Chapter 3

Advances in Aerodynamic
Shape Optimization

Antony Jameson'

3.1 Introduction

Since the present author first became involved in computational fluid dynamics,
around 1970, the landscape has changed dramatically. At that time, panel
methods had just come into use, and the world’s fastest super computer, the
Control data 6600, had only 131000 words of memory (about 1 megabyte).
Prior to the break-through of Murman and Cole [1970], no viable algorithms for
computing transonic flow with shock waves had been discovered. By 1980 the
standard for super-computing was represented by the Cray 1, which achieved a
performance of about 100 megaflops, but at least initially it was hard to obtain a
Cray with more than 128 megabytes of memory. At the present time numerous
laptops are available with processing speeds of 2-3 gigaherz, and a gigabyte of
memory, well beyond the power of the Cray XMP of the mid-eighties. In fact
the speed of the Intel microprocessors has increased more than one thousand
fold in 17 years, between the 80386 of 1986 and the current Pentium 4. These
developments were unimaginable in 1970.

There have been almost equally dramatic advances in algorithms, at least
for some aerodynamic problems. Stemming in part from the pioneering work
of Godunov [4], many effective shock capturing algorithms have been devel-
oped. Moreover, whereas the available methods for solving the steady state
Euler equations in 1980 required 5000-10000 iterations to reach a reasonable
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level of convergence, and none would converge completely to machine zero [34],
solutions of the Euler equations for flows around airfoils can now be obtained
in 3-5 steps [16]. These developments are reviewed by the author in an article
for the Encyclopedia of Computational Mechanics [14]. Some problems such
as the prediction of transition and separation, or the formulation of universal
turbulence model, remain recalcitrant. Nevertheless the combined advances in
software and hardware have made it feasible to tackle problems of many orders
of magnitude greater complexity than could contemplated 30 years ago.

Even at the outset, intelligent use of computational fluid dynamics (CFD)
could have an important impact on design, and the present author has always
recognized that the real challenge was not just to predict the flow over a give
shape, but to find a superior shape, optimal accordingly to some useful cri-
teria. In fact the author’s first CFD program, Synl (July 1970) provided a
complete solution to the inverse problem of designing an airfoil in ideal (irrota-
tional and incompressible) flow which would produce a specified target pressure
distribution. Stemming from discussions with Malcolm James at Douglas Air-
craft, the method finds the conformal mapping which transforms a circle to the
required airfoil. It is on extension of Lighthill’s method, which is described by
Thwaites [36], as an incomplete solution because it requires the target velocity
to be specified in the circle plane. The input to Synl is the target pressure as
a function of the arc length s. Then since the potential along the profile is

6= [ ads

and ¢ is known in the circle plane, the angle # in the circle plane can be de-
termined as a function of s by a Newton iteration. If the target pressure is not
realizable, Syn1 finds the shape which produces the nearest attainable pressure
distribution. Nowadays it runs on a laptop in less that - second.

By the late eighties, following some early experiments by Hicks and Henne (8]
with the use of numerical optimization for airfoil and wing design, the time
seemed ripe to tackle the general problem of aecrodynamic shape optimization
(ASO). After attending an ICASE workshop on flow control in February 1980;
it occurred to the author that control theory offered an indirect route to ASO
which could be for more efficient than the methods that had been previously
tried. The author subsequently discovered that the idea of using control theory
for shape optimization had also been explored by Pironneau for elliptic equa-
tions [31].

Control theory for partial differential equations, where the control takes the
form of boundary movement, is a natural extension of the calculus of variations,
which enables the infinitely dimensional (Frechet) derivative of a cost function
with respect to the shape to be determined by the solution of an adjoint equa-
tion. This gradient information can then be used to improve the shape, and the
process can be repeated until the shape converges. With this approach one does
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not think in terms of a number of design parameters in the range of 10-100.
Rather the shape is treated as a free surface, which might be represented in the
discrete model by the surface mesh points, or an expansion in an appropriate
set of basis functions. In the case of airfoil design one can, for example, describe
the profile by the Fourier coefficients corresponding to the Laurent series which
defines the conformal mapping to a circle.

The theory of control of linear PDEs is formulated in the classic work of
Lions[28]. The extension to nonlinear PDEs with possibly discontinuous so-
lutions raises some difficult issues, some of which remain open. However, the
author derived the necessary adjoint equations both for transonic potential flow
and the Euler equations in 1988 [9], and developed software for airfoil design in
transonic potential fiow later that year. The first numerical result was published
in 1989 [10]. A preliminary Euler adjoint code was also developed (Syn82), and
support was obtained from the AFOSR to pursue the concept further. One of
the issues to be explored was whether it is better to derive the adjoint PDE in
continuous form from the PDE describing the flow and then discretize it, ( the
“continuous adjoint” method) or to discretize the flow equations first, and then
directly derive the discrete adjoint equations (the “discrete adjoint” method).

