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Abstract

A method for generating tetrahedral meshes around complete aircraft has been
developed and linked to an Euler flow solver. Details of this novel finite ele-
ment method are described and results of a transonic flow calculation for a com-
mercial aircraft are presented.
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Introduction

The emergence of a method for calculating transonic flow over a complete
aircraft has been severely hampered by the difficulty of generating a suitable
mesh. Finite difference and finite volume methods for solving flow problems
have traditionally used structured meshes based on a set of rectilinear
cells!»2,3,4,5, For airfoil sections and simple 3-D shapes, it is possible to
generate rectilinear meshes without too much difficulty. For more complicated
shapes, however, it becomes increasingly difficult to produce a structured mesh
that is aligned with all solid surfaces. The generation of a structured mesh
that wraps around the wing, pylon and engine nacelle is particularly difficult,
and there appears to be no straightforward way to achieve this goal with the

numerical and algebraic mesh generation techniques currently available.

Multiblock methods using several different blocks of rectilinear cells have
been proposed for dealing with such regions. This approach partitions the mesh
into a collection of smaller blocks so that the mesh generation problem in each
individual block is simplified. The difficulty of defining the mesh blocks, and
ensuring contiguity of mesh lines at the various interfaces is still con-

siderable.

An alternative procedure is the use of tetrahedral cells leading to an
unstructured mesh that can negotiate the complicated changes in surface shape.
Finite element methods based on triangular cells in two dimensions and tetra-
hedral cells in three dimensions have been developed by several authors®,/.
Nevertheless, generation of a tetrahedral mesh for the space around a complete
aircraft is still a formidable problem. The work of Bristeau, Glowinski,
Periaux, Perrier, Pironneau and Poirier® is therefore particularly striking and

is, to our knowledge, the first and hitherto only successful demonstration of

mesh generation for a complete aircraft.

In this paper we describe a new method8, for generating a tetrahedral mesh,
that connects an arbitrary cluster of points by a systematic procedure based on
the Delaunay criterion. This is dual to the Voronoi diagram that results from a
division of the domain into polyhedral neighborhoods, each consisting of the

subdomain of points nearer to a given mesh point that any other mesh point. The
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implementation of this method and the need to maintain the integrity of solid
surfaces presents a number of interesting problems. Although the Delaunay
triangulation and associated Voronoi diagram has been exploited by others as a
natural setting for calculations involving irregularly spaced pointsg’lo, we
believe that the use of the Delaunay criterion as an explicit method of

generating meshes for complex shapes is a new departure.

The finite element approximation is obtained by directly approximating the
integral equations for conservation of mass, momentum and energy in polyhedral
control volumes. The scheme can be regarded as a Galerkin method in which the
test function space is the set of piecewise linear tetrahedral elements. This
can be shown to be equivalent to a flux balance based on polyhedral control
volumes formed by the union of tetrahedra meeting at a common vertex. It turns
out that each face is associated with precisely two such control volumes and it
is therefore possible to reformulate the calculation in a particularly elegant
way. This novel decomposition reduces the flux evaluation to a single main loop
over the faces resulting in a substantial reduction in computational complexity.
Steady state solutions are obtained by integrating the time dependent equations
with a multistage time stepping scheme. Convergence is accelerated by the use
of locally varying time steps, residual averaging and enthalpy damping.

2. Finite Element Approximation

Let p, p, u, v, w, E and H denote the pressure, density, Cartesian velocity
components, total energy and total enthalpy. For a perfect gas

E=—F= 4 %—(u2 +vi+w?) , H=E+plp

(y-Do
where Y is the ratio of specific heats. The Euler equations for flow of a

compressible inviscid fluid can be written in integral form as

%E-fff wd + [[ F e ds=0 (1)
Q sl
for a domain § with boundary 92 and directed surface element dS. Here w repre-
sents the conserved quantity and F is the corresponding flux. For mass conser-—
vation

w=p , F=(pu, pv, pw)



For momentum conservation
w =opu, F=(pu? +p , puv, puw)
with y and z momentum quantities similarly defined, and for energy conservation

w = pE, F = (pHu, pHv, pHw)

Consider the differential form of equation (1)

