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1. Introduction

This report presents results of transonic flow calculations by the relaxation
method for a selection of airfoils and bodies of revolution. The flow is

assumed to be determined by the potential flow equation

2 2 2.2 ’
(a”-u“) P ~ UV Pyt (a®~v%) Py = 0 (1.1)

where ¢ is the potential, u and v are the velocity camponents

. U= V= Qg (1.2)
and a is the local speed of sound. This may be determined from the stégnation
gpeed of sound a, by the energy equation

82 = a02 - .2 (u2+v2) 4 (1.3)
in which the ratio of the specific heats has been taken as 1.h, If the
velocities are normalized with unit free stream velocity, then
2 1 - _—
a, = Mé + .2 (1.4

where M is the free stream Mach number.

There is no assumption of small disturbances and the solution would be
exact for subsonic flow in the absence of viscoslity. 1In tranéonic flow the
principal approximation is the neglect of rotation introduced by shock &aves.
Tn the absence of rotation Crocco's theorem [[1] indicates thaf the flow is
homentropic. The solution must allow discontinuities to approximate to
spproximate shock waves, and it has been shown by Morawetz [2] that in
general a continuous solution does not exist in transonic flow. Since in
iséntropic flow there is a unique relation between velocity and area along a

stream tube, the interprebation of a solution with a jump in velocity is that

it is a solution in the presence of a fictitious screen Jjust the correct

entbial on either




represents a line carrying a force. The total drag is zero in potential flow,
so this force is just balanced by a drag on the airfoil, and it turns out that
the solution can be used to obtain an estimate of the pressure drag on the
airfoil in the presence of a shock wave (see the results). .

It should also be noted that in the absence of a directional conditicn
corresponding to the condition that entropy can only increase, the soluticn of
the potential equation is not unique. Given a solution, the equation continues
to be satisfied when the velocity is reversed. Thus, for example, a body with
for and aft symmetry always admits a solution with a reverse shock as well as
one with a forward shock. 1In order to obtain a unique solution, it is hecessary
to introduce directionality into the difference scheme used'td approximate the
equation. TFollowing Murman [3], this is accomplished by using a central
difference scheme in the subsonic region together with a backward difference

scheme in the supersonic region.



7,

2. Formulation of the eguations in the circle domain.

In order to obtain a finite demain of calculation the flow field is first
mapped to the interiocr of a unit circle by a conformél transformation, following
Ssells [4]. Using polar coordinates r and 8, the potential for a uniform at
angle o would then te ggEi%ig)- . Also, in the presence of circulation the potential
would be multiple valued. It is convenient therefore to set

¢=x+2ﬁ§ﬂ - E® (2.1)
where 2nE is the circulation, and solve for the reduced potential functions X which
is finite and everywhere continucus. Let the modulus of the transformatién to the
interior of the circle be %2‘ H is the modulus of the transformation to the
exterior of the circle, and is a smooth function suitable for differencing. The
equation for X in polar coordinates then beccmes

2 2 ' 2 2 2
(a -u") Xgg feuv (rXer X -E) +(a”~ v )(r X +rXy)

+(@® ~Prx, +(w® ) (B + vH ) = 0 “(2.2)
r v r
where
w = r(X, -B) - sin(6+@), v = rX_ - cos(64) (2.3)
H . H
and
a2 = a02 - 2w+ ) - | (2.4)

The boundary ccndition at the surface r =1 is .
v=0, X, =cos (0 + ) | , ' (2.5)
If the airfoil has a sharp trailing edge, 1t is convenient to orient the circle
sb that the corresponding point is at 8 = O. At this point H :'O, and the
Kutté condition that the velocity ig Tinite at the trailing edge then requires
that

X, = E+ sin « , : (2.6)



Also the equation for X can be written as.

2 2 2 2
2, 2 ~ 13 u”+v 5 ut + v
a“(r X, tTX, +X69) = Ha = =y ( 5 — ) + Hv & (-~§»~ )

At the trailing edge, the right side vanishes and thus X locally satisfies
Iaplace's equation.
2
At the center of the circle H - 1+ 0(r ), u - sin(6+e), v -» cos(8+x),

& — 1. It can be seen therefore that the potential equation reduces to

M , .
[1-M° sin°(6+a)] Xgq -2 sin(0ra) cos(8+)(X,E) = 0 (2.7)
This can be integrated to give the far field boundary condition at r = 0
-1 i '
. 2, 2 .
X = FE {:9 - tan (1 -M7) ° tan (8 + “)]E (2.8)

in agreement with the results of Ludford [5], and Imai [6].
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NLR LIFTING QUAST-ELLIPTICAL ATRFOTL

Designed to be shock free at M = ‘7557, g( = 0Q°
(1.32° when the coordinates are referred to the line
from the maximum forward point to the trailing edge).
Coordinates and slopes from AGARD Report 575, Test
Cases for Numerical Methods in Two Dimensional Trans-

onic Flow, by R, C, Lock, 1970.
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KORN ATRFOTIL

Designed to be shock free
O

Coordinates angd =1on
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WACA 0012

Coordinates from NAE Report LTR-HA-2,
Fortran IV Program for the Catherall-
Foster-Sells Methed for Calculation of
the Plane Inviscid Compressible Flow
Past a Lifting Airfoil, by

J. J, Kacprzynski, 1970.
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WACA 6Lali1o

Coovdirmates from MNACA TN 3162,
Bffects of Subsonle Mach Number on the
Forces and Pressure Distributions on
Four NACA 6hA - Series Airfoil Sections
at Angles of Attack as High as 28°, by

Louis 8. Stivers, 1954,
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ELLIPTIC BODY OF Ri

SVOLUTION

Generated by Joukowsky mapning
singular points at * .75
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