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Abstract*

This report covers the Phase Il progress in a two-phase effort to
develop the full-potential finite-volume algorithm for transonic flow
over wing-body configurations. The work included investigations of
grid-generation schemes, extension of the wing-body code to more complex
configurations, and the effects of vortex wake modeling.

The wing-body code was used to analyze a computer-designed military
aircraft wing which had been wind tunnel tested. Computed results agree
quite well with the experimental data. A second test case was also run
for a business jet aircraft. Unfortunately, experimental data for the

test case were not available for comparison.

*This work was supported by the Office of Naval Research and NASA Ames
Research Center under ONR contract N00014-78-C-0079.
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1. Introduction

The development of tramsonic calculations has progressed rapidly
over the past several years. Small-disturbance codes have been developed
(Bailey and Ballhaus, 1975; Mason et al., 1978; Boppe and Stern, 1980)
which can model a wide range of geometrical configurations and even
account for viscous effects. . Small-disturbance codes do have limita-
tions, though. In general they cannot accurately treat the flow around
leading edges (Hinson and Burdges, 1980), eépecially for advanced air-
foil designs. They also have difficulty treating moderate to strong
shocks.

In order to overcome these deficiencieé, transonic full-potential
codes have been developed. One of the most promising schemes in terms
of extension to arbitrary configurations is the Jameson-Caughey finite-
volume algorithm (Jameson and Caughey, 1977). This scheme decouples the
geometry from the differencing algorithm so that the main difficulty in
applying the method is to develop a geometry package which can generate
a grid that adequately defines the configuration and has certain smoothness
.equirements.

The work reported in this document has been sponsored jointly by
the Of fice of Naval Research and NASA Ames Research Center. It covers
the second phase of an effort to develop a computer code to model
arbitrary wing-body configurations.

The first phase of the effort was reported in Caughey, Jameson, and
Nixon (1979). This work produced two codes, one using a quasi-conservative
differencing formulation of the finite-volume scheme developed by
David Caughey and the other a fully conservative differencing of the
scheme developed by Antony Jameson. The quasi-conservative code,

FLO 25, can treat wing-body combinations where the body has infinite
length extending upstream and downstream of the physical fuselage. The
fully-conservative code, FLO 28, can also treat wing-body combinations
and car handle finite-length fuselages. The two codes use entirely
different techniques to generate the grids. The grid generated by

FLO 25 is entirely boundary conforming while the grid generated by

FLO 28 does not conform to the fuselage. The latter grid system causes

ressure oscillations in the fuselage-wing junction area (Caughey and
Jameson, 1979).
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The goal of the Phase II work reported here was to overcome the
deficiencies noted in the codes developed in the Phase I work and to
demonstrate the resultant code on test cases. Another goal was to
investigate grid-generation schemes which might readily be extended to
wing-body-tail configurations.

This report covers the wing-body code development and an investiga-
tion of grid systems which could model more elaborate configurations, such
as wing-body-tail configurations. A general summary of the Phase Il
wing-body code development was presented in Mercer and Murﬁan (1980),
in which code comparisons with experimental data are given.

Previous work led to the development of two wing-body codes, FLO 28,
which is based on Joukowsky transformation for the fuselage representa-
tion, and FLO 30, which is based on a cylindrical mapping for the fuselage
representation. The present work evaluated the two codes and selected
one (FLO 30) for further development and demonstration. As part of the
development, a reconsideration of the vortex wake model was accomplished
to determine the adequacy of the original assumptions. Additionally, a
¢ rial subroutine was developed so that velocities and pressures at any
point in the computational field could be printed.

Along with the wing-body code development was an investigation of
grid systems. The grid work covered two separate areas. The first was
aimed at obtaining a better wing-body mesh; the second was aimed at
developing a tail mesh compatible with the wing-body mesh. The need for
the first area was diminished when the cylindrical mesh system in FLO 30
was adopted. The work did demonstrate, however, that two mesh systems
could be overlapped and the numerics would converge. A description of
the method is included in the appendix. Another effort devoted to
improving the basic wing-body mesh was an investigation of slit trans-
formations. This work showed that a direct application of the mesh is
not feasible. The mesh does offer possibilities of modeling more complex
geometries provided that the inherent singularities associated with the
mesh could be overcome.

The tail mesh generation was approached using two different philo-
sophies. The first is based on a ratio of inner to outer boundary

rdinates, while the second is based on a family of super ellipses and




Flow Research Report No. 166
August 1980

_hearing. The latter approach eliminated problems in dealing with mesh-
line kinks and was found to be mbre desirable. Both methods are reported
here. The first method is presented in the appendix.

All the work described in the appendix was performed by Dr. David

ﬁixon while at Flow Research Company.
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Finite-Volume Algorithm

The finite-volume algorithm assumes that the six-sided elements
comprising the mesh in the physical space can be transformed to cubes in
the computational space. The mapping to each cube is assumed to be
local so that transformations can be based on the physical values of the
vertices of the six-sided elements. The location of the vertices (or
mesh points) in physical space may be determined by any suitable pro-
cedure, and two specific examples are given in following sections. The
mapped cubes héve trilinear variations of coordinates ranging from =% to
L (Figure 1), and the potential is assumed to vary trilinearly within
each cell. With the coordinate variation assumption, the corresponding
points in the physical space can be located from points in the computa-

tional space by the local trilinear mapping formula:

8
x = BZxk drxndryng+zn, (1)
k=1
~there X > Yk , and Zk are the mapped vertices of the cubes (#s) and
the x, terms are the corresponding physical values. There are
equivalent formulas for y , z , and ¢ , the velocity potential.
With this mapping, continuity of x, y , 2z , and ¢ 1is preserved at
the cell boundaries. The mapping also allows derivatives of the trans-
formation and potential to be evaluated anywhere in the cell.
The flow equation that we wish to solve is the conservation rela-

tion:

%; (pu) + %; (pv) + %; (pw) =‘§~; (pu.) = 0 . ()

% *
The finite-volume algorithm is a conservative differencing scheme which
satisfies the above equation using the cubical cells in the computational
space. Density is computed from the isentropic relation:
1
p = [1 + l%l-Mi (1 - qz)} v-1 (3)
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1ere q2 = u2 + v2 + w . (4)

The first step in the procedure is to determine the governing

equation [Equation (2)] in computational space. The result is

3 i
— (phU™) = 0 )
X
vhere Xi are the transformed coordinates [X, Y, and Z in Equation (1)]
Ui are the contravariant velocity components, and h is the determinant
of the transformation matrix H with the elements Bxi/BXj . The

contravarlant velocity is defined by

vl = g —3%— =)~ & (6)
ax ox’

A differencing algorithm which conserves phUi on the cubical
cells is derived by creating a set of secondary cells whose vertices lie
at the centers of the primary cubical cells. The flux quantity phUi is

‘aluated at the center of each primary cell (the vertices of the
secondary cell, Figure 2). The flux computed at the corner is assumed
to be constant over that portion of the secondary cell face that lies
within the primary cell. If the global mapping is sufficiently smooth
to allow a Taylor series expansion of the physical coordinates in terms
of the computational coordinates, then the local linear truncation error
terms for the flux will cancel and the flux conservation formula will be
accurate to the second order.

With this approach a problem arises in that the difference operator
decouples odd and even points as shown in Figure 3. This results in a
homogeneous solution where ¢ can be 1 at odd points and -1 at even
points. This problem is overcome by displacing the flux evaluation
point away from the vertices by adding a higher-order correction term.

This displacement recouples the odd and even points and eliminates the
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asogeneous solution. For the simple case of the flux being given by

T the displacement relation used by Jameson and Caughey is
+ € ) (7)

where the subscript o represents the center of the primary cell and
¢ can vary from O to % where the cell height is assumed to be 1 (Figure 4).
Computation of these recoupling terms requires time, and other methods
involving averaging which do not require adding terms are currently
under investigation by other researchers.

In regions where the flow is supersonic, upwind differencing is
employed. This is accomplished by adding terms to the conservation
equation which produce an upwind bias. The terms are selected such that
the proper domain of dependence is used in the differencing. The effect

of this is to produce a rotated difference operator of the form

i
op _ U 3¢ (8)
as q i

¢ 98X

where s 1is the streamwise direction, qC is the contravariant velocity,
and the first-order difference operators B/BX1 are chosen to be in the

upwind direction. The terms added to the flux equation are

Pi=—]J[U1'Qi R (9
X
where 3 is a switching function

b= max [o, a - az/qz)] (10)

and q/a 1is the local Mach number. The presence of these terms has the
effect of adding artificial viscosity to the solution. This does
require, however, that the mesh be smooth in the supersonic zone or the
effect of the higher~order derivatives associated with the artificial

viscosity will cause the solution to give erroneous results.
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The last terms which have to be added to the equation are timelike
derivatives which have the effect of embedding the steady-state equation
in an artificial, time-dependent equation. The final equation that is

solved is a discrete approximation to

9 i i
;{? phU™ + P = G¢XT + B¢YT + 'Y¢)ZT + G(I)T . (11)

where the Pi are the upwind biasing terms in the supersonic zones,

a, B8, and Yy are chosen to make the flow direction timelike, as in

the steady state, and 6¢T is a damping factor.
The complete numerical scheme is outlined below.

(1) Evaluate the contravariant velocity components and densities at the
centers of the primary cells.

(2) Ssatisfy continuity on the secondary cells using the flux values
calculated in step 1 plus the recoupling terms.

(3) Add artificial viscosity in the supersonic zones to produce an
upwind bias and enforce the entropy condition.

& Add the time-dependent terms to embed the steady-state equation in

a convergent, time-dependent process which evolves to the solution.

The main difficulty associated with developing a computer code
~ased on the finite-volume algorithm is that of generating a grid system
ind incorporating boundary conditions. A desirable grid is one which
conforms to all the solid boundaries. Boundary-conforming grids provide
‘0 accurate and convenient means of specifying boundary conditions.

“hey also can be made very efficient in that the grid density can be
“eadily controlled at the boundaries where the gradients of the flow
‘arameters can vary most rapidly.