In the author’s view it is important to derive the continuous adjoint equa-
tion to gain insight into the equation’s properties and the appropriate boundary
condition. But the appropriate discretization should certainly reflect the dis-
cretization of the flow equations. For example if one uses an upwind scheme,
the adjoint discretization appears as a downwind scheme (in reality upwind for
the waves in the adjoint equation which travel in the reverse direction). When
a shock capturing scheme with non-linear limiters is used, the discrete adjoint
approach produces very complicated discrete equations. In practice the contin-
uous adjoint approach has proved to be very effective, but it is sometimes easier
to treat the boundary conditions by the discrete approach [30].

This paper focuses mainly on the continuous adjoint approach. The adjoint
system of equations has a similar form to the flow equations, and hence the
numerical methods developed for the flow equations [21, 15, 2] can be re-used
for the adjoint equations. While the gradient information obtained from the
adjoint solution can be fed to any gradient based search procedure, it has proved
very efficient in practice to make repeated small steps in a direction defined by
smoothing the gradient implicitly via a second order differential equation. This
process, which guarantees the smoothness of the sequence of redesigned shapes.
is equivalent to redefining the gradient in a Sobolev space, and it acts as an
effective preconditioner, often yielding the optimum in 10-20 design cycles.

It is also shown that with the continuous adjoint approach (but not the dis-
crete approach), it is possible to derive the gradient directly from the adjoint
solution and the surface motion, independent of the mesh modification. This
eliminates the need to evaluate volume integrals which depend on the mesh
perturbation. If one wishes to obtain the pointwise gradient using an unstruc-
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tured mesh, these integrals become very expensive because the propagation of
the mesh deformation has to be calculated separately for the deflection of each
surface mesh point. Their elimination from the gradient thus opens the way for
shape optimization using unstructured mesh.

During the last decade the optimization techniques based on control theory
have been developed into a robust and product tool. They have been successtully
applied to both transonic and supersonic designs, and played an important role
in NASA’s HSR program [33, 37, 23, 32]. They have been extended to include
viscous effects using the Reynolds averaged Navier-Stokes equations [19, 24].
This is important because inviscid optimization can lead to steep adverse pres-
sure gradients which could result in separation. Moreover the wing section
modifications required to delay transonic drag rise are typically of the same or-
der of magnitude as the boundary layer displacement thickness, so the proper
design must allow for the effect of the boundary layer. Recently wing planform
parameters have been included as design variables and the Aerospace Comput-
ing Laboratory at Stanford University has successfully designed a wing which
produces a specified lift with minimum drag, while meeting other criteria such
as low structure weight, sufficient fuel volume, and stability and control [25].
The use of unstructured grid techniques hold considerable promise for aerody-
namic design by facilitating the treatment of complex configurations without
incurring a prohibitive cost and bottleneck in mesh generation. The computa-
tional feasibility of using unstructured meshes for design is essentially enabled
by the use of the continuous adjoint approach and the reduced gradient formu-
las [22]. Representative results for complete configurations are displayed in the
final section.

3.2 Formulation of the Optimization Procedure

3.2.1 Gradient Calculation

For the class of aerodynamic optimization problems under consideration, the
design space is essentially infinitely dimensional. Suppose that the performance
of a system design can be measured by a cost function I which depends on a
function F(z) that describes the shape,where under a variation of the design

0F (x), the variation of the cost is 6. Now suppose that 4/ can be expressed to
first order as

ol = /Q(J:)E.F(;E)dm
where G(z) is the gradient. Then by setting

dF(x) = —AG(x)
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one obtains an improvement
& = —Afgz{x)d:v

unless G(z) = 0. Thus the vanishing of the gradient is a necessary condition for
a local minimum.

Computing the gradient of a cost function for a complex system can be
a numerically intensive task, especially if the number of design parameters is
large and the cost function is an expensive evaluation. The simplest approach
to optimization is to define the geometry through a set of design parameters,
which may, for example, be the weights a; applied to a set of shape functions
B;(x) so that the shape is represented as

Flx) = Zmﬁ; ({x).

Then a cost function I is selected which might be the drag coefficient or the lift
to drag ratio; [ is regarded as a function of the parameters ;. The sensitivities
E;?r:{i_ may now be estimated by making a small variation da; in each design

parameter in turn and recalculating the flow to obtain the change in I. Then

oI I(a; + day) — I(c)
HCI:!,; " (s.i:[l‘.i .

The main disadvantage of this finite-difference approach is that the number
of flow calculations needed to estimate the gradient is proportional to the num-
ber of design variables [7]. Similarly, if one resorts to direct code differentiation
(ADIFOR |3, 5]), or complex-variable perturbations [1], the cost of determining
the gradient is also directly proportional to the number of variables used to
define the design.