W igy.ep=0
at -

Multiplying by a test function ¢ and integrating by parts over space leads to

S JJf ewda = [[fE -Vean - [[ B« ds 2)
§2 82 ase

Suppose now that we take ¢ to be the piecewise linear function with the value
unity at one node (denoted by O in Figure 1), and zero at all other nodes. Then
the last term vanishes except in the case when O is adjacent to the boundary.
Also V¢ is constant in every tetrahedron, and differs from zero only in the
tetrahedra with a common vertex at node O. Since ¢y is constant in a tetra-—

hedron it may be evaluated as
1 1 —
. =< [[] ¢ dxdydz =< ) S_ ¢
x V X v kX k
where V is the cell volume, SXk and Ek are projected area of the kth face in
the x direction and the average value of ¢ on the kth face, and the sum is taken
over the faces of the tetrahedron. For the given test function 5.= 1/3 on the
faces 012, 023, and 031 and zero on the face 123. Also the projected area S5yx on
face 123 is equal and opposite to the sum of the projected face areas of the

other three faces. Using the same procedure to evaluate ¢y and ¢,, it follows

that

V¢ = - 8/3V (3)

where S is the directed area of the face opposite vertex 0. Now treat F as
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piecewise linear and use equation (3) to evaluate the volume integral on the
right side of equation (2). Then each tetrahedron meeting at node 0 introduces a
contribution (E:- 5)/3 where E: is the average value of F in the cell. For the

cell illustrated in Figure 1, for example,

- 1
F = Z'(EO +F +F, + E3)

1 2

Summing over all cells meeting at node O leads to the total contribution

1 —

S1E 8

3 K k k
Since the control volume is closed, however,

LS =0

" k

Therefore the contribution of Fp to fk can be discarded, leading to a sum over
the faces multiplied by a constant. Thus if we write

1
=3 (£ +E + Ey)

ik 2

for the average value of F on the face opposite vertex O we find that the right-

hand side of equation (2) can be replaced by

k §k

[
b 2

L
k
On the left hand side of equation (2) we take w to be constant inside the control
volume. Since ¢ is piecewise linear, the volume average value is 5-= 1/4.

The factor 1/4 cancels on each side and equation (2) can therefore be written

d . S
(L V) w+ ) Fe8 =0 4)
dt K k K k k

Referring to Figure 2, which illustrates a two dimensional mesh, it may be seen
that with a triangular or tetrahedral mesh, each face is a common external boun—

dary to exactly two control volumes. Therefore each internal face can be asso-

ciated with a set of 5 mesh points consisting of its three corners 1, 2 and 3,
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and the vertices 4 and 5 of the two tetrahedra based on the face, as illustrated
in Figure 3. Vertices 4 and 5 are the centers of the two control volumes
influenced by the face. It is now possible to generate the approximation (4) by
presetting the flux balance at each mesh point to zero, and then performing a
single loop over the faces. For each face one first calculates the fluxes of
mass, momentum and energy across the face, and then one assigns these contribu-—
tions to the vertices 4 and 5 with positive and negative signs respectively.
Since every contribution is transferred from one control volume into another,
all quantities are perfectly conserved. Mesh points on the inner and outer
boundaries lie on the surface of their own control volumes, and the accumulation
of the flux balance in these volumes has to be correspondingly modified. At a
solid surface it is also necessary to enforce the boundary condition that there

is no convective flux through the faces contained in the surface.

3. Dissipation

Equation (4) represents a nondissipative approximation to the Euler
equations. Dissipative terms may be needed for two reasons; to eliminate the
occurrence of undamped or lightly damped nodes, and to prevent oscillations near

shock waves.

The simplest form of dissipation is to add a term generated from the dif-
ference between the value at a given node and its nearest neighbors. That is,

at node 0, we add a term
_ v (1) _
D, = % €20 (wk WO) (5)

where the sum is over the nearest neighbors, as illustrated in Figure 4. The
contribution 8(l)ko(wk—wo) is balanced by a corresponding contribution
€(l)k0(WO'Wk) at node k, with the result that the scheme remains conservative. The

coefficients g(l)ko may incorporate metric information depending on local cell
volumes and face areas, and can also be adapted to gradients of the solutiomn.
It is shown in reference 8 that the addition of properly controlled differences
along edges can be used to assure a positivity condition on the coefficients of
the semi-discrete scheme, which will prevent growth in the maximum norm and

inhibit oscillations in the solution.