Since the finite-volume method only requires sets of coordinates
orresponding to the corner points of the six-sided computational cells,
nere is no need to have a single mapping function to generate the grid.
he procedure choosen is one that uses a sequence of rather simple
ransformations. The overall mapping is required to be smooth so that
1€ higher-order effects of the transformations do not cause numerical

stabilities, particularly in the vicinity of shocks.
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Field-Point Calculations

In order to calculate velocities in the field, the location of the
field point relative to the grid points must first be determined. This
is done by transforming the field point to the computational grid. 1In
this Cartesian coordinate system, the eight grid points surrounding the
field point can be readily identified. Once this has been determined,
the velocities, pressures, and local Mach numbers at the grid points can

be calculated using the chain rule

_a _ a3 ag

i i i

. (12)
axt  axt axd

U

Central differencine is used to calculate the derivatives. Once the Ui
components have been determined, the local Mach number and pressure can
be calculated. The values at the field points are then found by using
trilinear interpolation which is consistent with the order of variation
assumed in the finite-volume algorithm.

Figure 5 shows a comparison of velocities computed using the field-
boint interpolation data with an analytical solution. The case shown is
a Karman-Treftz airfoil for which an analytical solution exists. The
line of computed points starts at the leading edge of the airfoil where
velocities change rapidly. This provides a good test of the interpolation
procedure. The agreement is excellent. The calculation was done using
a code which models wings in a wind tunnel. This code uses the same
grid-generation technique as the FLO 30 code. However, there is no body
in this code, so that the spanwise grid sections are planes rather than
cylinders. Unfortunately, time did not permit us to fully implement the

field-point calculation into the FLO 30 code, so this should be done

later,
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Wing-Body Code Development

4.1 Introduction

An investigation was made of the two wing-body finite-volume codes
developed in the Phase I work by Caughey, Jameson, and Nixon (1979).
Descriptions of the grid systems for the two codes and the results of
the study are presented below.

7 The first task which was accomplished was to complete the work
gtarted in Phase 1 for converting the quasi-conservative differencing
scheme used in FLO 25 to one which is fully conservative. The resulting
code has been named FLO 30. This new code differs from FLO 28 in the
grid system used to define the computational space. The FLO 28 grid
system uses a Joukowsky transformation to map the noncircular fuselage
to a slit with the wing extending outward. A grid system is then
established with planes parallel to the freestream cutting the wing, and
a parabolic C-type mesh is used within each plane. Results presented in !
Caughey and Jameson (1979) revealed oscillations in the pressure distri-
bution in the wing root area. Further analysis revealed that these were

oundaries which resulted in an irregular fuselage geometry in the
computation. Although ways could be developed to modify this grid and
overcome this problem, this approach was not undertaken as the other
grid system appeared to provide better wing root-fuselage geometry
modeling and did not suffer from the problem mentioned above. The
problem noted became more severe for high- and low-mounted wings which
are the typical configurations.

The FLO 30 grid system described by Caughey and Jameson (1979) uses
a2 cylindrical-type system. Quasi-cylindrical shells surround the
fuselage. The inner shell corresponds to the actual fuselage geometry
and the outer shell to a cylinder on which the far-field boundary condi-
tion is applied. On each shell a parabolic C-type mesh is used. This
system provides excellent modeling in the wing root area and also pro-
vides more mesh points on the fuselage than the slit-type transformation.

Two expected drawbacks from this system did not present any significant

difficulties. For a closed body, the cylindrical system collapses to a

oo



Flow Research Report No. 166
August 1980

-15-

. e. In practice a very small cylindrical extension to the body is

used and the results appear satisfactory. Also, since the system is

cyiindrical, the vertical mesh spacing above and below the wing increases

with distance outboard from the body. However, in practice, vertical

mesh spacing near the wing tip is comparable for the cylindrical- and

slit-type systems, with the result that the wing root mesh spacing is

better. '
The remainder of this section will describe the mesh system in more b

detail and explain some improvements which were necessary to make the i

earlier version reported in Caughey and Jameson (1979) more robust. .

Example calculations for a Learjet and an A-7 will be presented.

4.2 Grid Generation

The cylindrical computational surfaces are formed by first defining

the fuselage surface as .

r= Rf(x,e) (13)

g = tan-l (v/2z) . (14)

The coordinate system is shown in Figure 6. A nondimensional radius is
formed by

. Rf(x,e)
r = —————— =, . (15)

Rt - Rf(x,e)

Here Rt is the radius of the cylinder passing through the wing tip.

Within each surface of constant r , the configuration appears as a
wing in a wind tunnel with 6 being the ordinate and the "wind tunnel
walls" as the symmetry planes. A C-type mesh is used in this plane.
The mesh conforms to the wing's surface and the "wind tunnel walls."

The mesh is generated by "unwrapping' the airfoil about a line
which starts at the center of curvature of the leading edge and proceeds
downstream bisecting the trailing-edge angle and coincident with the ¥
wake. The wake position is assumed such that it bisects the trailing-

¢’ e angle and follows a body contour line downstream. The purpose of
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ehe unwrapping is to create a Cartesian grid system in a transformed
plane which will allow a convenient distribution of mesh lines to be
specified. The grid points in the transformed plane can then be trans-
formed back to the physical plane.

The transformation procedure consists of several transformations
and is outlined in Figure 7. First a coordinate shift is made to remove
the sweep and place one coordinate axis at the center of curvature of
the wing's leading edge. Next an elliptic transformation is made to
shift the wing to the center of a tunnel whose walls are at =7

G - a)’ + [2(6 -8 - b]z - RZ, (16)

where a, b, and R are selected to meet the contraints
= 47 at 6 = +1/2 ,

= -7 at 6 = -7/2 , and (17
= (0 at 6 =26 .
s

i 9@l <@

dere es is the angular location of the center of curvature of the wing
section formed by the intersection of the cylindrical grid surface and
the wing., The factor 2 appears on the 6§ - 65 term so that the global
scaling of the 6 to y transformation can be accounted for. This
latter transformation allows the wing to be displaced from the center-
line (2 = 0%) by as much as +65.88°. This has been found to be
adequate for all the test cases run so far. If still further displace-
ments are required, an exponential transformation could be used. This
function would always provide a unique mapping regardless of the amount
of displacement from the centerline.

Next an unwrapping function is used:

£+ dn = cosh™ ! (1 - 2e%* 1) | (18)

This transformation makes the wing and wake appear as a slowly varying
curve about n =7 in the £ , n plane. Finally the £ , n plane is
sheared using

Y = (19)

n/nwing-wake
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his produces the desired parallel line representation of the wing-wake
and tunnel wall shown in Figure 7d. The remaining procedure is to
distribute Cartesian grid lines in this space and transform the inter-
section points back to the physical plane by reversing the transforma-
tion procedure just described. Figure 8 shows a coarse grid generated
by the procedure. The fine grid used for the final computation has four
times as many divisions in each direction.

One additional transformation was found to be necessary’io handle
highly swept wing configurations. For swept«ﬁings ;hat are highly
tapered, the mesh system described above becomes very highly swept far
upstream or downstream. This causes numerical instability problems.

The reason that the mesh sweep increases upstream or downstream is that
for each cylindrical surface the nondimensionalization used is based on
the local wing chord. With a highly tapered wing, the mesh lines
advance upstream more rapidly at the root than at the tip. This adds to
the basic sweep of the mesh system due to wing sweep. To overcome this
problem, the grid points obtained by the transformations described so

ir were shifted according to:

c

x = x o+ (x - x.LE)[l +<—C-13 - 1> tanh® (x - xLE):] for x < x o (20)
c

X = xpp + (x = xpp) [1 +<—CE - 1> tanh? (x - xTE)] for x > xpp (21)

where X E is the local wing leading edge, is the local wing

X
trailing edge, C is the local wing section cggrd, and CR is the root
section chord. These stretching functions have the effect of changing
the local scaling from the local chord to the root chord far upstream
and downstream of the wing. This removes much of the added sweep due to

taper and provides the more stable computational grid.

4.3 Boundary Conditions

Boundary conditions for the wing-body code can be divided into
specifications on the configuration, specifications on the far-field

boundaries, and specifications on the lifting-surface wake. The actual

— A
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ke position is part of the solution since it corresponds to a stream-
line surface. However, it has been demonstrated in the past that an
approximation to this surface is-actually good enough (see Section 6).
An approximation which works fairly well is to assume that the wake
Jeaves the wing's trailing edge at the bisecting angle, and its position
varies smoothly downstream. The wake is not assumed to be a streamline
surface (i.e., normal flow is.enforced). The wake does have a jump in
velocity potential across it but the downstream-and normal components of
velocity are forced to be continuous. Therefbre, there is only a
discontinuity in the spanwise component of velocity, and the pressure is
continuous to the first order.

On the body and wing, no normal flow is enforced. Also, no normal
flow is enforced at the upper and lower boundaries of the two-dimensional
grids on the cylindrical (r = constant) surfaces since these lines R
correspond to the planes of symmetry. Flow normal to these lines corre-
sponds to cross flow which must be zero for symmetry reasons.

Upstream, the Mach number and angle of attack are specified, and,
‘he perturbation velocity potential vanishes. Downstream, the perturba-
tion velocity in the x-direction is assumed to vanish. This produces a
first-order approximation to a return to freestream pressure. On the
outer shell, all the perturbation velocity components are assumed to
vanish. The far-field boundaries in the finite-volume algorithm are
actually at a finite distance from the configuration. This in itself
introduces some error; however, comparisons with other analyses and wind

tunnel data would indicate the effect to be small.

4.4 Check Cases

The wing-body code has been exercised for several representative
configurations. Results have shown good agreement with other numerical
techniques in their common range of validity. Two sample results are
Presented. The first example is a Learjet for which no wind tunnel data ;
are available for comparison. The second configuration is a Navy attack
aircraft (A-7) with a nonstandard supercritical wing which was designed
for the configuration using numerical optimization techniques (see
Haney, Johnson, and Hicks, 1979, and Haney and Johnson, 1980). The

ving-body configuration was tested at NASA Ames Research Center to
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verify the new design goals and, hence, wind tunnel data is available
for comparison. The redesigned wing configuration resulted from a
design exercise to test transonic numerical design techniques.

Figure 9 shows a coarse computational grid on the Learjet. The
final computational mesh has four times as many grid lines in each
direction and is formed dividing the mesh spacing shown in half and then
in half again. Figure 10 shows the pressure distribution on the wing at
a span station near the root and one near the tip. Unfortunately, no
vind tunnel data were available for comparison.