A more cost effective technique is to compute the gradient through the so-
lution of an adjoint problem, such as that developed in references [18, 12, 11].
The essential idea may be summarized as follows. For flow about an arbitrary
body, the aerodynamic properties that define the cost function are functions of
the flowfield variables (w) and the physical shape of the body, which may be
represented by the function F. Then

I=d{w, F)
and a change in F results in a change of the cost function
art oIt
0l = —94 ——o.F.
ow " T BF

Using a technique drawn from control theory, the governing equations of the
flowfield are introduced as a constraint in such a way that the final expres-
sion for the gradient does not require reevaluation of the flowfield. In order to
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achieve this, dw must be eliminated from the above equation. Suppose that the

governing equation I, which expresses the dependence of w and JF within the
flowfield domain D, can be written as

R(w,F) = 0. (3.1)

Then dw is determined from the equation

OR OR
R = [dw]ﬁw—l—[d}_]ﬁF—ﬂ

Next, introducing a Lagrange multiplier ¢/, we have

arr oIt OR OR
Hhim ?}Eém oF (L}w] et [df] {5_?-') 8

With some rearrangement

arr dR art oR
45 (ﬁ_ [aw])é“ (ﬁ‘"‘ﬁ {ar])"‘f

Choosing 1 to satisfy the adjoint equation

T
{BR} g It (3.3

dw| = dw

the term multiplying dw can be eliminated in the variation of the cost function,
and we find that

of = garF.
where g
G O o [OR
B - 7 3 OF

The advantage is that the variation in cost function is independent of dw, with
the result that the gradient of I with respect to any number of design variables
can be determined without the need for additional flow-field evaluations.

In the case that (3.1) is a partial differential equation, the adjoint equation
(3.3) is also a partial differential equation and appropriate boundary conditions
must be determined. It turns out that the appropriate boundary conditions
depend on the choice of the cost function, and may easily be derived for cost
functions that involve surface-pressure integrations. Cost functions involving
field integrals lead to the appearance of a source term in the adjoint equation.

The cost of solving the adjoint equation is comparable to that of solving the
flow equation. Hence, the cost of obtaining the gradient is comparable to the
cost of two function evaluations, regardless of the dimension of the design space.
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3.3 Design using the Euler Equations

The application of control theory to aerodynamic design problems is illustrated
in this section for the case of three-dimensional wing design using the compress-
ible Euler equations as the mathematical model. The extension of the method
to treat the Navier-Stokes equations is presented in references [19, 17, 13]. It
proves convenient to denote the Cartesian coordinates and velocity components
by x1, 2, x3 and uy, us, us, and to use the convention that summation over
i = 1 to 3 1s implied by a repeated index i. Then, the three-dimensional Euler
equations may be written as

Jw 6}"1 .
— .
5 i 0 i B (3.4)
where
¢ * ¢ '1
P Py
Py pu;uy + pdiy
w=1{ puz p, fi=q puuz+plia o (3.5)
pu3 pu;uz + po;3
\, pE 4 \ miH /

and d;; is the Kronecker delta function. Also,

p=-Dp{E-3 (). (3.6)

and
pH = pE +p (3.7)

where ~ is the ratio of the specific heats.
In order to simplify the derivation of the adjoint equations, we map the
solution to a fixed computational domain with coordinates £, &, £3 where

8:13-!',

- O¢;
i —_— & e K __1: :
K, !3«‘;}]’ J=det(K), K [E}&J,

and
8= JK-*

The elements of S are the cofactors of K, and in a finite volume discretization
they are just the face areas of the computational cells projected in the 1, z.

and x3 directions. Using the permutation tensor €;;; we can express the elements
of S as

1 Oz, Ox
S,‘.-_- = EfquEirHEéf aﬁj - {38]
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Then

8 1 ( 9%z, 8z, Ox, 0%z, ) a 5

9€, >y = 3%mcirs \ 5eae BE, T BE, BE.¢,

i
Also in the subsequent analysis of the effect of a shape variation it is useful
to note that

o, Or
513 = €ira 3¢, B,
ox, Ox
S = Equa—éa—gf';
dx, Or
S35 = ija—:ffﬁ_ﬁ; (3.10)
Now, multiplying equation(3.4) by J and applying the chain rule,
Y2 et = (3.11)
ot
where of 5
i Wi i I 3.12
R{w} SJHE,; a&( 1jf_7:}. { )

using (3.9). We can write the transformed fluxes in terms of the scaled con-
travariant velocity components

Uf = St-ju_,-

pU;
pUiuy + Siip
Fi =58;;f; = | pUiug + Siap
pUiuz + Sisp
pU; H

= -

For convenience, the coordinates £; describing the fixed computational do-
main are chosen so that each boundary conforms to a constant value of one of
these coordinates. Variations in the shape then result in corresponding varia-
tions in the mapping derivatives defined by K;;. Suppose that the performance
1s measured by a cost function

