on the velocity
distribution.

b. Body Boundary Conditions

Consider first the boundary condition at the solid wall.

Fig. 4: Mesh Arrangement at Body Boundary
-17_
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Across side 1 of cell A in the sketch there is no convec-'t

ted flux since

XV = yyu =0 (b7) -

But there are contributions Ayp and Axp to the momentum equé¥
tions, which require an estimate of the pressure at the wall.
Taking the time derivative of{equation (47) multiplied by p}

and substiiuting for gg-(hpu) and %;-(hpv) from equation {39)
leads to the relation given by Rizzi in Ref. [21]

(xX2+yX2) P, = (xxy*yyyy) Py *+ P (yyuxyv) (vxguy ) (48)

Thus we can estimate p, in terms of gquantities which can be
determined from the interior solution, and we can use this
value of p, to extrapolate the pressure from the adjacent cell
center to Yhe wall. This approach is .also called "normal mo-
mentum method". Further techniques are described in Ref. [22]
by MacCormack. For fine meshes, the 51mple Py = Py approach
proved to be accurate enough for engineering purposes.

E3 Numerical experiments over some time proved the wall pres-—
sure @ctimation to be the most critical one on standard meshes
for spurious entropy production. Regions of large curvature
along with high streamwise velocity gradients can experlence
#2irly large total pressure losses which form thin "viscous
layers”". These effects are not caused by the numerical dissi-
pation as described in section 3.2 but only by the p~extrapo-
lation formula. In fact, the previously described normal momen-
tum formule only gives good results if the first cells outside
the body form a very thin row of volumes. Improved results
which are less mesh dependent can be obtained by the first or-
der extrapolation formula for the beody pressure

A wide range of different formulas has been analysed numeri-
cally in Ref. [23]. The main conclusions are that all wall
pressure formulas which require differentials of the metrics
of the body need special care in mesh generation.

3.5 Kutta Conditions for Lifting Flows

In potential flow theory, Kutta conditions are needed at
all surfaces where the flow is leaving the contour, e.g. at
trailing edges, side edges. In two-dimensional lifting air-
foil flow the classical Kutta-condition says that the static
pressure at the trailing edge on upper and lower is equal and
thus the velocity vector is equal in magnitude and direction
since in isentropic flow total pressure is constant. This leads

- 18 -
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to zero velocity at the trailing edge for nonzero trailing edge
angle. For three-dimensional 1lifting flow Mangler and Smith

in Ref. [24] discusg in detail possible solutions and trailing
edge wakes behind wings. All standard methods in linear and
nonlinear compressible potential flow theory assume the wake,
and thus the lines with the jump in potential, to leave in the
visector-direction and to have constant jumps in potential
along X in spanwise constant locations. The flow around the
wing tip in general is neglected. This can cause at higher
1ift coefficients quite large deviations from the physically
correct situation.

Solutions to the full compressible Euler equations do not
need any explicit Kutta-condition to be unique, neither in
two- nor in three~dimensional flow. Numerous examples have
been presented by different authors, e.g. Ref. [25] and [26].
This might be explained on the basis of Fig. 5 and 6. Poten-—
tial flow needs for uniqueness a Kutta condition, since &ll
rear stagnation point locations are possible. As sketched in
Fig. 5, for all points g = O and static pressure p = stagna-
tion pressure p., is a solution. So this point has to be speci-~
fied by an additional condition.

Fig. 5: Trailing edge flow in isentropic potential flow

In the full compressible inviscid equations of motion
(Euler) a flow around a sharp corner or an edge with a small
radius of curvature will always cause expansion to superso-
nic flow. Compression to the point where the flow is leaving
the surface in Fig. 5 now can only happen through a shock
vhich will cause total pressure loss and a rise in entropy.

- 19 -
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Fig. 6: Trailing edge flow in compressible Euler flow

This will require a point on the surface with different
total pressure which implies different velocities for the same
static pressure, i.e. & contact discontinuity or wake. How~-
ever, this solution is not stable since there exists in sub-
sonic flow a solution without any total pressure loss, namely
the one with the flow leaving the trailing edge and thus not
having the large expansion and the shock. In transonic 1lift-
ing cases with shocks, the total pressure loss on one side is
larger than on the other which will only &llow the flow to
stagnate at the trailing edge upper surface while the veloci-~
ty¥at the training edge lower surface is finite, thus leaving
the lowgr surface smoothly as shown in Fig. 6. The wake con-
tact discontinuity in velocity and total pressure is captured
in the fully consérvative finite volume scheme. Therefore the
wakesshape is not fixed due to the mesh but will be a result
%gdependent of the mesh chosen.

s

Different two-dimensional numerical experiments on airfoils
with subcritical flow proved that this phenomenon does not de-
pend on the initial solution. Even with a fully converged
potential flow solution forced to have C. = O as starting so-
lution the Euler time stepping method on the same mesh gave
the C;, # O converged solution identical to the one starting
from undisturbed flow. The same experiments showed no basic in-
fluence of the dissipative terms added. O or C meshes do not
change the results. Flow leaving the trailing edge smoothly
seems to be the only stable Euler solution without having some-
thing different enforced.