Formula (5) is no better than first order accurate unless the coefficients

are proportional to the mesh spacing. A more accurate scheme is obtained by



recycling the edge differencing procedure. After first setting

- W) (6)

at every mesh point, one then sets

- _ v (2) _
Do LS By~ Ep) 7
k
An effective scheme is produced by blending formulas (5) and (7), and adapting
1
eék) to the local pressure gradient. This is accomplished by calculating

1 Px T Po
Po = L5+ p,
x| Pk * Po
at every mesh point, and then taking a(l)ok proportional to max (Pg, Py).
Formulas of this type have been found to have good shock capturing properties,

and the required sums can be efficiently assembled by loops over the edges.

4. Integration to a Steady State

The discretization procedures of Sections 2 and 3 leads to a set of coupled
ordinary differential equations, which can be written in the form

dw _

where w is the vector of the flow variables at the mesh points, and R(w) 1is the

vector of the residuals, consisting of the flux balances defined by equation
(4), together with the added dissipative terms. These are to be integrated

until they reach a steady state.

For this purpose we use a multistage time stepping scheme of the same type
which has proved effective in calculations on rectilinear meshes. Let w" be the

result after n steps. To advance one step At with an m stage scheme we set

w(0) wi

w(l)

I

w(0) - a7 At RO

w(m=1)

W(m)

w(0) - ap-1 At R(m-2)

w(0) - At rR(m-1)
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wirtl = w(m)

The residual in the g+lst stage is evaluated as

q
(¢ _ 1L ¢ (r), _ (r)
R =3 é {quQ(W ) quD(W )}
r=0
where Q(w) is the approximation to the Euler equations and D(w) represents the

dissipative terms, and the coefficients qu and Yqr satisfy the consistency con-

dition that

In practice a 3 stage scheme has proved effective. For this scheme

a = .0, a, = .0
qu =1 qu =0, qgq>r
YqO =1, qu =0, r>0

Convergence to a steady state is accelerated by using a variable time

step close to the stability limit at each mesh point. The scheme is accelerated

further by the introduction of residual averaging4. At the mesh point O the
residual Ry is replaced by EO where EO is an approximation to the solution ﬁb of
the equation

EO + %{ e(‘ﬁo - R) =R, (9)
in which the sum is over the nearest neighbors. This is similar to the weighted
average appearing in the Galerkin method, but with the opposite sign for the
coefficient €, leading to an increase in the permissible time step instead of a
reduction. In practice it has been found effective to obtain-E by using two

steps of the Jacobi iteration

R L G- R -, 1)
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5. Mesh Generation

The triangulation procedure will connect a completely arbitrary collection
of points to form a tetrahedral mesh. If the aircraft surface is adequately
defined, we can introduce the aircraft into some pre—defined cloud of points,
remove all points lying inside the aircraft structure, and then connect up the
remaining points including a prescribed set of points lying on the aircraft sur-
face. In the present version of our code, however, we have chosen to make use
of existing mesh generation techniquesl*’ll to create a cloud of points around
the wing/body/tail/fin combination and a further cloud of points around each

nacelle.

In order to describe the mapping for an isolated wing, consider the point

X (x,v¥,z) in physical space and denote the wing surface by the set of points

W

i

{Ew}' We require a transformation that will generate a C-mesh around the
wing. In order to keep the mesh nearly orthogonal we define a parabolic
unwrapping of the wing into a shape having everywhere small curvature.

Let X = (X,Y,Z) be the point in mapped space corresponding to x in physical

space. The parabolic unwrapping is given by the transformation

X = Pyx

where Py is defined by

x = x9(z) = x? - Y?
y = yo(z) = 2XY
z = Z

and Xj is a point just inside the wing leading edge. Let Y,(X,Z) be the surface
of the wing in mapped space and define a shearing S;; taking X' = (X', Y', Z2')

to X by the transformation

E = SW é'
= X'
Y = Y' + Y,(X,2)

Zl

fl
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This maps the half space Y' > 0 onto the region in X — space above Yy.
We may now suppose that a stretching transformation T is used to map the
unit cube onto X' space. We can summarize the procedure as a mapping
Xy = Py xy

to take the wing surface into X space, followed by the mapping sequence

-1
x = P S TE

which takes a point § in the unit cube to the point x in physical space.

The mesh around a combination of a wing plus body is generated by intro—
ducing a further transformation B which maps an arbitrary shaped body into the
symmetry plane, z = O, This mapping can be constructed as a combination of a

Joukowski mapping plus a shearing. We can then summarize the procedure as

Xy = Py B zyg
to determine the wing geometry in mapped space followed by

<=3 pts T¢
X v Sw L&

This sequence of operations will generate a mesh that conforms with the body
surface but such that the crest line of the body is not necessarily aligned with
any mesh line. This deficiency is rectified by deforming the mesh lines in
mapped space to ensure that the resulting mesh is completely aligned with the

body surface. Further details are given in referencell.