I:fM(w,S)dB§+f’P(w,S}dDE,
B Yo,

containing both boundary and field contributions where dBg and dD; are the
surface and volume elements in the computational domain. In general, M and
P will depend on.both the flow variables w and the metrics S defining the
computational space. The design problem is now treated as a control problem
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where the boundary shape represents the control function, which is chosen to
minimize [ subject to the constraints defined by the flow equations (3.11). A
shape change produces a variation in the flow solution dw and the metrics 65
which in turn produce a variation in the cost function

ol = f OM(w,S)dBe + / 0P(w, S)dDeg. (3.13)
B D
This can be split as
oI =8Iy + 01y, (3.14)
with
oM = [J"‘/I‘w]f dw + oMy,

where we continue to use the subscripts [ and II to distinguish between the
contributions associated with the variation of the flow solution dw and those
associated with the metric variations §5. Thus [M,] ; and [Py] ; Tepresent < HM

and dp with the metrics fixed, while d M7 and dPj; represent the EDIltI’lbutli}n
of I;he metric variations 45 to dM and 6P.
In the steady state, the constraint equation (3.11) specifies the variation of

the state vector dw by

) .
OR = 57 0F; =0. (3.16)

Here also, 4R and 0F; can be split into contributions associated with dw and
05 using the notation

0R = ORr+4Ry
5F3‘, = [Ew] ow + 5}‘;” [3,1?)

where

af;
Ll =55 o

Multiplying by a co-state vector 1, which will play an analogous role to
the Lagrange multiplier introduced in equation {4 4), and integrating over the
domain produces

d
&
/ 3¢, 0F:dDe = 0. (3.18)

Assuming that 1) is differentiable, the terms with subscript I may be integrated
by parts to give

&qu
p 9

/ﬂiﬁTﬁF}I dB£ - Id’Dg —I—f waER”dﬂg ==}, (3.19}
B D

- e e e il
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This equation results directly from taking the variation of the weak form of
the flow equations, where v is taken to be an arbitrary differentiable test func-
tion. Since the left hand expression equals zero, it may be subtracted from the
variation in the cost function (3.13) to give

61 =8I — f YT oRydD; — [ [6M — nipT6F;, ] dBe
D B

f [m + 2V op ]dﬂg.
D &,

Now, since 1) is an arbitrary differentiable function, it may be chosen in such
a way that 6I no longer depends explicitly on the variation of the state vector
dw. The gradient of the cost function can then be evaluated directly from the
metric variations without having to recompute the variation dw resulting from
the perturbation of each design variable.

Comparing equations (3.15) and (3.17), the variation dw may be eliminated
from (3.20) by equating all field terms with subscript “I” to produce a differ-
ential adjoint system governing 1

T
0¢;

Taking the transpose of equation (3.21), in the case that there is no field integral
in the cost function, the inviscid adjoint equation may be written as

(3.20)

[Fiwli £ {Pulr=0 inD. (3.21)

e j? =1 D, (3.22)
where the inviscid Jacobian matrices in the transformed space are given by
af;
Ci = 5¢;
T ow’

The corresponding adjoint boundary condition is produced by equating the sub-
script “I” boundary terms in equation (3.20) to produce

niY’ [Fiyl; = [Mw]r on B. (3.23)

The remaining terms from equation (3.20) then yield a simplified expression for
the variation of the cost function which defines the gradient

o = ol —I—/ ¢T5RIIdDE? (3.24)
D

which consists purely of the terms containing variations in the metrics, with
the flow solution fixed. Hence an explicit formula for the gradient can be de-

rived once the relationship between mesh perturbations and shape variations is
defined.
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The details of the formula for the gradient depend on the way in which the
boundary shape is parameterized as a function of the design variables. and the
way in which the mesh is deformed as the boundary is modified. Using the
relationship between the mesh deformation and the surface modification, the
field integral is reduced to a surface integral by integrating along the coordinate
lines emanating from the surface. Thus the expression for 47 is finally reduced
to the form

s / G F dBe
B

where F represents the design variables, and G is the gradient, which is a func-
tion defined over the boundary surface.

The boundary conditions satisfied by the flow equations restrict the form of
the left hand side of the adjoint boundary condition (3.23). Consequently, the
boundary contribution to the cost function M cannot be specified arbitrarily.
Instead, it must be chosen from the class of functions which allow cancellation
of all terms containing éw in the boundary integral of equation (3.20). On
the other hand, there is no such restriction on the specification of the field
contribution to the cost function P, since these terms may always be absorbed
into the adjoint field equation (3.21) as source terms.

For simplicity, it will be assumed that the portion of the boundary that un-
dergoes shape modifications is restricted to the coordinate surface £, = 0. Then
equations (3.20) and (3.23) may be simplified by incorporating the conditions

n=n3=0, ng=1, dBe=d&dE;,

so that only the variation § F; needs to be considered at the wall boundary. The
condition that there is no flow through the wall boundary at & = 0 is equivalent
to

Us =0,

so that
Us =0

when the boundary shape is modified. Consequently the variation of the inviscid
flux at the boundary reduces to

0 0
So 08551
0F =0ps 8 p+D3 6555 §- (3.25)
Saz 0523
! 0 ,. .. 0 ,

Since dF5 depends only on the pressure, it is now clear that the performance
measure on the boundary M(w, S) may only be a function of the pressure and
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metric terms. Otherwise, complete cancellation of the terms containing dw in
the boundary integral would be impossible. One may, for example, include
arbitrary measures of the forces and moments in the cost function, since these
are functions of the surface pressure.