The same mechanisms applies to sharp leading or side ed-
ges or when the radius of curvature is small combined with
locally supersonic flow.

L, CONVERGENCE ACCELERATION

Different devices can be used to accelerate the conver-
gence of the solution to a steady state.

_20_
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The techniques presented here have the advantage that they

allow a high degree of vectorization on present day vector
computers.

In order to modify the speed of wave propagation in ex-
plicit schemes without altering the steady state one can mul-
tiply the terms containing the space derivatives by a matrix M
to produce the equation

(50)

If we restrict M to be of the form AI, where A is a sca-
lar multiplier, then one can choose A so that the equations are
advanced at the maximum Courant number permitted by the diffe-
rence scheme at every point in the domain. This is equivalent
to using different time steps at different points. Since the
present time stepping schemes are so constructed that the
steady state is independent of the time step, consequently the
time step can be altered from one point to the next without
altering the steady state. This simple technique gives at least
an order of magnitude convergence acceleration, in general,
compared with the classical time accurate minimum time step-
ping: This technique is standard in all our codes unless time
accuracy?® s required.

The solutions < of the Euler equations have constant enthal-
py im-the steady state. If our interest is only in the steady
state we could assert that H will always be H_ even in the
transient phase and then solve the non-physical system of
equation by H = H_. Physically this would correspond to a flow
with local energy supply to freeze H. This approach has been
“used, e.g. in Ref. [25]. Its main advantage is the reduction
in storage requirement and computational work. An alternative
which we followed extensively is to use the difference in total
enthalpy in the transient state as a driving mechanism to ac-
celerate convergence. Details can be found in Ref. [30]. This
damping technique is very similar to the turning of the un-
steady potential eguation into a kind of telegraph equation
which has damped waves as its fundamental solutions. Fig. 7b
portrays the. convergence history for the NACA 0012 with
enthalpy damping and local time stepping. Direct comparison of
Fig. 7a with Fig. 7b gives an impression of the convergence
acceleration.
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Another approach is to increase the permissible time :
stef by using an implicit scheme. Implicit apprcximate facto- .
rization methods have been widely used. These are described
,n detail by R.M.Beam [27]. MacCormack has also developed a
new implicit scheme by adding implicit stages to his earlier
explicit scheme [28]. This allows the use of very longer
time steps, and has proved quite effective for Navier
Stokes calculations. -

An attractive alternative approach is to drive an expli-
cit scheme by averaged residuals. Consider the model problem

U, + al_ + Vea*Ax3 U =0 (51)
t X KXXK

With A = aAt/Ax the residual is
R, = & {(Ui+1—Ui

) = V(U -0, 46U —dU,

~1

119 o)} K?ZX,

Now replace Ri by the averaged residual . . I

1
(1+e5§> R, {53)

Ri = eRi_1 + (1-2¢) Ri + eRi+

]



. . - 393
in the time stepping scheme. A four stage scheme with averag-
ing is as follows marching from time level n to n+1

U(G) = °

AL N P R
ul®) 2 gl ey
u{3) 2 4o _ (at/2)5(2)
s8) 2 (o) _ e 53

ALY

(54)

Assuming an infinite interval and taklng the Fourier transform
this scheme has the amplification factor

g=1-1¢+z2/2~13/6+ g2k (55)
with the Fourier symbol

%2,z =2 {i sint + Lv(1-cos£)?} {1-2e(1-cos&)} (56)
-
The second factor represents the smoothing due to the
ave;gging, and allows A to be increased.