The extension of these ideas to include a tail and fin follows the same
principle of first utilizing a mapping to simplify the configuration, fitting a

mesh in mapped space and then mapping back to obtain the mesh in physical space.

The nacelle mesh is also generated by a combination of unwrapping plus shearing.

In this case we define a mapping Py by the conformal transformation

where z = x + iy and £ = X + iY. Here x is a coordinate aligned with the
nacelle axis, and y is the radial coordinate corresponding to a cylindrical

coordinate system such that y = 0 is the nacelle axis. If the nacelle is not
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axisymmetric we take the axis of the cylindrical coordinate system to be an
approximate center line through the nacelle. The z coordinates are scaled so
that y = n corresponds to a cut inside the nacelle section with the point (O,
im) just inside the section leading edge. The above mapping is applied to each
nacelle section, transforming the space around the nacelle onto the space inside

a deformed cylinder with the nacelle surface mapped to the cylinder surface.

A shearing transformation can now be combined with the inverse of the above
mapping to generate a mesh that is aligned with the nacelle surface. A
straightforward extension of the sequential mapping procedure can be used to

accommodate a center body.

Finally we can generate points around the pylons by treating each pylon as
an isolated wing and using the mapping sequence that has previously been

described.

6. Delaunay Triangulation

If the set of points is denoted by {Pi}, the Voronoi neighborhood of the
point Py is defined as the region of space

Vi = {x| d(x,P;) < d(x,P3) for all i # j}
Here x is a point in three dimensional Euclidean space and d is the Euclidean
metric. Each such region V; is the intersection of the open half spaces bounded
by the perpendicular bisectors of the lines joining P;j to each of the other Pj.
The regions are thus convex polyhedra and, in general, four such regions meet at
each vertex of the Voronoi diagram. We refer to regions that have common boun-
dary faces as contiguous and likewise denote the points associated with two such
regions as contiguous points. For each vertex of the Voromoi diagram we can
join the four contiguous points, which have that vertex in common, by four pla-
nes to form a tetrahedron. The aggregate of tetrahedra forms the unique
triangulation of the convex hull of points {Pi} known as the Delaunay triangula-—
tion. Each Voronoi vertex is the circumcenter of the tetrahedron with which it
is associated and the above construction ensures that no other point lies within
the sphere that circumscribes the tetrahedron. This property ensures that the

aspect ratio of the tetrahedra is reasonable and, in some sense, leads to an

optimum triangulation for a given distribution of points.
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The computation of the Voronoi diagaram and its associated triangulation has
received considerable attention recently12:13:14a15. The algorithm used here is
based on Boywer's methodl3 and has been successfully applied in both two and
three dimensions. As Boywer notes, it is possible to record the structure of
the triangulation by constructing two lists for each vertex in the structure.
Each list has four entries; the first contains the forming points of the tetra-
hedron associated with the vertex and the second list holds the addresses of the

neighboring vertices.

The process is sequential: each new point is introduced into the existing
structure which is broken and then reconnected to form a new Delaunay triangu-—
lation. When a new point is introduced into the existing triangulation, it is
first necessary to identify a vertex of the Voronoi diagram that will be deleted
by the new point. As the vertex at the circumcenter of the tetrahedron in which
the point lies must necessarily be deleted, we are assured that at least one
deleted vertex can be identified. Next we look at the neighbors of the deleted
vertex for other vertices of the Voronoi diagram that may be deleted. We con—
tinue the tree search, creating a list of deleted vertices until all deleted ver-
tices have been identified. From the list of deleted Voronoi vertices, we can
determine the neighboring contiguous vertices in the undeleted set. Each point
lying on the interface with the deleted region is joined to the new point. The
deleted region is necessarily simply connected and star shaped. The new tetra-
hedra thus formed will exactly fill the deleted region and, moreover, will also
satisfy the Delaunay criterion. It remains to label the new Voronoi neigh-

borhoods and revise the lists that record the data structure.