In order to design a shape which will lead to a desired pressure distribution,
a natural choice is to set

1
-5 [ w-pa?as
B

where pg is the desired surface pressure, and the integral is evaluated over the
actual surface area. In the computational domain this is transformed to

P %/ = {p—;t}d]z |S2| d&1d&s,

where the quantity
|S2] = 1/ 52;52;

denotes the face area corresponding to a unit element of face area in the com-
putational domain. Now, to cancel the dependence of the boundary integral on
dp, the adjoint boundary condition reduces to

Yjn; =p— Pd (3.26)
where n; are the components of the surface normal

Ny == %
TSy
This amounts to a transpiration boundary condition on the co-state variables
corresponding to the momentum components. Note that it imposes no restric-
tion on the tangential component of ¢ at the boundary.

We find finally that

%T

At

85, f;dD — / (8852112 + 859213 + 0523104 ) pd&rdés.  (3.27)

Here the expression for the cost variation depends on the mesh variations
throughout the domain which appear in the field integral. However, the true
gradient for a shape variation should not depend on the way in which the mesh
1s deformed, but only on the true flow solution. In the next section we show
how the field integral can be eliminated to produce a reduced gradient formula
which depends only on the boundary movement.
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3.4  The Reduced Gradient Formulation
Consider the case of a mesh variation with a fixed boundary. Then,
ol =0
but there is a variation in the transformed flux,
0F; = Cidw + 4S5 f;.

Here the true solution is unchanged. Thus, the variation dw is due to the mesh
movement dz at each mesh point. Therefore

_ Ow 2z
and since
LT
B.Et - 1
it follows that
d
9¢, (0Si5f;) = La‘;} (Cidw*). (3.28)

It is verified below that this relation holds in the general case with boundary
movement. Now

f ssrap ~ [ ¢T—c (6 — bu*) dD

96T (3.29)
i [ $TC, (6w — 61*) dB — C; (6w — 6w*) dD.
B p 0§
Here on the wall boundary
Crdw = 3F2 — fSng'fj, (33[})

Thus, by choosing ¢ to satisfy the adjoint equation (3. 22) and the adjoint bound-
ary condition (3.23), we reduce the cost variation to a boundary integral which
depends only on the surface displacement:

5L o P (8825 f; + Cobw*) dé1dés

By

—f 5552115'2 + 0522%3 + 05231)4) p d€,dEs. (3.31)
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For completeness the general derivation of equation(3.28) is presented here.
Using the formula(3.8), and the property (3.9)

d 1 0 ddx, Ox dx, dx
E(ﬁstjfj)= _"_{Equft'rs ( P 1 ;s £ q) fj}

2 9E; o 9t 0L 0§,

& 1:—'- = ( 0z, Oz, = 0, 6‘6%) df;

2 T By e 86 50 i) 0 O,
1 = Oz, Of;

= 5mcirs | BE. (5IP 853 5 ;)} (3.32)
1 v ad oz, Of; }

O ('5"'”‘? 9, a@-)

s Oy Of;
" %, (mf‘”“‘c‘”‘ JE, aa)

Now express dx, in terms of a shift in the original computational coordinates

dzp

-'ZSIP— a{ Esz
Then we obtain
9 dz, Oz, Of; )
= — ) g 3.33
af: {&S”fj) Bg_r (qujfrat 65 35:; H«fi (f.i:: { )
5.

The term in e, is

= dz, (c'hq af;i 0z, ﬂf_f) 35
P 9E, \ 06, DEs €5 BE,

Here the term multiplying 8&; is
gt (QIP{?:I:Q 0f;  Ozy Ehrqﬂfj)
TN\ 06 062 063 061 9E3 062 )

According to the formulas(3.10) this may be recognized as

adfy df
+ 5
9Es % D€

or, using the quasi-linear form(3.12) of the equation for steady flow, as

dfr
0€,

S2; =

—8;

The terms multiplying §&; and €3 are

o (ﬂmp Ozq 0f; Oy Oz, ﬂfj) & —Sl-{—aﬁ
TPIN\ 88, 0E; 063 O&; O€3 O, ! 0&;
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and

(BIP 0zq 8f; Ozp Oz, r':?fj) e Of
O3 06, OE3  OE3 O€3 O o7 T
a

Thas the term in Ty 1s reduced to

8 dfy
96, (S” OE ‘55‘“)

Fially, with similar reductions of the terms in E and 5-‘;’ , we obtain

G B e
o 055 = g (SugRe) = — - (Cbu)

as was to be proved.