Comparisons of wind tunnel resuls with FLO 30 calculations are
shown in Figure 11. Except for very close to the root, the computed
lower surface pressure agrees almost exactly with experimental results.
Upper surface pressures, in general, are lower than computed. This
could be caused by either wind tumnel interference or code modeling
accuracy. The angle of attack uséd for the computer analysis was
identical to the wind tunnel angle of attack of 4.68°. Closer upper

surface pressure agreement might be obtained if 1lift coefficients were

matched. Also, the effect of viscosity has an influence on the pressures.

Near the tip (n = 0.878), the boundary layer reduces the amount of
recompression behind the shock and weakens the shock strength. Overall
the comparison shows excellent agreement.

Haney and Johnson (1980) describe the models and test procedure
used to obtain the wind tunnel data. Comparisons in that report with a
computer code that does not include the fuselage are not as good as
those shown in Figure 12. 1In order to demonstrate the effect of the
fuselage on the pressure data, the FLO 28 code was used to model the
wing alone. For the wing-alone calculation, the wing planform was
extended to the plane of symmetry. The first station shown on Figure 12
(n = 0.146) is close to the wing-body juncture (n = 0.12) . These
results show the strong influence of the fuselage and the good agreement
of the wing-body code with the wind tunnel data. Both the wing-body and
wing-alone computer codes were run at the same angle of attack as the
wind tunnel model; as for the previous comparisons, there was no attempt

to match overall 1lift.
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Figure 13 shows the effect of the fuselage on the spanwise loading.
The results are nondimensionalized by the total lift coefficient so that
the comparison shows the distribution effect. The presence of the
fuselage tends to increase the nondimensionalized loading inboard on the
ving. The effect of the fuselage on the total lift is indicated on the
figure. For an angle of attack of 4.680, the fuselage reduced the total
1ift by 38 percent from 0.485 for the wing-alone case to 0.300 for the

ving-fuselage case.
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5. Slit Transformations

A slit transformation is a mapping which compresses a finite-

. thickness body into a zero-thickness sheet. One example of such a
transformation is the Joukowsky and shearing transformations that FLO 28

- uses for the fuselage representation. By employing a sequence of such
transformations, a complex wing-body-tail-nacelle configuration can be
reduced to a configuration whose fuselage, wing, tail, and nacelles are
all slits being on Cartesian planes. Generation of the computational
grid for such a configuration would be quite easy. Therefore, a pre-
liminary study using a two-dimensional airfoil code was initiated to
test the feasibility of such a transformation. Results for a NACA 0012
airfoil are presented. '

The grids obtained by a slit transformation are shown in Figure 14.
The grid lines are similar to streamlines and potential lines. The
distribution of lines is selected to give good resolution in the areas
of interest and where the flow variables are changing rapidly. Away
from the airfoil, the streamlines spread.

This type of mesh can easily be blended into a Cartesian mesh for
the far field. A disadvantage of this mesh system is that the stream-
line and potential-like lines maintain their spacing throughout the flow
field so that the dense spacing of lines emanating from the airfoil
leading edge remain densely spaced in the far field where this density
is not required. Another disadvantage is that the transformation is
singular at the leading edge of the airfoil. This transformation
singularity causes the velocity potential variation to also become
singular, even though the velocity potential variation is regular in the
physical domain.

A computer code was assembled which implemented the slit transfor-
mation into a two-dimensional finite-volume code. Figures 15 and 16
show results for a sample calculation. For this test case, no special
treatment was made for the leading edge region. Rather the fact that
the discretization does not produce a singularity was used as a means to
eliminate any special treatment of the leading edge. The results show
' 8ubstantial differences between the coarse and fine meshes in both

minimum pressure level and shock position. The convergence rate was
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w. Although the fine-mesh results appear to be in general agreement
with results obtained from other grids, the computing time was too
large.

Several possible reasons could cause the slow convergence. The two
most likely are the treatment of the mesh singularity at the leading
edge and the relatively high aspect ratio of the mesh cells in the far
field caused by the narrow potential-like lines.

Unfortunately, time did not allow a thorough investigation of the
reasons for the slow convergence sc¢ that the study was limited to the
results presented. The advantages of this type of coordinate system are
substantial, particularly for complex configurations. Therefore, the

study should be continued to resolve the current prcblems.
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2. Consistent Vortex Wake Model

The vortex wake behind a lifting surface is a contact discontinuity
in the context of inviscid aerodynamics. Certain '"slip conditions' are
allowed across the vortex sheet. The conditions to be satisfied on the
vortex sheet can be stated by a kinematic condition and a dynamic
condition. The kinematic condition to be imposed is that the vortex
sheet is a stream surface so that no fluid is allowed to pass through.
The dynamic condition is that the pressure at both sides of the surface
must be equal. These two conditions together with the potential equa-
tion in the flow field determine the position of the sheet and the flow
condition on both sides of the sheet, much like the determination of the
shock wave in the flow field in the compressible flow.

The approximate vortex wake model is assumed in the present code
FLO 30 as follows. The position of the vortex wake is assumed to come
off the trailing edge at its bisection angle and follow a prescribed
trajectory downstream. Thus, the kinematic condition is satisfied only
at the trailing edge. The flow is allowed to pass through the wake.

The dynamic pressure continuity condition is also treated in an approxi-
.. .e manner. The numerical procedure in the code implies that there is
no pressure jump to first order. That is enforced by requiring the
component of velocity in the X (freestream) direction to be continuous
across the wake. Also the Y-component of velocity is forced to be
continuous (no sources in the wake). The possible source of error in
the dynamic condition across the wake is the contribution to the pres-
sure by the Z-component of the velocity.

In the following, we shall make an estimation of the error based on
the parameters in the practical range. The deviation of the pressure

from the freestream value to the second order can be written as:
' ' 12 12 12 "
p' = 0(u") + 0(u'") + O(v'") + O(w'") . (22)
The first three terms on the right-hand side are continuous across the

wake. The possible error may come from the last term. Let us make an

estimation based on the lifting line theory.

. o v
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The circulation T at a certain section can be expressed in terms

. the sectional 1lift coefficient CZ as

1 2
P 0T = i-pwUmcC2 (23)
wﬁere ¢ 1is the chord length.
The shed vortex is the spanwise derivative of T :
_dr 1. d i
g = y 5 U, iy (Czc) (24)
Let 'Egg be the reference quantity. Then:
C,c C,
1 2 2
o ~ E-Uw T——-* U°° AR ° (25)
_b N
2
where b 1is the wing span and AR 1is the wing's aspect ratio. ;
The perturbation velocity w' is related to o by:
C
'=}_.g__._g‘._ ]
w 3 Um 5 . (26)

1
Compare the contribution of w'2 to the perturbation pressure p to

that of u' = O(Eé) , we have:

y |
—=0 : (27)
4 A%R?

For Eé = 0.3 and AR = 4 , the contribution from the cross-flow com—

2 . . .
ponent w' of velocity to the pressure is only 0.5 percent. This

. . . X V2 .
estimation is based on the assumption that the w component is
completely wrong or ignores,
To actually demonstrate that the pressures computed on two sides of

the vortex sheet satisfy the dynamic condition to a high degree of
accuracy, we have printed the pressure coefficients as well as the

velocity components U, V , and W on either side of the sheet.
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For an M-6 wing with a Mach number of 0.84 and an angle of attack
~f 3.060, the largest error (ACP/CP)max is 0.0l4. We do not believe
this error will cause a significant impact on the calculated pressures
on the solid surfaces.

" An inspection of the computational results in the w' component of
the velocity at both sides of the wake shows that they are indeed
approximately equal and opposite in the far field where the lifting line
theory is applicable. Their contributions to the pressure disturbance
will be equal across the wake.

The numerical computation shows that the approximate wake model in
the code is adequate for all practical purposes. The improvement of the
model either in kinematic condition or in dynamic condition requires
substantial effort which is not justifiable in terms of the ;Etual
improvement in the accuracy of the computation.

Another consequence of assuming a wake position comes into account
when considering the effect of a wake on the horizontal tail. If we
assume that the wing span loading is approximately elliptical, then the
i wash induced by the wake in the Treftz plane will be uniform across
the wake. If we now examine the variation of the downwash as a function

f the vertical displacement from the wake at the wake centerline

1

1 -X X

i} G _ x2 x +vy

ve find that for a 0.1 semispan displacement, the induced downwash is
}.9 times the downwash on the wake. At 0.2 semispans away, the downwash
lrops to 0.8. Since the downwash in general represents a fraction of

-he angle of attack,

4

ET T AR + 2

e see that the effect of wake displacement is small for even displace-

ts as large as 0.2 semispans.

(lifting line) , (29)

ot s s =

- -
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The net result is that the exact wake
model the flow on the horizontal tail. Of
that the span of the tail is less than the
assumption is violated, then not only will

stronger, the effects of wake roll-up will
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location is not necessary to
course this analysis assumes
span of the wing. If this
the vertical variation be

also become very important.
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7. Generation of Embedded Tajil-Plane Mesh

7., Introduction

Due to the complexity of the general geometry of an aircraft, it is
felt that it will be extremely difficult, if not impossible, to describe
the flow space around it by a single mesh system, particularly when the
mesh must be subjected to several constraints. For finite-volume com-
putation of transonic flow, the following requirements on the mesh

system must be satisfied.

(1} Any aircraft surface must be a coordinate surface.

{2} The mesh lines near wings and tail planes must wrap around the
leading edge.

{3} The mesh must be dense near the expected fegions of fast variation,
i.e., the leading edges and the expected position of shock waves.

{4} The vortex sheets behind lifting surfaces must be coordinate

surfaces.

The FLO 30 code developed in the present contract satisfies the above
“equirements for the wing~body combination. But, it is unlikely that
:  :an extend the mesh-generation scheme used in FLO 30 to include tail
lanes and other appendices.

Instead, thoughts are given to the approach of embedded mesh
systems and interactive computation, as described in the following.
-ocal meshes may be installed around the tail planes and other appen-
iices. These local meshes will be embedded in the wing-body mesh of
L0 30 by using common boundaries. Computations can be performed
separately in the local meshes, and the interaction between the wing-
zody computation and the local computations can be made by iterating
chrough common boundary values.

To demonstrate the feasibility of the idea given above, the local
sesh around a tail plane will be chosen as an example. We shall first
iiscuss the common boundaries in three-dimensional space for both the
cail-on—fuselage and the high-tail cases. The mesh system on a "two-
{imensional cut” will be generated. A two-dimensional finite-volume
omputation will be performed on the generated mesh system to demon-
irate its computational quality. Suggestions on the method of inter-

- e computation will be given.