The initial steps that determine the deleted vertices require a comparison
of the distance between the new point and a vertex of the Voronoi diagram with
the radius of the circumscribing sphere for the tetrahedron associated with that
vertex. The only other floating point operations required in this algorithm
concern the computation of the new vertex coordinates (i.e. the center of the
circumscribing sphere) and the radius of the circumscribing sphere for each new
vertex. All other operations are of an entirely logical nature involving
searches and manipulations of the data structure that records the Voronoi

diagram and its associated Delaunay triangulation.
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Although the Delaunay triangulation of a given set of points is unique, the
computational effort required clearly depends on the number of vertices that
must be tested before the first deleted vertex is found, as well as the size of
the deleted region that must be reconfigured after the introduction of each new

point.

In general, the list of vertices {(i.e. tetrahedra) does not have any syste—
matic ordering. However, new vertices are labelled using the addresses that
corresponded to dead vertices from the deleted region. When a new point is
introduced, it is therefore sensible to start searching through the most
recently generated vertices since one of these will quite likely be deleted by

the introduction of the new point.

The size of the deleted region that must be reconfigured depends critically
on the order in which the new points are introduced. A good strategy is to
introduce a coarse sprinkling of widely separated points and then introduce
further points by what is essentially a mesh refinement procedure. This
approach leads to a regular distribution of points at each stage. Consequently

the Delaunay spheres do not become excessively large and neither does the

deleted region.

It is expedient to triangulate the entire space including the interior of
the aircraft as well as the exterior. It is important to identify interior
tetrahedra correctly, as these tetrahedra must be removed before carrying out
the flow calculation. Furthermore, it is necessary to prevent connections from
exterior points breaking through the aircraft surface. Thus the interior tetra-

hedra must be identified at an early stage in the triangulation process.

The triangulation starts by first introducing the farfield points and then
the aircraft surface points, component by component. After each component has
been introduced, the tetrahedra are scanned to discover which of them belong to
the most recent component. The list of tetrahedra which form the component is
further examined to determine which tetrahedra have Delaunay spheres exceeding a
specified threshold. When a tetrahedron has been flagged as exceeding the
threshold, an extra point is introduced, the new triangulation computed and the

set of component tetrahedra re—determined. This procedure can be iterated until
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all Delaunay spheres have been reduced to an acceptable size. After all points

on the surface of every aircraft component have been triangulated, the flowfield

points are introduced.

The deleted region, associated with a new point, is now examined and if the
deleted region contains tetrahedra belonging to an aircraft component, the point
is rejected. Provided the threshold on the allowable size of the component
Delaunay spheres is kept sufficiently small, then almost all points which
genuinely lie outside the aircraft will be accepted. Of course, any points that
fall inside the aircraft structure will be detected and rejected by this pro-
cess.

Results

In Figure 5 we show computed pressure contours on the surface of a
Boeing 747-200 including engine nacelles and pylons. The mesh contains 24685
points and is composed of 132793 tetrahedra. The complete calculation took 3924
seconds on a CRAY X~MP. One third of the time was consumed by the triangulation
with the remaining time required for the flow computation of 400 cycles. The
three stage time stepping scheme was used and an implicit smoothing factor e =1
was introduced to obtain a nominal Courant number of 5. The number of super-
sonic points was frozen after 200 cycles and the average residual was reduced,
after 400 cycles, by five orders of magnitude. Although the mesh is fairly
coarse, all significant flow features are evident including interference effects
of the wing and tail on the body and the mutual interference of the wing,

nacelle and pylon.

The present calculation requires about 8 megawords of memory. For a
realistic calculation that will exhibit detailed information about the flowfield
over all parts of the aircraft, we anticipate the need to increase the number of
mesh points by a factor of between five and ten with a corresponding increase in
the memory requirement. The availability of CRAY X-MP's with large solid state
storage devices and likewise of the CRAY 2 enables one to carry out computations
requiring this amount of memory. Realistic, detailed solutions of the Euler
equations for complete aircraft are thus completely feasible using currently

avallable supercomputers.
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Figure 1

One tetrahedron of the control volume centered at
node Q.



Figure 2

A triangular mesh in 2 dimensions: The control
volume at P is the union of triangles 1, 6, 10, 7

and 2, while that at Q is the union of triangles 4,
8, 11, 12, 9 and 5. The flux across the edge AB is
from the control volume at P to the control volume at

Q'



Figure 3

Flux through face defined by nodes 1, 2 and 3 is
out of the control volume centered at node 4 and
into the control volume centered at node 5.



add egé)(wz - wo) to node O

(1)

and €20 (w° - wz) to node 2

Figure 4

Construction of dissipation from differences along
edges in a two dimensional mesh,
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Figure 5

Surface Pressure Contours