3.5 Optimization Procedure

3.5.1 The Need for a Sobolev Inner Product
in the Definition of the Gradient

Another key issue for successful implementation of the continuous adjoint method
is the choice of an appropriate inner product for the definition of the gradient.
[t turns out that there is an enormous benefit from the use of a modified Sobolev
gradient, which enables the generation of a sequence of smooth shapes. This
can be illustrated by considering the simplest case of a problem in the calculus
of variations.

Suppose that we wish to find the path y(z) which minimizes

b
e f F(y,y )dz
)

with fixed end points y(a) and y(b). Under a variation dy(x),
b

10 aF
Moy f(ﬁ‘gy oy 51,)

L)

b

g /(6F d oF\ .
!i I oy dzoy ) V™

! i §

| Thus defining the gradient as

OF d OF
3 dy dzrdy
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and the inner product as

(u,v) = | uvdz

B e

we find that

If we now set,

we obtain a improvement

unless g = 0, the necessary condition for a minimum.

i

Note that g is a function of y, y’, Y, 4

g=9(y,y,v )

In the well known case of the Brachistrone problem, for example, which calls
for the determination of the path of quickest descent between two laterally
separated points when a particle falls under gravity.,

1+ 42

Fy,y)=

E-'Ild g X3
14y 42yy

21 +y2))*?

It can be seen that each step
yﬂ.+1 o yn ik )ingn

reduces the smoothness of y by two classes. Thus the computed trajectory
becomes less and less smooth, leading to instability.

In order to prevent this we can introduce a weighted Sobolev inner prod-
uct [20]

(8, v} = /(uu +eu'v )de

where € is a parameter that controls the weight of the derivatives. We now
define a gradient § such that

ol = (g,oy)
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Then we have

éf—fg6u+£q -:‘5y Ydz

/(g s EEE) dydx = (g, dy)

where
pncegs Wy

= e g
dxr Ox
and § = 0 at the end points. Thus g can be obtained from g by a smoothing
equation. Now the step

yﬂ—l—l o yn = }.nﬁn
gives an improvement

ol = —ANGa")

but y"*! has the same smoothness as y”, resulting in a stable process.

3.5.2 Sobolev Gradient for Shape Optimization

In applying control theory to aerodynamic shape optimization, the use of a
Sobolev gradient is equally important for the preservation of the smoothness
class of the redesigned surface. Accordingly, using the weighted Sobolev inner
product defined above, we define a modified gradient G such that

b =< G, 6F >.
In the one dimensional case G is obtained by solving the smoothing equation
& & 1 ira
==t =0 3.34
9€,“ 06; S

In the multi-dimensional case the smoothing is applied in product form. Finally
we set

6F = )G (3.35)

with the result that iy
il =—x< 0. 06> <0

unless G = 0, and correspondingly G = 0.
When second-order central differencing is applied to (3.34), the equation at
a given node, i, can be expressed as

G’i R ( i+1 = Zg'l- 5 gt—l) gh 1<31< n,

where G; and G; are the point gradients at node i before and after the smoothing
respectively, and n is the number of design variables equal to the number of mesh
points in this case. Then,

G = AG,
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Figure 3.1: Design cycle

where A is the n X n tri-diagonal matrix such that

142 —=e. 0 . R
E
Al = 0
i - ] gsan
I 0 € l+2£_

Using the steepest descent method in each design iteration, a step, .F, is taken
such that

SEELAUG. (3.36)

As can be seen from the form of this expression, implicit smoothing may be
regarded as a preconditioner which allows the use of much larger steps for the
search procedure and leads to a large reduction in the number of design iterations
needed for convergence.

3.5.3 Outline of the Design Procedure

The design procedure can finally be summarized as follows:
1. Solve the flow equations for p, u, us, us, p.

2. Solve the adjoint equations for 1) subject to appropriate boundary condi-
tions.
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3. Evaluate G and calculate the corresponding Sobolev gradient G.

4. Project G into an allowable subspace that satisfies any geometric con-
straints.

5. Update the shape based on the direction of steepest descent.
6. Return to 1 until convergence is reached.

Practical implementation of the design method relies heavily upon fast and
accurate solvers for both the state (w) and co-state (1)) systems. The result
obtained in Section 3.6 have been obtained using well-validated software for the
solution of the Euler and Navier-Stokes equations developed over the course
of many years [21, 29, 35]. For inverse design the lift is fixed by the target
pressure. In drag minimization it is also appropriate to fix the lift coefficient,
because the induced drag is a major fraction of the total drag, and this could be
reduced simply by reducing the lift. Therefore the angle of attack is adjusted
during each flow solution to force a specified lift coefficient to be attained, and
the influence of variations of the angle of attack is included in the calculation of
the gradient. The vortex drag also depends on the span loading, which may be
constrained by other considerations such as structural loading or buffet onset.
Consequently, the option is provided to force the span loading by adjusting the
twist distribution as well as the angle of attack during the flow solution.