© e ot hb—- . W h—tna v
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7. Embedded Tail-Plane Mesh

Two views of the tail-plane location in the wing-body mesh of
FLO 30 are shown in Figure 17 for the tail-on-fuselage case. It is
natural to choose the fuselage surface and a spanwise surface Z = Zo
as two boundaries of the tail mesh. The other four tail mesh boundaries
can be chosen as the box ABCD shown in Figure 17. Within the tail
region, we can again choose the Z = constant surfaces as the coordinate
surfaces, although it may be desirable to increase the number of span-
wise stations lecally. Now on the Z = constant surfaces, the tail plane
becomes a wing-in-a-box configuration. A family of wraparound C-type
coordinate lines must be generated so that they vary continuously from
the shape of the airfoil to the rectangular shape ABCD. Here, it should
be remembered that any deviation of the shape of ABCD from a rectangle
can be accounted for by a shearing transformation. In the rest of the
work, we shall assume that this transformation has been done. The
generation of the mesh on the Z = constant surface will be discussed in
Section 7.3.

For the high-tail case, it is advisable to modify the Z = constant
surface in the wing-body mesh so that the tail planes are on the surface,
as shown in Figure 18. This modification can be done either by shearing
transformation or by use of the "super ellipse', similar to that used
later in Section 7.3. 1In this case, the tail region is bounded on two
sides by the plane of symmetry and the Y = Yo surface as shown in
Figure 18. Now, we can use Y = constant surfaces as our coordinate
surfaces in the local mesh. On these surfaces, again, the wing—in—é—box
configuration is obtained.

From the discussion given above, it is clear that the first step
toward the goal is to generate a two-dimensional local mesh for the

wing-in-a-box configuration.
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Z = Constant

Figure 18. High-Tail.
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7. Grid Generation

As discussed in Section 7.2, the mesh in the tail region consists
of planes on which the cross section of the tail plane and the common
boundaries with the wing-body mesh form the wing-in-a-box configuration.

In this section, we shall generate the mesh lines in this plane.

7.3.1 Wraparound C-Type Lines

Consider a family of curves
m
X Y
G +G) =1, G0

where m , n , A, and B are the parameters with A greater than B .
These curves are a family of super ellipses with major axis A and
minor axis B . For m=mn =2 , it is the regular ellipse. As m
approaches infinity and n approaches infinity, it becomes a rectangle
with Z2A and 2B as its sides. If m and n are varied from 2 to
infinity, the family of curves will vary continuously from an ellipse to
- ~ctangle.

In this work we shall use this property of the super ellipse to
-enerate the C-type mesh line for an airfoil in a box.

et Y € (0, 1) be the computational variable with Y = 0 on the
airfoil surface and Y = 1 on the rectangular outer boundary. In
Zquation {(30), the parameters A , B, m, and n are assumed to be
‘unctions of the computational variable Y . Consider a family of super
z1lipses with the center at the trailing edge. On the airfoil surface
Y = 0 , we choose a regular ellipse m(0) = n(0) = Z with the major
axis A{D) = LC , where LC is the chord length of the airfoil. The
winor axis B(0) is chosen so that the curvature of the ellipse at the
leading edge X = —LC matches that of the given airfoil. For Y > 0 ,

he parameters are given the following variations:

m(Y) = n(Y) = —— (31
1-y

A A(D) A(l) - A(0)
= + F(Y) (32)
B B(0) B(1) - B(0)

- WS o T v i
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<k e F(Y) 1is a monotonically increasing polynomial function with
“(U) = 0 and F(l) = 1 ., These ellipses are terminated at the trailing
:dge forming a family of C-type mesh lines which vary continuously from
i regular ellipse on the airfoil to a rectangular shape as the outer boun-
dary is approached. Now the Y = 0 1line is oscillating to the airfoil
at the nose and deviating from the given airfoil on other points. A
simple shear transformation moves the Y = 0 1line to the airfoil surface.
These C-type lines are first continued horizontally into the wake region.
As it turns out, this process produces an extremely large aspect ratio
f§->> 1 of the mesh cell as one proceeds into the far wake. The large
aspect ratio of the mesh causes the numerical scheme to diverge for the
two-dimensional 1ifting case.

To avoid this difficulty, the vertical spacing of the mesh lines is
3djusted smoothly to a new distribution within a distance of the order
>f one chord length downstream of the trailing edge. This smooth tran-

sition is achieved by use of tanh2 (x - XTE) .

.3.2 X = Constant Lines

To form a computational mesh, another family of curves intersecting
1e C-type mesh lines must be generated. The generation of this family
f curves can be described in two parts.

The first part is the generation of a mesh upstream of the trailing
dge. For each "loop" where Y = constant , the parametric form of the
uper ellipse X(s) and Y(s) 1is computed, where (X, Y) 1is the
hysical coordinate and S € (0, 1) is the normalized arc length. On
he airfoil surface where Y = 0 , the arc length distribution Si(Y = 0)
f{ mesh points is chosen so that the meshes are concentrated near the
icinity of the leading and trailing edges. On the outer boundary where
= 1 , the other arc length distribution Si(Y = 1) 1is also chosen.

>r intermediate "loops" where 0 < Y < 1 , the combinations of the two
5, = (1= £()) 8,(¥ = 0) + £(1) 5,(¥ = 1) (33)

e used where f(Y) 1is a monotonic polynomial with f(0) = 0 and

13 = 1 . The choices of Si(Y = 1) and £(Y) are quite arbitrary.

C s e e g vhiea
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"hev are chosen in such a way that the resulting mesh is not unreasonably
‘kewed as judged by the visual inspection.

Figure 19 shows the mesh generated by the method discussed above.
“igure 20 shows the detail of the mesh lines in the neighborhood of the
airfoil. The mesh lines are nonorthogonal though they are not unreason-
ably skewed.

It is felt that the success of a mesh-generation scheme must be
demonstrated by actual finite-volume computations of the transonic flow

in the supercritical regime.

7.4 Finite-Volume Computation with Tail-Plane Mesh

It has been mentioned by Jameson and Caughey (1977) and demonstrated
>y Jameson and Jou (1979) that the smoothness of the mesh is a require-
nent of the finite-volume computation using the artificial viscosity
sodel. The discontinuity of the transformation matrix Xy can be
:olerated by the subsonic flow but will give erratic results if the flow
in the region of mesh singularity is supersonic.

To demonstrate the success of the mesh-generation scheme developed

e the two-dimensional finite-volume code by Jameson, FLO 26, is
odified to accommodate the new mesh.

The calculations are performed in the rectangular region (9 chord
"engths by 8 chord lengths) in terms of the NACA 0012 airfoil. Figure 21
shows the pressure distribution for the nonlifting case where the Mach
wumber is 0.85 and the angle of attack is 0°. Figure 22 shows the
sressure distribution for the lifting case where the Mach number is 0.75
ind the angle of attack is 2°. Both are in good agreement with the
-omputations performed by using the original parabolic mesh system.

It is demonstrated that the mesh generated here for a wing-in-a-box
onfiguration gives good computational results for supercritical flow.
The only place of mesh discontinuity is along the vertical line through
he trailing edge. For the usual operating Mach number for which the
sotential flow computation is useful, the flow at the trailing edge is
;ubsonic. There should not be any difficulty associated with the mesh

roperty there.
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Figure 20. Detail of the Mesh.
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3 Conclusions

Over the past two years of development much progress has been made
with the full-potential transonic wing-body code. Several aircraft
companies have used the code to develop confidence in it as a design and
analysis tool. The work has been very successful in showing good com~
parisons with available experimental data. Issues regarding modeling
and computed results raised on the Phase I effort were resolved in the
Phase II effort. The general direction of future work has been outlined
and some preliminary efforts started.

The second phase of the transonic wing-body work reported here has
demonstrated that realistic configurations can be analyzed with the code
developed (FLO 30). Comparisons of computed and experimental results
show that the primary differences can be attributed to the effects
of viscosity. FLO 30 appears to be very robust in that it has been used
to model several configurations without any changes to the code.

Improvements made to the basic grid-generation scheme used in
FLO 25 allow FLO 30 to treat highly swept and tapered wings. Additional
.« ing of the code should be done to establish the limits to which the
‘ode can be applied. Other means of unsweeping the mesh upstream and
downstream than the one described in this report may be required for
some extreme wing configurations.

A systematic means of mesh embedding needs to be developed in order
to model more complex configurations. Some of the techniques described
in this report could be generalized to meet the requirements for hori-
zontal tails and nacelles. The next stage in the code development
should be to model a wing-body-tail configuration. This would provide
an opportunity to resolve the techniques of grid fitting and mesh
satching which will be necessary. Some work has already been done on
this problem (see the appendix), but more effort remains to see what is

>ractical.



AT et s me e s s S

August 1980
-57~

References

.ailey, F. R., and Ballhaus, W. F. (1975) "Comparisons of Computed and
Experimental Pressures for Transonic Flows About Isolated Wings and
Wing Fuselage Configurations,' NASA SP-347, Part II, March,
pp. 1213-1232.

Boppe, E. W., and Stern, M. A. (1980) "Simulated Transonic Flows for
Aircraft with Nacelles, Pylons and Winglets," AIAA Paper 80-0130,
January.

Caughey, D. A., and Jameson, A. (1979) "Recent Progress in Finite-Volume
Calculations for Wing-Fuselage Combinations,' AIAA Paper 79-1513,
July. -

e e e tnrt s

Caughey, D. A., Jameson, A., and Nixon, D. (1979) "Development of Finite '
Volume Methods for Three-Dimensional Transonic Flows,'" Flow Research i
Report No. 134, February.

Haney, H. P., and Johnson, R. R. (1980) "Application of Numerical Optimi-
zation to the Design of Wings with Specified Pressure Distributions,"
NASA Contractor Report 3238.

Haney, H. P., Johnson, R. R., and Hicks, R. M. (1979) "Computational
Optimization and Wind Tunnel Test of Transonic Wing Designs,' AIAA
Paper 79-0080, January.

inson, B. L., and Burdges, K. R. (1980) "An Evaluation of Three-Dimensional
Transonic Codes Using New Correlation-Tailored Test Data,' AIAA
Paper 80-0003, January.

