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Many optimal control soluticns require a complete set of measurements of current
state variables, which may not be fully available. It is reasonable to ask whether
compensators cannot be designed in such a way that the desirable qualities of the
optimal control are reproduced.

One method of constructing a compensator that generates an asymptotically
optimal control is to generate an estimate of the complete set of state variables by
an auxiliary dynamic system, such as an observer or a Kalman filter. Tt can be
shown, however, that a simpler design is often possible by employing the fact that
usually a linear combination of the set of state variables is all that is required to
reconstruct the optimal control. A simple direct method of determining such a
controller is presented in this paper.

1. Introduction

Optimal control problems generally lead to solutions which require complete
state feedback for their implementation. For situations where the entire
state vector is not directly measurable, other methods must be found to synthe-
size the desired control. This paper describes a general method for designing
low-order compensators which generate a control which approximates the
optimal control, without requiring a complete set of measurements.

Consider the completely controllable (Kreindler and Sarachik 1964) time-
invariant plant described by the nth-order differential equation:

x(t) = Ax(t) + But),

(1)
Y(t) = CX(t),

where A is an % x n system matrix, B is an » x p input matrix, ' is an mxn
output matrix of rank m(m <), x is an n-dimensional state vector, u is a
p-dimensional input vector and y is an m-dimensional cutput vector. Consider
the quadratic cost functional:

J(u,x) = f:[xTQx +uT Ruldr, {2)

where @ and R are, respectively, n xn and p x p symmetric positive definite
matrices. It is well known (Kalman 1960 a) that the control law that forces
the plant from some arbitrary initial state x(0) to the origin, while minimizing J/,
is given by:

u*(t) = R~ BT Px(t) = Dx, (3)

where P is the solution of:
PA+ATP—PBR'BTP4+Q =0. {4)

t Communicated by the Authors.
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If not all the states are available for direct measurement, other means must be
found to implement or at least to approximate u*,

One approach is to use an auxiliary dynamic system to generate an estimate
® of the state, and to construct the control as:

u = D&

Two well-known methods of doing this are to use a Kalman filter (Kalman
1960 b) or to use a compatible observer (Luenberger 1964, 1966). The Kalman
filter incorporates a model of the plant, and is thus an auxiliary system of the
same order as the plant. It is known that the optimal control in the presence
of noisy measurements can be generated by using a Kalman filter in cascade
with the deterministic optimal controller. A compatible observer is a system
whose output equals the state of the plant to within an exponentially decaying
crror. Luenberger (1964) has shown that if the system is observable it is always
possible to construct a compatible observer of order n—m, described by:

z=UFz+0Gy+ WhBu, (5)

-1

where F, (( and W are (n—m) x (n—m), (n—m) xm and (n—m) x n-dimensional
matrices, respectively, which satisfy:

WA-FW = GC. (7

Bongiorno and Youla (1968) extend the results of Luenberger (1964) by establish-
ing necessary and sufficient conditions for which a compatible observer can be
employed. Dellon and Sarachik (1968) present a technique that is applicable
to time-varying linear systems in which the resulting controller dynamics is
also of order n—m.

2. Asymptotically optimal controllers

1t is desirable that the compensator should generate a control which differs
from the optimal control by an exponentially decaying error. Compensators
using Kalman filters or observers have this property of being asymptotically
optimal. Motivated by the desire to reduce the complexity of the design, we
may, however, ask if it is necessary to reconstruct an estimate of the complete
state vector, particularly if p<€n, when all that is really required are the p
independent linear combinations of x,,z,,...,2, which constitute the optimal
control. Luenberger (1966} noted that if it is only required to estimate a single
linear combination of the state variables, the order of the observer can be
reduced, but did not provide an easy method of constructing a compensator
which makes use of this idea. A direct method of designing asymptotically
optimal controllersof low order is described in the following paragraphs. It
requires the solution of a set of linear equations, and is simple to execute.

Assume that the control is:

u=UDx+e, (8)

where e is the error due to the constraint that only y and not x is available.
Consider the possibility of designing the controller so that

e=Kv, (9)
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where v has dimension 7, and satisfies the dynamic equation:

v =Fv. ) {10)
If the eigenvalues of F have negative real parts, then limv(t) = 0, and the
control will asymptotically approach the optimal control. o
Consider the transformation:
z=v+ Wx (11)
Differentiating (11), and using (1) and (10), we have:
t=Fv+WAx+ WBu
=Fz+(WA—-FW)x+ WhBu, (12)
also:
u=Dx+Kv
=(D-KW)x+Kz. (13)
Suppose that there exist matrices W, ¢, H, K satisfying:
WA-FW = GC, (14)
D—KW = HC. (15)
Then (12) and (13) reduce to:
z =Fz+Gy+ Whu, (16)
u=Hy+ Kz (17)

These would represent the equations of an auxiliary dynamic controller, with
y as its input, that would generate the desired control. Qur problem is thus to
find a simultaneous solution to (14) and (15).