3.6 Case Studies

3.6.1 Two-Dimensional Studies
of Transonic Airfoil Design

When the inviscid Euler equations are used to model the flow, the source of drag
is the wage-drag due to shock waves. Accordingly, if the shape is optimized for
minimum drag at fixed lift, the best attainable result is a shock-free airfoil with
zero drag. By this criterion the optimum shape is completely non-unique, since
all shock-free profiles are equally good. The author’s experience during the last
15 years has confirmed that shock-free profiles can be obtained from a wide
variety of initial shape, while maintaining a fixed lift coefficient and a fixed
thickness.

Recently the author’s two-dimensional Euler design code Syn83 has been
used to explore the attainable limits of Mach numbers and lift coefficient under
which shock-free airfoils of a give thickness can be attained [6]. When the design
objectives are two extreme the performance tends to degrade very rapidly off
the design point, with strong double shocks typically appearing below the design
point. Thus the boundary of shock-free airfoil in the Cj-Mach space is somewhat
fuzzy. The study confirms, however, that for ten-percent thick airfoils one can
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Figure 3.2: Attainable shock-free solutions for various shape optimized airfoils

attain benign shock-free shapes along a boundary passing through C; .6 and
Mach .78 and ) .7 and Mach .77. The second of these points is illustrated in
Fig. 3.3. The boundary is shifted up as the thickness is reduced. In fact the
transonic similarity rule can be used to find progressively thinner profiles which
are shock-free at increasing Mach number.

Moreover, shock-free flow can be attained with profiles that have no re-
semblance to the typical flat-topped and aft-loaded super-critical section. It
appears, however, that aft-loading, perhaps aided by a divergent trailing edge,
can help to extend shock-free flow to higher lift coefficients.
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Figure 3.3: Pressure distribution and Mach contours for the DLBA-243 airfoil
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3.6.2 B747 Euler Planform Result

The wing section changes needed to improve transonic performance are quite
small. However, in order to obtain a true optimum design larger scale changes
such as changes in the wing planform (sweepback, span, chord, section thickness,
and taper) should be considered. Because these directly affect the structure
weight, a meaningful result can only be obtained by considering a cost function
that accounts for both the aerodynamic characteristics and the weight.

In references (25, 27, 26] the cost function is defined as

1
I=a,Cp +ﬂz§/(ﬁ—;ﬂd)2d5+ﬂﬂcwa
B

where Cw = —5 ; 1s a dimensionless measure of the wing weight, which can
] ™e

be estimated either from statistical formulas, or from a simple analysis of a
representative structure, allowing for failure modes such as panel buckling. The
coefficient ar; is introduced to provide the designer some control over the pressure
distribution, while the relative importance of drag and weight are represented
by the coefficients a; and a3. By varying these it is possible to calculate the
Pareto front of designs which have the least weight for a given drag coefficient,
or the least drag coefficient for a given weight. The relative importance of these
can be estimated from the Breguet range equation;

oR oCp 1 0Ws oCp 1 0Cw
B T Mg S il capiE e 7 Tl ot g
2. 08 W o x 08 W, GooSref

Figure 3.4 shows the Pareto front obtained from a study of the Boeing 747
wing [26], in which the flow was modeled by the Euler equations. The wing
planform and section were varied simultaneously, with the planform defined by
six parameters; sweepback, span, the chord at three span stations, and wing
thickness. The weight was estimated from an analysis of the section thickness
required in the structural box. The figure also shows the point on the Pareto
front when —1 is chosen such that the range of the aircraft is maximized. The
optimum wmg, as illustrated in Fig. 3.5, has a larger span, a lower sweep angle,
and a thicker wing section in the inboard part of the wing. The increase in span
leads to a reduction in the induced drag, while the section shape changes keep
the shock drag low. At the same time the lower sweep angle and thicker wing
section reduce the structural weight. Overall, the optimum wing improves both
aerodynamic performance and structural weight. The drag coefficient is reduced
from 108 counts to 87 counts (19%), while the weight factor Cyy is reduced from
455 counts to 450 counts (1%).
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Figure 3.4: Pareto front of section and planform modifications

Figure 3.5: Superposition of the baseline (shorter span) and the optimized
section-and-planform (longer span) geometries of Boeing 747. The redesigned
geometry has a longer span, a lower sweep angle, and thicker wing sections,
improving both aerodynamic and structural performances. The optimization is
performed at Mach .87 and fixed C'p .42, where 2 is chosen to maximize the
range of the aircraft.
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Table 3.1: Comparison between Baseline B747 and Super B747 at Mach .86

857 Cp Cw
counts counts
Boeing 747 45 141.3 499
(107.0 pressure, 34.3 viscous) | (82,550 lbs)
Super B747 .50 135.2 495
( 96.0 pressure, 39.2 viscous) | (81,870 lbs)