Jameson, A., and Caughey, D. A. (1977) "A Finite Volume Method for Tran-
sonic Potential Flow Calculations,' AIAA Paper 77-635 in Proceedings
of AIAA 3rd Computational Fluid Dynamics Conference, June, pp. 35-54.

Jameson, A., and Jou, W.-H. (1979) Unpublished results presented at FFA
Meeting, Stockholm, September.

4ason, W., MacKenzie, D. A., Stern, M. A., and Johnson, J. K. (1978) !
"A Numerical Three-Dimensional Viscous Transonic Wing-Body Analysis
and Design Tool," AIAA Paper 78-101, January.

“ercer, J. E., and Murman, E. M. (1980) "Application of Transonic Poten-

tial Calculations to Aircraft and Wind Tunnel Configurations,' AGARD
Conference on Subsonic/Transonic Configuration Aerodynamics, May 5-7.



August 1980

Appendix: A Preliminary Study of an Overlapping

Grid-Generation System

Abstract

A study is made of existing and novel grid-generation schemes for
omplex airplane configurations. It is suggested that existing grid-
eneration schemes all have disadvantages when complex multicomponent
odies are considered. Accordingly, the concept of an overlapping mesh
vstem has been developed in which a mean optimum grid for each com-
onent of the body is generated and these grids are coupled by an over-
apping system. A preliminary example of a wing-body calculation using
his type of grid system is presented. An example of a horizontal tail
rid embedded in a wing grid is also presented, although no flow calcu-

ztions have been programmed.
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Introduction

In order to estimate the flow distribution around a body using a
inite difference computational method, a finite difference mesh or grid
ast first be constructed. When such finite difference computations
ere being developed, the main problem was the derivation of stable and
apid algorithms. The wing or airplane was represented by a somewhat
rimitive model. For example, wings were represented by a plane using
he well-known thin-wing approximations (Bailey and Ballhaus, 1972); in
uch cases, the computational grid was Cartesian. For a wing-body
ombination (Ballhaus, Bailey, and Frick, 1976), the body was repre-
ented in a fairly crude fashion by simply taking the nearest (Cartesién)
rid points. As stable algorithms were developed, there arose a need to
evise more suitable computational grids.

The main criteria for judging the efficiency of a particular grid
5 the number of grid points required for a given accuracy, since the
>tal computation cost decreases with the number of grid points. 1In
ractice, this requires that mesh points be clustered near regions of
z gradient in the flow and be more sparsely distributed in regiomns

moderate gradients. Areas of rapid flow gradients, such as the
zading edge of an airfoil, can often be specified in advance, which
:1ps in determining the clustering. A further problem is the accurate
.d computationally simple representation of the body in the grid. This
. best achieved by the use of a body-~conforming grid in which the body
irface coincides with an extreme member of one family of the coordinate
irface that constitutes the grid.

For two-dimensional airfoil computations, a circle plane mapping
.ich transformed the flow field exterior to the airfoil to the interior

a unit circle (Sells, 1968) proved very satisfactory. The actual
-id is constructed by a net of concentric circles and radial lines. 1In
idition to being a body-conforming grid (the unit circle identifies
ith the airfoil surface), this transformation clusters grid points in
-gions of high curvature, such as the airfoil leading edge. This
rticular grid is orthogonal. 1In principle, the circle plane mapping
11d be used for a three-dimensional wing by transforming each wing
- n to a circle, although it may be difficult to treat, for instance,

~ing~body-tail configuration.
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An alternative means of generating a mesh for an airfoil section is

ing a parabolic-shearing mesh system. Initially it is assumed that
ie airfoil section is parabolic and the parabolic section is then
inwrapped" about a regular line inside the airfoil. The airfoil leading
ige is approximately parabolic. This square-root transformation trans-
orms the airfeoil section to a quietly undulating curve which can then
‘e removed by a simple shearing. This does lead to a nonorthogonal
rid. Application of this grid-generation system to sections of a wing
.ave been used by Jameson and Caughey (1977) for finite wing computations.

There are other variations of "unwrapping' grids which are similar
o those discussed above. These mesh-generation systems can be termed
nalytic since they are complemented by a series of analytic operations.
second type of classification is numerical generation of the computa-
ional mesh in which the unit is constructed by the numerical solution
f a set of partial differential equations. These equations are usually
oisson's equations for the transformed (computational) coordinates.
ne forcing terms are inserted to control clustering or possibly ortho-
'nality. It is perhaps worth noting for two-dimensional grid generations
a .f the forcing terms are neglected and the set of equations solved
bject to the Cauchy-Reamann conditions, then the numerically generated
sordinates are identical to a conformal transformation generation
~heme. Generally, numerically generated coordinate systems are non-
-thogonal. Applications of this type of approach to three-dimensional
»dies are, in principle, straightforward. The most common applications
° this approach follow the work of Thompson, Thames, and Mastin (1974)
1d Mastin and Thompson (1978). Further developments concerned mainly
.th clustering and orthogonality are by Sorenson and Steger (1977;
_eger and Sorenson, 1978).

The present generation of transonic flow computer codes can be used
>r (fairly simple) wing-body configurations. The grid-generation
-hemes used are based on the above techniques. For example, Jameson
~1d Caughey (1977) transform the body, section by section, to a plane
,ing a combination of conformal transformations and simple shearing.

is transforms the problem to that of a (transformed) wing on a wall,
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a7 he grid can then be constructed using the parabolic-shearing trans-
>rmation discussed above. A recent version of this computer code is

nat of Caughey and Jameson (1977) in which the mesh system consists of
cylindrical coordinate surface based on the body axis followed by a
ogarithmic unwrapping of the wing section in the intersecting cylin-

‘rical surface. Three-dimensional solutions of the Navier-Stokes

‘quations have been obtained in a numerically generated grid by Thompson,

‘hames, and Mastin (1974). The physical problems treated in these
omputer codes are fairly simple wing-body configurations. Even then,

he existing mesh~generation schemes sometimes have disadvantages.

In Section 2, existing and novel mesh-generation schemes are
ritically discussed regarding their applicability to realistic con-
igurations. It 1s suggested that the best system may be an overlapping
esh system in which a "master" grid is chosen (for example, around an
solated wing) and each additional component (body, tail, nacelle, etc.)
as its own ''slave'" grid. Each slave grid ideally has common points
‘th the master grid and possibly other slave grids, although some form

terpolation may be used. In principle, this allows the grid system

be constructed as the complexity of the configuration increases.
>me general rules regarding uniqueness and orthogonality of the system
re derived. The main disadvantage seems to be an increase in the
mber of iterations of the difference schemes, although this could well
- offset by the reduced local complexity of the mesh.

A grid system for a semi-infinite body, closed at the front, with a
ing has been generated using these techniques, and an example has been
>mputed. Comparison of these results with those of Jameson and Caughey
1977) indicates that some problems in the generated grid remain but
nat in principle the basic approach is sound. A second grid system
uitable for a wing-body horizontal tail configuration has also been
repared and the grid constructed. However, no flow computations have

een programmed.
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Mesh-Generation System

Before discussing different mesh-generation systems, perhaps it is
dvisable to lay down some ground rules upon which the discussion will
‘e based. The basic object of the present work is to devise a mesh-
seneration system capable of treating realistic airplane configurations.
~onsequently, the discussion of grid generation will to some extent
enter around the capability to represent a wing-body combination with
coth a vertical and horizontal tail and with a nacelle somewhere on the
ving. The configuration is sketched in Figure 1. It is also helpful to
!ist the desirable properties of a mesh system even though it may be
-.mpossible to satisfy all such requirements. It is suggested that the

‘ollowing properties are desirable in any such system.

a, The mesh system should ultimately be capable of treating
realistic airplane configurations.

b. The mesh should be rapidly generated.

c. The mesh should have sufficient smoothness, compatible with
the difference scheme.

d. The mesh should not have excessive ''skewness' which can cause
numerical inaccuracies or instability.

e. The mesh should be capable of development to an adaptive grid
in order to cluster points in regions of rapid change. Also,
it should ultimately be capable of alteration during a compu-

tation in order to treat unsteady effects.

f. The mesh system should not require a high level of computer
input.
g. The mesh should reduce to a Cartesian (or universal) mesh

outside the neighborhood of the airplane. Since the metrics
for this universal mesh can be permanently stored in the
computer, this removes the need to difference the transfor-
mation metrics in this region for each case and thus saves

computing time.

These then are the general guidelines upon which the following

scussion is based.



August 1980

‘uopeinbyuo) ise |

‘| 8anbig




August 1980

1

Jameson-Caughey Parabolic Mesh

This mesh system, described by Jameson and Caughey (1977), is
ipable of treating a wing/finite body combination. In this system an
weloping circle is constructed at each body section and this circle is
hen conformally transformed to a slit. The representation of the body
s a slowly varying curve which is then collapsed to the slit by a
hearing transformation. The resulting configuration is a (transformed)
ing on a wall. A parabolic transformation is used to unwrap the wing
bout a singular line just inside the wing. The wing at any section is
hen represented by a slowly varying curve which is reduced to a plane
v a shearing transformation. The ''slowly varying curve' arises from
he assumption that the rapid curvature region of the airfoil section at
he leading edge can be approximated by a parabola. The wing wake
eometry can be treated adequately in this system.

This parabolic grid system is satisfactory for an isolated wing,
1e main disadvantage being the tendency to give a coarse mesh in the
sysical space near the wing trailing edge. However, since this grid is

i dominated" it can produce undesirable effects on the body. After
e initial conformal and shearing transformation, the body is repre-
nted by its profile. Unless this profile coincides with one of the
ing-generated '"parabolic'" lines, the body profile is distorted by the
>pearance of '"fins'". This is sketched in Figure 2. Although these
ins diminish in size as the grid is refined, they still constitute a
-rong disadvantage of this grid. Furthermore, the grid spacing is
-termined by its desirability for the wing calculation which may not be
all suitable for certain fuselage geometries; some of the grid cells
:ar the wing root or the symmetry plane may be highly skewed.