3. Minimum order controller for single-input plant

Consider a single-input plant. The problem is to find # of minimum order

r such that (14) and (15) can be solved. The fact that u is a scalar reduces
(14) and (15) to

WA-FW =GC, (18)

dT—kT W = hT(, (19)

where Wisrxn, Fisrxr, Gisrxm, k 1s an r vector and h is an m vector.
Qur objective is to obtain an expression for W from (18) and eliminate it
from (19). Let the characteristic equation of F be:

det(Ml—F)=X+fiA1+...+f,=0.

Utilizing a method presented in Jameson (1968) and Rothschild and Jameson
(1970) for solving equations of the form (18) given @, C, F and A, we proceed
by defining the following sequence:

C,=GCA '+ FC,_,= WA'—F'W, (20)
where
C,=0.
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Multiplying each C; by f,_, and summing we obtain:

3 Wi, dri = Efl it EfiF"' (21)
i=0
where f,, = I. From the Cayley—Hamilton theorem, I satisfies:
5 f b = 0, (22)
i=0

80 that (21) reduces to:
WAdr+ fLA'+ . D) =C+ f1C 1+ ...+ f_1 Ch- (23)
Expanding the right-hand side in (23) gives:
W(Ar+ flA" "+ . f Iy = GCA '+ (F+ f, 1) GCA™2
+(F2+fiF+f,I)GCA™ 3+ ...
+ (I fL 24 f 1) GO (24)

Multiplying (24) on the left by kT, and using (19), W is eliminated and we
obtain:

WY C(Ar+ fLA 4+ L f D) +s,TGCA™ 1 45,V GCA™2+ ... s, T GC
=dT(Ar+ fyA"+ ... f. 1), (25)
where s, represents the ith column of the S matrix defined by:
S=(kiFT+fil)ki .. | (F "+ fLFT" 4 L f.DK] (26)
Also, multiplying (24) on the right by (47+ fid-1+...f, 1) gives:
W = [GCA™ '+ (F+ fiI)GCAr-2+ .. (F™ '+ f, Fr24...)GC]
X[AT+ fidr1+ LT (27)

Under the assumption that 4 and F do not have any common eigenvalues,
rantmacher (1960) shows that (18) has a unique solution for W. The solution
for (18) must also satisfy (24), whose solution is unique and given by (27), since
(Ar+fidr1+ ... f,.DH1is umque If (25) is satisfied along with (27), we see that
the value of (dT — hT C’ )obtained from (25) must equal kT multiplied by the expres-
sion for W in (27). Thus satisfying (25) and (27) implies satisfaction of {18)
and (19).

Our problem has been reduced to finding a solution to (25) for stable F.
Let F and kT be specified. If we denote the r rows of ¢ as g,7, g7, ...,8,7,
upon transposing (25) with the aid of Kronecker products {Gantmacher 1960)
we obtain: |

(A™+ fLA™ 4 LD CTh+ (5, AT 48, AT+ .5, 1) CT g,
(s AT T 48y AV L5y, 1) CT gy +
(8 AT 45, AT s, )OT g, = (AT + [ AV 4 ... f. 1) d. (28)

Regarding the unknowns as an (r+ 1)m vector, [hTg,Tg,T ... g,T1T, the above
cquations have an n x (r — 1)m matrix. From (26) we note that if F and kT are
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chosen to be an observable pair, it would follow that the columns of the mr x mr
matrix:

LI Im L("21 Im T S ]m
812 ]m Sap ]m 8r2 [m

P = : : P
S1r ]m e o Spr ]uz

are linearly independent, where I, represents the m-dimensional identity
matrix. The last mr columns of the » x (r+ 1) m matrix (28) can be represented
by €, where

Qal(s, AT 7 48, AT 4 .8, NCT i i (8 AT 45, AV P4 s, T)CTY.
We note that €} can be written as:
Q=[A™'CT{ AT*CT{ .. i CT]P. (29)

Since P is invertible, we have rank Q = rank [AT'CT{ AT*CT ... i CT].
If we now augment Q with the first m columns of (28), namely

(A7 + fL AT + L f, 1) O,

we find that the m(r 4 1} columns of (28) span the same space and contain the
same number of columns as AT CT, AT'CT, ..., CT. It is clear that a sufficient
condition for the existence of a solution to (28) is that r > a— 1, where « is the
observability index of A, C, or the least integer such the matrix

[CTIATCT .. AT QT
has rank #.
Thus for a single-input plant, a dynamic controller of order «— 1 can always
be found which will produce a « that asymptotically approaches dTx. Tt can
be shown that in general for an observable system:

nfm<a<n—m+1.
Thus the lowest allowed range for » becomes:

{n—m)m<Lr<n—m.