-
-

2 To remove the restriction on the smoothing constant one
can perform residual averaging implicitly

€5 2} R, =
(1 s&x ) Ri Ri
or
-eR; _, + (1-2¢) R, - eR. . =R,
On an infinite interval this has the solution

= (1-r)/(1+r) {R; + r(R;_+R; ) + r2(R;_ 4R, ) + ...}

. (58)

where € = r/(1-r)? , r <1 (59)
Now one finds it sufficient for stability that

e > 1/h {{(xa/2%)2 - 1} ' (60)
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where A¥ is the Courant number limit for the unsmoothed schemeﬁ
In terms of the decay parameter r the stability condition is -/

(1+r) /(1-x) > A/A* (61)

On the stability limit this is equivalent to summing the re-
siduals along a line with the original time step

= 2
Ry = Ry + xR, (4R, ) + xR, 4R, ) + ... (62)
Since
1 + r cost + r2cos 26 + ... = (l-r cosf)/{(1-2r cosf+r?)
(63)

the Fourier transform in the absence of dissipation is

g=1-7+172/2-273/6 + /24 - (64)
where
-2 i
g::.‘_(_l_._l.-_lj&.n_g__' l;lix (65)

1-2r cosg+r?

*ng. g shows results for the NACA 0012 section at M = 0.80,
a = Qy for a 128x32 O-mesh.with implicit residual averaging
at CFL = 8.0.

The comparison with Fig. 7 clearly shows the improvements
»in convergence speed. Both flow field resutls are identical:

g, 4-stage explicit )
CrL = 8.0 )
¢| imnlicit averaging 3!
' [\\‘ &
H k ' He
5 '
g i
4 &
- 2
H !
:J :
: n
o o - -~ - =) o ¥
Oves

Fig. 8: Convergence histories with implicit residual averaging

\
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The final acceleration technique is the multiple grid
technique which has been demonstrated already in a previous
chapter to be a very powerful tool for quasi-linear second or-
der differential equations. Brandt [31] proposed a multi-grid
solver for the steady Euler and Navier-Stokes equations, while
Ni [32] presented a multiple grid technique based on a one step
distribution formula scheme for the Euler equations. We have
tried several multigrid techniques since late 1980 in combina-
tion with a cell-center as well as nodal point time stepping
scheme and with a Ni-type one. step scheme [33]. First results
on the multistage time stepping scheme with multigrid accele-
ration have been presented in Ref. [34]. This procedure can be
described as follows:

The basic idea is to use the coarser grids to propagate
the fine grid corrections properly and rapidly through out the
field, thus improving convergence rate to steady state while
maintaining low truncation errors by using the fine grid dis-
cretisation.

The changes AU in the coarse grid, obtained by removing
every other line from the fine grid, are determined by

au.. = 1% &U , (66)

Where Ih is an operator which transfers to each control vo-
lume of“the coarse grid the correction GUH of the fine grid
using a distribution formula.
SO
4 After computing the corrections 6H, on all coarse grid
. points the flow properties at the finest grid are updated by

. h 2h
£ U =U + Ih éuzh

h . R . . .
where 12 is a linear interpolation operator which interpola-
tes the coarse grid corrections to give the corrections at
each fine grid point of the finest mesh. '

Let P be the space difference operator. The subscripts h,
2h denote fine and coarse meshes. The initial value and the
forcing term for the coarse mesh are defined by

;: , P, =2 p v -p, ulO

2n = %n Pn Yh " Pon U (68)

_ n
Ush =90

where Qgh and 6gh are collection operators. During the time
Stepping process we advance on the coarse mesh by
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©)

1y _ () _
Upy = Upy = @y 8ty (Pop Uy *Fgy)
(2 _ . (O {1)
Ugp = Upy = 8p Aty By Ugy” + Fy)
(69)
NE ) (2)
Upp = Ugy =03 8ty By Up ' *+Fy)
(4) _ .. (© (3)
Ush = VUon = %o Py Upy *+Fy)
Then Uh on the fine mesh is updated by

n+l _ 2h (4) (0)
U, =0y + R oyt - vyt : (70)

2h ; .
where Rh is an interpolation operator.

The corresponding multi-grid sequence is shown in Fig. 9.

- SAW TOOTH CYCLE
1282 R <:2\ €
’ E = Euler solver

c step

C = Collection
step

Sax18

I = Interpolation
step

Fig. 9: Multi-grid cycle for multigrid Euler time stepping
(METS) scheme
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On Fig. 10 the convergence history is depicted for the
NACA 0Cl2 test case as before.

] r
') | S +3
< .
s
H ol
! : :
g
-
Ly g
1) :
') :
13 Cycie
: :
w E) -« - [ w0 o '

10: Convergence history for METS-scheme CFL = 2.2

the improvement in convergence speed is quite impressive
ired with the results shown in Fig. 7 and Fig. 8. Further
>les and pressure distributions are shown in section 6.

MESF GENERATION

The numerical’ schemes presented in this chapter can be

for the computation of complete three-dimensional aircraft
fields. However, the problems of geometry discretiation
1esh generation presently limit the complexity of the con-
-ations which can be treated. Mesh generation is a diffi-
and rather lenghty problem, and will not be discussed

in detail. Ref. 35-39 give an overview over the present

:» of the art.