Turning to the problem of incorporating extra components such as a
'rizontal tail or a nacelle, it 1s not at all clear how these could be
corporated into the wing-dominated grid with satisfactory accuracy.

v example, it is difficult to see how a similar wraparound grid for a

srizontal tail could be incorporated into the existing grid for the

ng wake. However, one advantage of analytically generated grids such
this is the speed with which it can be implemented. This would make

+ ~ily adaptable to changing flow conditions for time-varying flows.
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Figure 2. Sketch of the Jameson-Caughey Grid.
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2 7 Caughey-Jameson Cylindrical Mesh

The grid system developed by this method is in some respects
similar to the previous mesh but differs significantly in the treatment
of the body. The basis of the system is to introduce a distorted
cylindrical coordinate system about the axis of the body. The dis-
tortion is such that at streamwise section the body surface constitutes
a coordinate line. When one of the coaxial surfaces cuts the wing, the
wing section is similar to a wing between two walls, as shown in Figure 3.
Each wing section is then unwrapped in a similar fashion as in the
Jameson~Caughey mesh except that a logarithmic transformation is used
instead of the parabolic transformation. This mesh can be termed body
dominated and can cause difficulties in resolution near the wing tips if
the radial surfaces are far apart. Also there are difficulties asso-
ciated with a closed body since the "body radius" is then zero; special
difference operators have to be used for the axial points. In practice
it has been found that a very small radius can be used without difficulty.
Futhermore, the location of the upstream boundary is represented in the
transformed plane by a singular point so that a special treatment of

tn.S region is necessary.

2.3 Numerical Generation of Coordinates

The basic idea is to solve elliptic partial differential equations
for the computational coordinates. In two dimensions, two equations are
required while for three dimensions, three equations are required.

Since the basic equations are elliptic, values of the transformed co-
ordinates can be specified on the boundaries; one of these coordinate
surfaces is taken to be coincident with the body or bodies. Examples of
this method of grid generation are given in Thompson, Thames, and Mastin
(1974); Mastin and Thompson (1978); Sorenson and Steger (1977); and
Steger and Sorenson (1978). 1Initially, the elliptic differential
equations were Laplace's equation, but this did not really allow much
flexibility in clustering the grid points at will, for example in
regions of high curvatufe. Consequently, nonhomogeneous terms were
added to the equations so that the desired clustering occurred. In
spite of these modifications, the grids generated can exhibit undesirable

f —-ures. For example, in two-dimensional applications the generated

er i st p————
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grid may have excessive skewness (Sorenson and Steger, 1977) or the
clustering may still be inadequate. However, at least in two dimensions,
it is possible to introduce some orthogonality condition into the equations
which alleviates the problem of skewness (see Steger and Sorenson,

1978). It is not clear whether this technique can be applied to complex
three-dimensional configurations.

Generally, numerically generated coordinate systems can be altered
during the iteration or for a time-dependent computation. All that is
required is that the equations for the coordinate system be solved
simultaneously with the equations governing the physical process., 1If
the physical equations are complex, e.g., the Navier-Stokes equations,
these additional equations for the mesh do not require a significant
portion of the total computing time. However, for potential equation
calculations the additional complexity of numerically generated co-

ordinate systems may increase the total computation time significantly.

2.4 Matching Mesh Systems

One possible grid-generation system is to have a separate system

for each component and match or patch each individual grid at the inter-
face in such a way as to minimize any undesirable interference dif-
ficulties. A sketch of the proposed scheme is shown in Figure 4. From
a study of the difference equations used in the finite-volume method,

it seems that across each interface the grid should have at least con-
tinuity of second derivatives. Although superficially attractive
because of the choice of a near optimum grid for each component and the
possibility of reversion to a Cartesian mesh outside the body, there are
some difficulties with this type of mesh. One main difficulty is the
construction of the individual mesh system at junctions of two components,
€.8., wing-fuselage since if the fuselage surface, say, is the inner
coordinate surface for the wing, it must, at least at the wing root,
also be the outer coordinate surface for this body subgrid. A second
difficulty is the necessary matching of the smoothness at the interface.
A third difficulty is in the ordering of the grid lines from one subgrid
to another. In spite of these difficulties it is probable that a good

modular mesh of this type could be constructed by the same variant of
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'h- numerical generation technique discussed in the previous section
‘hich allowed some control over the smoothness of the interfaces.
iowever, this would be a major piece of work which the possible gain in

.fficiency may not warrant.

>.5 Overlapping Mesh Systems

The overlapping mesh-generation scheme was developed to have most
>f the advantages of the modular grid system mentioned above but without
1ost of the disadvantages. Thus, the overlapping grid has a nearly
optimum separate grid for each component but does not have the dif-
ficulties of enforcing smoothness at the interface of the modular
system or the difficulties at junctions of components. The basic idea
is best illustrated in two dimensions as shown in Figure 5.

In this scheme, a master grid, say omne guitable for a wing, is
~hosen, and a series of slave grids which are optimum for the body, tail
>lane, nacelle, etc., are embedded or attached to this master grid. The
nain requirement is that the boundary of the master grid should be
sither at a known physical boundary or consist of grid points that are

- v with one of the slave grids. A similar condition applies to each
 the slave grids. By this means, an optimum grid for each component
_an be used in the computation. In this scheme, each component is
solved in isolation with the boundary conditions on the grid boundary
caking into account the interaction effects.

Any means, numerical or analytic, may be used to generate both
.aster and slave grids, provided the rules for overlapping (discussed
_ater) are satisfied. Note that the grids need only overlap by the two
oordinate surfaces necessary to obtain a central difference with a
Yirichlet boundary condition. This overlapping mesh scheme will allow
1ot only a near optimum mesh for each component but can, in principle,
21low each component to be solved to a different order of accuracy or
~onvergence level. It will also allow additional components, such as
sacelles, stores, etc., to be '"plugged” in once the ground rules for the
wverlapping are established. Furthermore, one such overlapping could be

wing-body mesh combination with the exterior Cartesian mesh. The main

isadvantage is the multiple iteration required in the overlap region.

e g o b
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‘h*  problem may not be critical since the better mesh systems may
-equire fewer total iterations than a universal mesh. Furthermore, if
he overlapping meshes are chosen in the optimum fashion, the overlap
egion need only consist of two coordinate surfaces. Also, if it is
iesirable, each component can be solved to a different convergence level
if the effect of that component is required in only a global sense.

The basic idea of overlapping meshes as discussed above requires
some ground rules to determine how universal the scheme is and how (if
>ossible) to predict its characteristics. These are discussed in the

1ext section. It is felt, however, that the overlapping mesh technique

shows considerable promise for the computation of complex configurations.
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3. Overlapping Grid System

If a primary grid for a particular component of the configuration
is chosen, the question of determining the grid for the secondary com-
ponent arises. Obviously there are certain restrictions on the choice
of this second grid since one coordinate surface must be coincident with
the secondary component. Also, by the definition of the overlapping
grid concept, certain points in this secondary grid must be coincident
with the specified points in the primary grid. 1In this section, the
necessary restrictions or ground rules for the secondary mesh are
examined by writing each grid curvilinear coordinate system as a func-
tion of known coordinate surfaces (x, y, z) and constructing the
necessary equations that each coordinate surface must satisfy for the
overlap to exist. Also, the degree of orthogonality and the question of
a one-to-one mapping for a point in each coordinate is considered. A

typical example of an overlap grid scheme is also given.

3.1 Statement of the Problem

In a three-dimensional physical space a point in a curvilinear co-
ordinate system is defined by the point of intersection of three families
of coordinate surfaces, each of which in general only intersects a
member of another family once. Each member of a particular family of
surfaces does not intersect another member of the same family. Each
point of the physical space i1s therefore represented uniquely by the
specification of a particular member of each of the three families of
coordinate surfaces. If these coordinate surfaces intersect each other
at right angles, then the coordinate system is orthogonal. It follows
fairly obviously that any given point in the physical space can be
represented in any coordinate system that covers all or at least the
necessary part of the physical space.

As outlined in the introduction, the basic idea of the overlapping
mesh system is to first choose a master grid suitable for the most
important part of the configuration (e.g., the wing) and then attach
slave grids suitable for the other components. The slave grids are
bounded by a coordinate surface of one family representing the component

"ud another surface of the same or another family consisting entirely of

points in the master system or known far-field boundary points. The

e -
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ving grid has a bounding surface consisting entirely of points in the
slave grid. Consider now two such overlapping grids.
Let the master grid, fitted to component A, be defined by the

families of coordinate surfaces.

o oy, =g, een
v, (x, ¥, 2) - Em(z) m=1, N, (1)
by (x, ¥, 2) = En(3) n=1, N,

vhere the parameters El(l) R Em(z) , and En(3) denote the members of

each of the families of coordinate surfaces and ¥

gD, 5 @

,wz,
P
m

37

points of intersection of the coordinate surfaces, are the coordinates

specifications of the parameters , i.e., the

of a point in space. In the system, Equation (1), there are NINZI\3

such points. It is assumed that one of the coordinate surfaces coin-

cides with the component A, that is, the component A is defined by:
N ¢Y)
b, & v, 2) = Ey . (2)

let the specified set of points (i.e., the common points of the overlap

region) in this coordinate system be defined as —-(1) . ”6(2) , and
5
En() . Now introduce a new system of coordinate surfaces:
(1)
X, y 2 =9 1, N
¢, x, v, 2) D P p
(2)
X, ¥y, z) =& =1, N (3)
6, (x, ¥, 2) = 8 q .
_ < (3) -
@3 (x, v, Z)_(SI' r 1,Nr

;t is assumed that one of these coordinate surfaces, say

¢ (x, ¥, 2) = 5p(1) (&)

oy
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coincides with component B. That is, the surface of component B is
defined by Equation (4). The problem is to construct the slave co-
ordinate system such that one coordinate surface, say:

6 Gy, 2 = 6 (5)

i (D

= (2)
L Em

contains all the specified (common) points, 56(3)

’ b

of the coordinate system, Equation (1).

If it is assumed that the master grid is satisfactorily close to
orthogonality as regards component A, then a second problem is to
control, if possible, the or;hogonality of the slave coordinate system.

Third, it dis imperative that this slave coordinate system be unique
s0 that the mapping from the system in Equation (1) to the system in
Equation (3) is one to one. |

Any point in some domain of physical space can be described not
arly in the Cartesian coordinates x, y, z but alsc in the master grid
system V., U,, Yy .