For a multi-output plant (m > 1), the order r of ¥ can be lower than n—m,
the order required by the observer solution. For example if n = 10, m = 5, and
if the measurement matrix were chosen properly, a first-order filter is possible,
whereas the observer solution would require an auxiliary system of fifth order.
Note that when m(r + 1) > n the solution is not unique.

In the case where the observability index is 2, which can occur if m is at
least /2, the equations reduce to a very simple form since a first-order auxiliary
system is possible. Equations (18) and (19) reduce to:

wl A —fw=gTC, (30)
dT — kwT = hT(, (31)

where W and ¢ have been reduced to row vectors wT, gT, and F and K have
become scalars f and k. Upon transposing the above, and eliminating w, we
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obtain:

[kCT | (4 —fI)*C"] [ , ] = (4-fI)*d, (32)

where [ ﬁ ] is a composite vector of dimension 2m.

Provided that « = 2, we are assured of the n x 2m matrix [kCT | (4 — fIYT CT]
having rank n, with 2m 2n. We thus guarantee the existence of a solution for
g and h which of course is not umque if 2m>n. The resulting compensator
can be constructed as:

u = hTy+kz, (33)

i=fz+gTy+wlbuy, (34)

4. Multi-input plants

For a system with p inputs the procedure of the last section may be applied
separately for each input. This amounts to, choosing ¥ and K in a particulm
way and solving for G'and H. The resulting compensator is of order » = p(e—1).
Alternatively one may specify F-and G, solve (14) for W, and then solve {(15)
for H and K. Since (15) represents pn conditions, with pm unknown elements
for I and pr unknown elements for K, a solution can be found only if » > n —m.
If » = n—m this method leads to the usual solution for an observer, since (15)
can be written as:

: C

[H | K] [W] =D, (35)
where [ﬁ,] is & square matrix with an inverse which can be partitioned as
[M i N]. Then:

[Hi K]=D[M;N] (36)
and

u = D[My+ Kz]. (37)

Also:

My+Nz=MCx+NWx+Nv

= x+Nv (38)

and since v decays to zero, (My + Nz) is an estimate of the state x.

Evidently, it is always possible to design a controller of order not greater
than the smaller of p(a—1) anld (n—m) by choosing either ¥ and K or F and 6.
It remains an open question ; Whether a compensator of still lower order could
be produced by specifying # _a.lone and treating equation (28), generalized for
the multi-input case, as a non-linear relation to be satisfied by ¢, H and K.

5. Closed-loop dynamics

The dynamics of the closed-loop system can be explored by transforming
from plant-controller state space coordinates to plant-error state space co-

ordinates:
MR o)
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Applying (25), eqns. (1), (13) and (14) reduce to:

HE [A+OBDBﬁ{f] 13 ] o)

v v

Thus the eigenvalues of the complete closed-loop system are those of (4 + BD)
together with those of F. Note that the eigenvalues of (4 + BD) are those of
the closed-loop system that would be obtained if a perfect estimate of the plant
state vector were available. Assuming complete controllability and observa-
bility for the plant, we are then assured that (4 + BD) is stable.

Even if we disregard the desire for optimality, we can employ the pre-
ceding methods to place arbitrarily all the eigenvalues of the closed-loop
system. Wonham (1967) shows that if the plant is completely controllable it
is possible to establish that for any set Q = {A,,A,,...;A,}, with complex A;
occurring in conjugate pairs, there exists a real D for which (4 + BD) has as its
eigenvalues the set . Since the eigenvalues of F are also arbitrarily chosen
this completes the proof that all roots may be arbitrarily chosen.