3.6.3 Super B747

In order to explore the limits of attainable performance the B747 wing has been
replaced by a completely new wing to produce a “Super B747”. An initial
design was created by blending supercritical wing sections obtained from other
optimizations to the optimum planform which was found in the planform study
described in the previous section. Then the RANS optimization code Syn107
was used to obtain minimize drag over 4 design points at Mach .78, .85, .86
and .87, shown in Figs. 3.6 (a)-(d) with a fixed lift coefficient of .45 for the
exposed wing, corresponding to a lift coefficient of about .52 when the fuselage
lift is included. Because the new wing sections are significantly thicker, the
new wing is estimated to be 700 pounds lighter than the baseline B747 wing
as shown in table 3.1. At the same time the drag is reduced over the entire
range from Mach .78 to .92 with a maximum benefit of 25 counts at Mach
.87, as shown in Fig. 3.7 (a). Figure 3.7 (b) and Table 3.2 display the lift-
drag polar at Mach .86. The drag coefficient of the Super B747 is 135 counts
at a lift coefficient of .5, whereas the baseline B747 has the same drag at a lift
coeflicient slightly below .44. This represents improvement in L/D of more than
11 percent. In combination with the reduction in wing weight and an increase in
fuel volume due to the thicker wing section, this should lead to a substantially
greater increase in range.

3.7 Super P51 Racer

In this application, the antomatic design methodology has been applied to re-
design the wing of the P51 “Dago Red”, an aircraft competing in the Reno Air
Races. The aircraft reaches speeds above 500 MPH and encounters compress-
ibility drag due to the appearance of shock waves. The objective is to delay
drag rise without altering the wing structure. Hence the shape modifications
are restricted to adding a bump on the wing surface, allowing only outward
movement. Moreover, the changes are limited to part of the chord-wise range,
as shown in Fig. 3.8. The perturbations created by this bump propagate along
the characteristics and are reflected back from the sonic line to weaken the
shock. The improvement is shown in Fig. 3.9.
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Figure 3.6: (a)-(d): Super B747 at Mach .78, .85, .86, .87 respectively. Dash
line represents shape and pressure distribution of the initial configuration. Solid
line represents those of the redesigned configuration.
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Figure 3.8: Added bump to achieve shock-free wing

3.7.1 Shape Optimization for a Transonic Business Jet

The unstructured design method has also been applied to several complete air-
craft configurations. The results for a business jet are shown in Figs. 3.10 (a)
and (b). There is a strong shock over the out board wing sections of the initial
configuration, which is essentially eliminated by the redesign. The drag was
reduced from 235 counts to 215 counts in about 8 design cycles. The lift was
constrained at 0.4 by perturbing the angle of attack. Further, the original thick-
ness of the wing was maintained during the design process ensuring that fuel
volume and structural integrity will be maintained by the redesigned shape.
Thickness constraints on the wing were imposed on cutting planes along the
span of the wing and by transferring the constrained shape movement back to
the nodes of the surface triangulation.
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Table 3.2: Comparison of drag polar; B747 vs. Super B747 at Mach .86

Boeing 747 Super B747
Cr Cp Cr Cp
0.0045 94.3970 0.0005 74.5328
0.0500 82.2739 0.0504 66.5664
0.1000 74.6195 0.1004 64.1332
0.1501 12,1087 ().1505 65.3071
0.2002 73.9661 0.2005 69.0516
0.2503 79.6424 0.2506 75.2481
0.3005 88.7Ho1 0.3006 83.4291
0.3507 101.5293 0.3507 93.2445
(0.4009 118.0487 0.4008 103.2186
0.4512 141.2927 0.4508 116.3848
0.5014 177.0959 0.5008 135.2461
0.5516 228.17R86 0.5509 163.8937
0.6016 298.0458 0.6011 204.3010

(Cp in counts)
Note equal drag of the baseline B747 at C'p .45 and the Super B747 at Cp .5.

3.8 Conclusion

An important conclusion of both the two- and the three-dimensional design
studies is that the wing sections needed to reduce shock strength or produce
shock-free low do not need to resemble the familiar flat-topped and aft-loaded
super-critical profiles. The section of almost any of the aircraft flying today, such
as the Boeing 747 or McDonnell-Douglas MD 11, can be adjusted to produce
shock-free flow at a chosen design point. The accumulated experience of the
last decade suggests that most existing aircraft which cruise at transonic speeds
are amenable to a drag reduction of the order of 3 to 5 percent, or an increase
in the drag rise Mach number of at least .02. These improvements can be
achieved by very small shape modifications, which are too subtle to allow their
determination by trial and error methods. When larger scale modifications such
as planform variations or new wing sections are allowed, larger gains in the range
of 5-10 percent are attainable. The potential economic benefits are substantial,
considering the fuel costs of the entire airline fleet. Moreover, if one were to
take full advantage of the increase in the lift to drag ratio during the design
process, a smaller aircraft could be designed to perform the same task, with
consequent further cost reductions. Methods of this type will surely provide a
basis for aerodynamic designs of the future.
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(a) Baseline (b) Redesign

Figure 3.10: Density contours for a business jet at M = 0.8, o = 2°
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