Now the slave coordinate system, Equation (3), can be written in

terms of the master system; thus

= _s

By (Wys Vg, Uy = 6

= 2)

By Wph by Ug) = 8 (6)
Gy s by vy = 8 )

I the coordinate surface, Equation (5), contains all the common points

s () — _
zg s Em(z) , and En(3) , then the equation
~ [z (1) @2 = 3} ._ -
¢1(Ez s E » B ) <SNp _(/)
18 satisfied for all EQ(I) , Eﬁ(z) , and E£(3) This is the first

Testriction on the choice of the slave grid surface ¢1 . Also, the

R e T
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specific points on the surface must be contained in the surface, hence
the choice of the other coordinate surfaces, ¢2 and ¢3 , must be

such that the equations

— [z () = (@ ——(3)) )
¢, (E2 » E s E éq for all q

m
(1) (2) (3) (3) ©
¢3 (ER . Em . En ) = Gr for all r

are satisfied in total for all ii(l) . Eﬁ(z) , and Eﬁ(3) . This
ensures that every coordinate point on the surface

— s (D

&) Wps Uy W) = By
coincides with one of the specified points, Ez(l) , Eﬁ(z) sy OT En(3) ,

of the master system. The primary requirements for the above grid are
therefore that it must satisfy Equations (5), (7), and (8). Other
considerations are that it must be smooth, unique, and possibly orthogonal.
It is assumed that a smooth mesh can be constructed; the other points

wvill be discussed later. As well as requirements for the slave grid,

there are some requirements for the master grid; that is, one extreme of
the master grid must consist solely of points in the slave grid. This
requirement can be easily formulated by writing the master coordinate
system in terms of the slave coordinates. Thus, if the specified over-

lap points in the slave grid are defined by Eé(l) gq(Z)

, and
T (3)
r

’

, and if the extreme surface of the master grid is chosen to be

- (3)

n

then the master grid must be such that the equation

(50 .5, 5,9)- 5@ a0
P q r n

Also, by

’

is satisfied for all values of g%(l) E-(z) -r(3)

, and ¢
q

8 similar argument as the slave grid, the equations
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Ei (E%(l) ’ EA(Z) ’ E;(3)) = El(l) for all £

v, (E W @ g’(3)) =g P®  for allm
p q r "

(1)

must be satisfied in total for all 3-(1) , Eq(z) , and E¥(3) . Thus,
the master grid must satisfy Equations (2),(10), and (11). If the
master grid is single valued, then the slave grid is single value

(McConnell, 1957) if the Jacobian of the transformation from the master

coordinate system is nonzero. Thus, if

361

J= | =
v,
Y3

#0 (all 41, 1), (12)

then the slave grid is single valued. Also the mesh is orthogonal if

g. .
____jj_~§.= 0 (1 # 3) (13)
[gijgii]
where gij is the transformation metric given by
3¢, 3%,
g.. = " W - (14)
ij Bwi awj

The above analysis gives the requirements for an overlapping mesh system.
The next problem is to devise some means of constructing such a mesh

system either numerically or analytically.

3.2 ’Overlappinngesh Scheme for an Arbitrary Semiclosed Body-Wing

Combination

It is proposed in this section to indicate how to construct an
overlapping mesh system for a wing-body combination when the body is a
semiclosed arbitrary shape. The body is closed at the front and open at
the rear, a configuration typical of a representation of a closed fuse-
lage with a wake model. A wing is mounted at any location on the body.
The object of this section is to suggest a scheme for generating a body-

tonforming grid for the body matched to a wing grid.
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In the Jameson-Caughey computer code, the body is transformed to a
slit by means of a Joukowsky transformation in conjunction with a simple
shearing. This reduces the problem of grid generation to that for a
wing on a wall. In this transformed domain the wing grid is formed at
selected spanwise stations in a similar manner as in two-dimensional
airfoil problems. This scheme is sketched in Figure 6. As noted in
Section 2.1, this grid~generation scheme can cause difficulties in the
representation of the body due to the appearance of "fins" (see for
example, Figure 2). The present idea is to use the overlapping grid
scheme to avoid this difficulty.

Considering the transformed "wing-on-a-wall' problem, the procedure
is initially the same as in the previous section. First, the usual
parabolic transformation used by Jameson is made for the wing sections.
In this scheme the physical coordinates x, y, z are transformed to

the parabolic coordinates £, n, ¢ as follows

1.
£ 4+ 4in' = [(x - xo) + i(y - yo)] @

(15)

where X, s Y, is the location of a singular line inside the wing.
This transformation unwraps the wing about the singular line giving a

slowly undulating surface S(£) representing the wing. A shearing

transformation

n=n'-5() (16)

then makes the wing a surface of constant n . Thus the final trans-

formation is

x, + €2 - (n+ S)2

X =
y=y, t28(n+8) (17)
zZ =g
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Now let the preliminary master coordinate wi be given as

(18)

<
LN)
|
3

where £, n, [ are defined for the transformed wing by Equations (15)
and (16). Retaining the £ coordinate for the body (in this case the
transformed "wall"), it can be seen that a £ = constant line will cut
the body profile at some location "a'", as shown in Figure 7. Now this
line, AB 4in Figure 7, is the limiting form of a family of ellipses,
thus the body grid is constructed by using a family of ellipses in a

n, £ plane as one coordinate surface. A coordinate surface orthogonal
to this is a family of hyperbolas. Thus, the body grid is then a system

of elliptic cylindrical coordinates and, in the notation of Section 3.1,

Vi T %

wz = a cosh ¢l cos ¢3 0 §_¢1 5'¢1L (19)
: Rl

wB = a sinh ¢l sin ¢3 0 §>¢3 <3

where a is the intercept made by a £ = constant line on the trans-
formed body profile. The outer limit of ¢1 . ¢1L , is chosen such that
the point defined by (¢1L , ¢2 , 0) coincides with a specified

L =10 line in the wing grid. Thus,

¢, = &n (—a~ +1 li+9—~ (20)
1L CL) L

Equation (19) then gives the body grid in the transformed domain. In

L

order to match the wing and body grids, it is simpler to replace the

W3 grid lines by a continuation of the family of ellipses in Equation (19).

v e e
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Figure 7. Overlapping Grid System for the Transformed Body.
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Thus the wing grid is now

b, =1 (21)
w3 = a ginh u sin v

It should be noted that the outer parts of the wing grid ellipses are

the far-field representation, where

2 Y
1 a a
u= n [(5 ) + l} + 3 (22)
and v 1is given by
2 2
(_ﬂ_) sec:2 v - (E) c:casec:Z ve=1. (23)
a a

Having obtained the overlapping wing-body grid in the transformed domain,
the physical grid is obtained by reversal of the Joukowsky and shearing

transformation. In summary then

a. Use the existing Joukowsky and shearing transformations to
reduce the wing-body problem to that of a wing on a wall.

b. Construct the usual wing parabolic coordinates &, n, C

c. Determine the intercept, "a'", of a £ = constant line with the
body profile.

d. Construct the transformed body coordinate system, Equation
(19).

e. Construct the modified wing coordinate system, Equation (21).

f. Use the reversal of the shearing and Joukowsky transformations

to construct the mesh points in the physical plane.

Note that since both the wl and ¢2 surfaces and the w3 and ¢3
surfaces are coincident in the overlap region, interpolation of the wz
or ¢1 coordinates for the overlap region is simple to implement if

this should be necessary.
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The above mesh-generation scheme has been coded for a cylindrical
body with a nose consisting of an elliptical body of revolution.
Sections of both the body grid (along a £ = constant line) and the wing
grid are shown in Figures 8 and 9. It can be seen that the body grid
has a highly skewed mesh cell adjoining the plane of symmetry. A
probable cause of this error is a computer "bug' at the plane of sym-
metry itself where certain functions in the -Joukowsky transformation can
have branch points. It is suggested that in the generation of the body

grid this singular behavior is not correctly represented.

3.3 Example

The transonic flow around a semi-~infinite body with a mid-mounted
wing was computed on the overlap mesh by using the finite-volume method.
The body is closed at the front and extends an infinite distance down-
stream. The wing is the ONERA M-6 wing at 0° angle of attack. The
freestream Mach number is 0.85. A sketch of the configuration is shown
in Figure 10. The basic code is FLO 28 with a modified mesh system.
Separate iterations for both body and wing are programmed with the
overlap concept being used to generate the necessary boundary condi-
tions. A one-dimensional interpolation (in the y-direction) is used in
the overlap region. It was found necessary to replace the iteration
subroutine YSWEEP with XSWEEP in the code because for a swept wing the
marching direction could be in the upstream direction with YSWEEP.

The pressure distributions at specified spanwise stations computed
using the present mesh are shown in Figure 11. Also shown are results
of Jameson's FLO 28 finite-volume code with a different mesh structure.
It can be seen that the present grid gives pressures that are in quali-
tative agreement with those of FLO 28 but which are in general much too
low. The probable cause of this error is that the representation of the
"far field" in the present grid is much too close to the wing surface,
and modification to alter the location of the outer grid point should be
incorporated into the mesh. A further point that should be considered
is the accuracy in the overlap region itself. The present indications

are that the accuracy is worse in this region than in other parts of the
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Figure 8(a). Body Grid Alonga £ = £33 Line (32 x 8 x 4 Grid).
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Body

Figure 8(b). Body Grid Alonga £ = £3q Line(32 x 8 x 4 Grid).
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Overlap Region

Figure {a). Wing Grid Along a £ = {23 Line (32 x 8 x 4 Grid).
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Nyﬁrl&p Region
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Figure 9{b). Wing Grid Along a ¢ = E3g Line (32 x 8 x 4 Grid).
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Figure 10. Wing-Body Configuration.
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Pressure Distribution Around a Wing-Body Combination M = 0.85.
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flow field. This may be due to the interpolation procedure used in this
region or simply another manifestation of the "far-field representation"
error. Finally, the option of iterating the body and wing calculations
at different rates should be investigated since this could reduce the

computation time.

r"«
¥
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4, Grid-Generation Procedure for a Tail Plane

4.1 Type and Restrictions of Tail-Plane Grid

The basic idea is to use the overlapping grid technique developed
in Section 3 for a wing-body combination. Basically, this technique
develops a separate grid for each component of an airplane, e.g., the
wing and body and tail plane. One grid, probably that for the wing,
is designated a master grid, and the others are slave grids. Each grid
overlaps the grid of a neighboring component by at least one grid cell
which allows a (usually spanwise) marching procedure for each component.
The boundary, the extreme limit of a component grid system, is either a
far-field grid line or a common line with another grid. Dirichlet
boundary conditions can then be applied along this boundary.