6. Comparison of performance between the asymptotically optimal and optimal
controllers
It is of interest to determine the loss of performance which may be expected
when an optimal controller is replaced by an asymptotically optimal controller.
Now the optimal cost is:

J* = x(0)T Px(0), (41)
where P is the solution to (4). Also, premultiplying (4) by xT and post multi-
plying by x, and substituting from (1):

T Px +xT Px = xT@Qx —xT PBu—uT BT Px —xT PBR-1BTPx, {42)
Thus, substituting from (3):

%(xTPx) = xT@x+uT Bu+ (u— Dx)T &(u— Dx), (43)
where D is the optimal feedback matrix, and this may be integrated to give:
J=J5 4 f :(u — Dx)T R(u— Dx) dt. (44)
For the asymptotically optimal control it then follows from (8) and (9) that
J=Jry f :v'l‘ K™ RK vd. (45)
Substituting the solution of (10) for »(t) this becomes:
J —J* = v(0)T Sv(0), (46)
where
8= J?exp (FTt) KT RK exp (F't) dt. ' (47
and

FTS+SF = | mg—t {exp (FTt) KT RK exp (Ft)]dt = — KT RK. (48)
0
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It is realistic to assume that initially the auxiliary system is at rest:
z(0) =0,

since once the plant is in operation there is no means of updating 2z, and the
affect of a sudden disturbance would be to change = but not z. In this case:

v(0) = Wx(0)
and
J —J* = x(0T) WT SWx{(0).

The designer is free to choose ¥#, and he may also have some latitude in
choosing ¢ and H in cases when the solution of equation (29) is not unique. It
turns out, as has been noted by Bongiorno and Youla (1968) for the case of an
obscrver, that it is not generally possible to make JJ —.J* arbitrarily small by
choosing F' with large negative eigenvalues, because the solution for W depends
on the choice of F. A simple example is instructive.

Consider the following time-invariant plant whose state equations are:

(49)

01 0 0 0
001 0 0

X = x+ u, (50)
0 0 0 1 0

101 0 1
100 0

y"[0010]" (51)

If we set R =1, and Q arbitrary but positive definite in (2), the resulting
optimal control law from (3) and (4) is:
w*t)y=1[d, dy d; d]x

The plant is controllable, with observability index equal to two, so a first-
order auxiliary system is realizable. Setting ¥ = f, and k = 1 arbitrarily, we
may solve (30) and (31) for g, h and w:

(52)

wh=(fd, d, fd, dj], {53)
where f must be negative for stability. Then applying (48):
1 =
Substituting (53), (54) in (49):
[ fd? dy? fdydy dpd, ]
2
dp % da,
J=J =T = — T
A =J-J ix, fd, dd, fig  dg X,. (55)
d.d dg?
dyd, 22 dE  —+
Lt tor ]

It is interesting to note that AJ — o0 as f—>— o0 if 2,(0} £ 0 or x4(0)#£0. On

the other hand, AJ - 0 as f—» — o0 if x,(0} = x,(0) = 0.
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The corresponding observer solution to the above example will require
second-order dynamics in the auxiliary system. The resulting typical con-
figurations for the controller using an observer and the asymptotically optimal
controller can be compared in figs. 1 and 2.

Fig, 1
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Asymptotically optimal control,

As exemplified in the problem here, the optimal choice of # and any free
parameters in ¢ and H will in general depend on the initial conditions since
these appear in (49). In order to optimize the compensator it may then be
desirable to modify the performance index to eliminate this dependence
(Kleinman ef al. 1968, Levine and Athans 1969, Jameson 1970, Kosut 1970,
Jameson and Rossi 1968).
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Some possible choices are:

J

J = ave ——— 56

L e T %0

Jy = max ——, 57

* T e 20T &0

J
gy = —. 58
P o
1t is easily shown {Jameson and Rossi 1968, Jameson 1970) that

Jy=tr(P+ WTSW), (59)
Sy = AP+ WTSW), (60)
Jy = Apox[P*HP + WTSW)). (61)

7. Conclusions

In areas where compensator design has been previously made chiefly from
intuition and experience, it is expected that the theory of asymptotically
optimal control will help lead to a more complete understanding of how a
system’s behaviour may be modified through the addition of dynamic elements.

It is important to observe that the method does not dispense with the
judgement of the designer, who must still decide on the appropriate measure-
ments to be used, but it will help indicate a desirable configuration of the
compensator for a particular measurement set. The roots of the closed-loop
system are the roots of the optimal system plus the additional roots of the
compensator, so the designer has freedom to prescribe the additional roots
as any stable set.

For plants which exhibit parameter variations during the normal course of
operation, such as an aircraft at different points of its flight envelope, the
present method could be used to indicate a suitable configuration for the
compensator. It would then be necessary to pick best compromise values of
the filter constants over the expected range of plant parameter variations.
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