The accuracy and physical relevance of a numerical solu-
depends on the capability of the mesh to resolve both,
jeometry and the details of the flow. Large surface cur-
:e and rapid variations of the flow variables require
meshes. Rather than using very fine meshes everywhere,
:ive grids and interactive mesh generation under visual
:ol have to be developed.

RESULTS

Large number of two- and three-dimensional computations
been performed, e.g. see Ref. [1], [25], [26], [40] -
Some typical results are shown to demonstrate the ac-

1y and convergence of the basic numerical algorithm as
as results to show the wide range of possible

.cations.
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26.1 Two-Dimensional Flows

Two typical results are presented for the NACA 0012 air-
foil section. Both have been obtained on a 320x64 O-mesh. Fig.
11 shows the stgtic pressure distribution and the iso-Mach 1li-
nes for M = 0,8, a = 1.25"7,

L X3

N

u.':]
z -
el
°r.‘ b4
. 4
A 3
4 fs
8l f
o
1
&1
1 o |
i X/
5_] 00 , 0,20 QG.s¢  0.80 3.80  1.30 \ . r
L .
Fig. 11:, Results for the NACA 0012, M = 0,80, a = 1.25°

s4Fo prove the accuracy of the present solution, the total
prgssure losses in the airfoil nose region are plotted on Fig.
1% These spurious losses based on the numerical scheme and
the boundary conditions are less than a tenth of a percent.

2~ 1S0-P1/PIINF (DELTA =0.0001)
wwx VALUES OF CURYE PARAMETEA =1000QRP1/PIINF won

X/C
©.00 0,20 0,40 0,50 0,80 1
i i A . Ao L 3 e | R

1.-P1/PLINF VS, x/C CN NRCR 0012

Fig. 12: Total pressure losges in the nose region NACA 0012,
M= 0.8, a=1.25
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To demonstrate the subsonic as well as supersonic capabi-
lities of the present approach, on Fig. 13 corresponding re-=
sults are presented for the NACA 0012 at M = 1.2, a = 7 o

1 | ¥ ]/
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[}
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Fig.™13: Results for the NACA 0012, M = 1.20, a = 7.0°

The detached bow shock as well as the oblique shock at the
upper surface trailing edge are nicely resolved.
S

6.%5 Three-Dimensional Flow

The variety of configurations analysed so far ranges from
secars to transport and fighter wing-body combinations, from
transport aircraft nacelles or complete turbo-propulsion-simu-
lators to fighter air intakes and from propeller thrust and
swirl simulations to rocket plume distortions from fired mis-
siles on air intakes. We limit ourselves here to two rather
attractive appllcatlons, namely leading edge vortex flows and

air intake flow.




400

COMPLEX WAKE FLOW AMALYIS AS BULER SCLUTION
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Fig. 14: Leading edge vortex flow analysis, Ref. [42]

New generations of fighter aircraft should have excellent
transonic manoeuver capabilities and also be capable of sus-
tained supersonic cruise and manoeuver. This requires excellent
tools for wing leading and trailing edge design including flaps

o control vortex flow and vortex burst. Fig. 14 shows some
’ fesu&gs which demonstrate the capabilities of Euler solutions.

Another interesting task is the analysis of missile plume
effects during missile launch on the air intake of the carrier
.plane. This is necessary to predict possible flow distortion
in the intake duct, and especially at the compressor entrance.

Plane {1 = 1:
Compressor-

entrance plane

Arrangement of rocket and atr-
craft snalysed by computation

Plare t = 13:

Channe) section
in 1ip region

Lines of constant
Mach-pumber (Para-
meter values in 3)

Lip‘ resion

Computational mesh Computational results

[

Fig. 15: Intake distortion due to missile launch, Ref. [44]
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Fig. 15 portrayes same results of the Euler-analysis of
this very complex problem. The three-dimensional side-mounted
air-intake at the fuselage has been discretized together with
the complete curved duct. Such numerical simulations are very
helpful in preparing expensive and risky flight tests. Computer
time for such a case is less than 10 min CPU on a CRAY 1 vec-
tor computer.

7. CONCLUSIONS

Advances in solution algorithms and complex mesh genera-
tion strategies have led to effective Euler methods. These pro-
vide a very attractive and important tool in aircraft analysis
and design. The approach presented in this chapter combines
high accuracy and fast convergence. It can also be readily ex-
tended to the Navier Stckes equations. The high degree of vec-
torization is well suited for vector computers like CRAY.
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