The existing wing-body grid (see Section 3.2) consists of the
following steps:

a. Conformally transforming and shearing the body to a slit as in

the existing Jameson-Caughey finite-volume code.

b. Generating a "shell' type body grid enclosing the body which
is assumed to be semi-infinite. These shells will probably
extend about 1/3 of the wing semispan.

c. Constructing the wing grid using a continuation of the shell-
ordinates but changing the "normal' coordinate, the w2

coordinate in Equation (21), to avoid coarse mesh cells near

the wing tip.

For a tail-plane grid, it is assumed that the tail will not extend
sufficiently in a lateral direction as to lie outside the body grid
(i.e., less than one-third semispan). Consequently, the tail-plane grid
will be embedded in the body grid alone and will not intersect the wing
grid. This is the main restriction on the tail-plane dimensions. A
second restriction is that the tail-plane lies at least one grid line
from the wing wake in order to avoid double valuedness on the £-coordinate

lines.

4.2 General Formulation

First let the body be compressed to a slit as in Section 3.2,

with the corresponding changes to the tail-plane input stations XT’
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YT’ ZT to the transformed coordinates XT’ YT’ ET . Then find where
these points (XT’ YT, ZT) occur in the body grid as follows.

The body grid is given by a series of ellipses and hyperbolas
together with the original wing grid value of § , as shown in Figure 7.

The body grid lines are given by

U = a cosh u cos v .
(24)

L = a sinh u sin v
where &, n, { are the coordinates found from the original wing grid.
Hence, the transformed tail-plane input stations ii, ?&, Ei
are transformed to the original wing coordinates ET, nT, CT .
From Equation (24) we have the equivalent stations in £, U, V
coordinates where ﬁT is as before, VT is found from
2 2
M tp i
a cos V a sin V =1 (23)
T T
and UT is given by
-1 UT
U. = cosh — I, (26)
T a cos VT

Having obtained the input stations of the tail plane in the body grid,
bounding lines are then constructed as follows.

A search is made to find the body grid surfaces EN’ ﬁﬁ, Vﬁ that
always completely enclose the tail plane. A second set of grid surfaces
is then found, probably obtained by simply changing the grid index by
one such that they move further from the tail plane. For each U = constant
surface for U f_ﬁN , the tail plane (and wake) will look as shown in
Figure 12. Hence, if the tail-plane geometry is known for this section,
the grid generation reduces to a two-dimensional problem. The tail-
plane geometry at the required computational £ , U stations can be
obtained from the input values ET’ UT’ VT given by Equatioms (25) and
(26) by using interpolation. Thus, we now know the &T, VT data for the
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Figure 12. Tail-Plane Embedding in Transformed Domain.
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computational section shown in Figure 12. The problem is now to develop
a coordinate system for this configuration.
Let the coordinate lines be denoted as follows. The outer boundary

grid lines are denoted by

g€, V) =0 . (27a)
The inner bounding grid lines are denoted by

g,(6, V) =0 , \ (27b)
and the tail-plane section and wake aré denoted by

£(6, V) =0 . (27¢)

We want a system of grid lines that coincide with the body £f(§, V) =0
and also, on the outer bound, essentially coincide with the curve

gl(g, V) = 0 (the corners are ''rounded" to avoid singularities). This
arrangement is sketched in Figure 13.

Consider the set of parameter curves

Vg, V) = £(§, V) (1-2) + A gl(g, vy =0 , (28)
where
0<Ac<1
When
A=0, v = fE, V)
A=1, 09 =g, V)

Hence, Equation (28) is one family of coordinate lines, for each A , if

the lines do not intersect. Two members of the family (Rl, Az) will

S

e e R, e Ry
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—_—————_——— — g1, V=0

g (&, V) = 0

fE,VI=0

Figure 13. Sketch of Tail-Plane Embedded Coordinate System.
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intersect at (El, Vl) if w(El, Vl) = Al = AZ . This is obviously

impossible unless Al = AZ , a trivial condition. Hence, we now have

one of our two coordinate lines:
£(E,. V)

£(E, V) - g (Eps V)

For the second coordinate line there is probably no easier method than
to use the parabolic mapping of the type used for the wing. Thus for

the tail plane we have
Erain = E-gprr@-v]” (30)

where ES s Vs is the location of a singular line just inside the

tail plane. Thus

2o (n)? = -,

(31)
2tn =V ~ VS
As before, shear the n' coordinates to remove the '"'slowly undulating
curve" referred to in Section 3.2. Thus
n=n'- VT(E . (32)
Combination of Equations (31) and (32) gives
A (v -V )2
2 s -
S - A2 - = g -G . (33)
s
ng
Note that the f(f, V) = 0 1line in Equation (28) is given by
neE, vy =0 . (34)

Now the bounding line gl(i, V) = 0 consists solely of lines of
£ = constant n and V = constant. Hence, the point of intersection of

any £ line with the outer boundary, including the location of the

(29)
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corner points, is simple. An important difficulty arises at the corner
points in the tail-plane mesh since in the two-dimensional problem a

mesh cell containing these corner points may be a five-sided cell rather

than the required four—-sided cell. This difficulty can be removed by

first ensuring that Ei ¢ Ec and then, as far as the tail-plane mesh is
concerned, replacing the "corner" by a smooth curve joining the £ = constant
and V = constant lines. For the overlapping points at the corners,

the body grid extrapolation can easily be used. Denote a typical point

as (El, Vl) . The tail-plane coordinate lines are now

~

£ = constant
~

A = A

The next task is the construction of the intermediate coordinate
lines Aj(gi) . Ideally we would like the lj(gi) lines to essentially
coincide with the gZ(E, V) = 0 bounding line (again the corners are
"rOuEded" to avoid singularity). For a constant lj(gi) Cleu@lay indegendent

of Ei ) this would probably be impractical. Hence choose AJ = AJ(gi)

such that
£ v [1- @D ]+ 2,6 g6 sE V=0 L 03)

Again, since the curve g2(£, V) = 0 is either a line of cgnstant £

or a line of constant V , the point of intersection of a €i = constant
line with gy is easily found from Equation (33), and the required
valEe of AJ(ii) is found from Equation (35). It is proposed that
Aj(gi) be monotonic functions of j and that AJ be one of this set,
possibly the penultimate value (the extremes are A = 0, 1 ). When the
curve gz(E, V) = 0 changes from a £ = constant line to a V = constant
ling, it is possible that the curves for a given XJA are not continuous.
Aj(gi) must therefore be chosen such that each xj(gi) curve is con-
tinuous through the corner junction. Thus we now have a grid system

Ei’ AJ(gi) that coincides with the tail plane, the outer boundary line
§](£, V) = 0 , and the overlap boundary gz(E, V) = 0 . The actual

£i intersection point on these second two lines will not in general

coincide with the body grid point, and interpolation will have to be used.
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Having chosen both the gi, Aj(gi) and the Uk lines, the reverse
set of transformations are as follows.

The gi are known, Eut for the inverse transformation of Equation (31)
it is necessary to know n(§, V) . By definition,

3

:1(5, V) = R? sin 8/2 , (36)

where

Re [0 -vpie - g)? ] s

V-V (37)
g = tan—l E—:——gs'>
' s

and Es, Vs are the coordinates of the singular point of the tail-
plane section. Using Equation (35), it follows for 51 < Ec

(5= e ] [1-0GEp) 2@ @ -gp -0 (382)

where ET(Ei) are the & coordinates corresponding to the &i on the
section surface and £ = &1 is the bounding line of gl(i, V) =0
for Ei less than the corner value EC .

>
For Ei €C

[v - vT<ai>} [1 - xj<ai>] $AE V=V =0 (38b)

~

where VT(Ei) is the V-coordinate corresponding to the Ei on the

section surface, and V = V1 is the bounding line of gl(é, V)
> .

for &i Ec

Using Equation (36) and Equation (38) with Equation (31) and Equa-

"
o

tion (32), the coordinates gij’ Vij corresponding to the points

gi, Aj(g) can be obtained. Having obtained gij' Vij (and U) the
inverse tranformation for the wing-body mesh can then be used to recover
the physical grid points.

The suggested iteration sequence is as follows.
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(1) Sweeping down each of the shells (U = constant lines), sweep
to end boundary*, noting the values of ¢ on the g4 grid
lines.

(2) Using interpolation, get the Dirichlet boundary conditions for
the tail plane.

(3) Compute the tail-plane flow, noting the values on the g,
grid lines.

(4) Sweep out along the span as before. No extra work is involved
at the tail-plane tip since it should be identical to the
wing-body procedure.

(5) Replace ¢ on the body mesh lines, g9 by their values from
step (3) using interpolation.

(6) Repeat.

An example of an embedded tail-plane mesh is shown in Figure 14, The
section shown is the mesh in a [ = constant surface of a typical wing
grid. No attempt was made at clustering the tail-plane grid lines,

although this is easy to do by simply choosing the xj(gi) in Equation (353).

*Not strictly necéssary but avoids complex logic.
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5. Conclusions

An attempt has been made to evaluate existing mesh~generation
schemes for their ability to model complex airplane geometries. It is
felt that all existing generation techniques have significant drawbacks
in this regard, mainly because of the different topological characteristics
of the airplane components, such as the fuselage, wing, and nacelles. A
new method of overlapping meshes has been formulated to overcome this
problem. 1In this system, a near optimum mesh system for each component
is overlapped with adjacent component meshes allowing a satisfactory
iteration procedure with little or no interpolation. A detailed mesh-
generation scheme for a semi-infinite body closed at the front with a
wing mounted at any location has been derived. It is felt that the
present overlapping mesh approach shows considerable promise for complex
airplane configurations since additional component meshes can be even-
tually "plugged in" to existing or master meshes. However, the example
presented does have deficiencies which should be corrected before any
further extension is made. It is suggested that the existing problems
are due to a computer coding error and to a lack of flexibility in
locating the far-field point. Neither of these problems should be
insurmountable.

A means of embedding a mesh system for a horizontal tail into a .
wing or body mesh has also been developed. A simple example of such a

mesh has been computed and appears satisfactory. No flow computations

have been performed.
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Authors Note

This report represents the state of the work when the author (David
Nixon) left Flow Research Company. The report should not be considered

as an account of a completed research program.
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