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Abstract

Adaptive mesh refinement on unstructured meshes in three-dimensions is applied to obtain
a sharp resclution of oblique shock waves. Meshes are generated through the application
of Bowyer’s Algorithm to yield a Delaunay tessellation of the space. The Euler Equations
are solved by a finite-volume time-stepping scheme to reach a steady state.

1 Introduction

The accuracy of computational solutions to analytical equations is strongly influenced by
the discretization of the space in which a solution is sought. As the spacing between the
points which define the computational space is reduced, the discrete domain approaches
a continuum. Since each point is associated with a flow state, resolution of “interesting”
phenomena is dictated by point placement and concentration. Thus, the ability to de-
termine where phenemena are occurring, what type of computational modifications are
needed and how to implement them, is a paramount concern for effective computations.

In theory, the introduction of a highly dense distribution of points throughout a com-
putational domain will yield a more accurate answer than a coarse distribution. However,
limitations in computer processing speed and accessible memory prohibit such a scenario.
An appropriate alternative would be to increase the accuracy of the computations where
needed. If the method of discrete approximation remains unchanged within the compu-
tational domain, then altering the concentration of points in critical regions by either
adding or shifting points is a possible resolution of this dilemma.

There are essentially two means by which a numerical calculation can be altered to
allow for an improved sclution. One is to alter the computational mesh; either by changing
the number of points {h-method) or by altering the distribution of points {rmethod) in
a prescribed zone. The other alternative is to improve the accuracy of the numerical
scheme (p-method). The p-method may yield favorable results. However, it is quite



cumnbersome to implement for a general class of problems — particularly if the type of
equations being sclved varies between problems. The rmethed is attractive because it
allows one to fix the total number of points (i.e., a fixed amount of requisite computer
memory and processing time per cycle) while concentrating points in critical regions [1].
A major drawback of this method is that not only must regions for increased point density
be determined, but it must also be determined where imposing a less dense distribution
will not corrupt the solution. In addition, the procedures to generate these distributions
may be computationally expensive (especially in three-dimensions) as well as problematic
in that they can produce computational elements which possess a “poor” aspect-ratio.
Finally, there is the A-method which can locally improve the accuracy of any well-posed
numerical scheme. [2]

All alteration methods can have two modes of operation — either to refine or de-
refine a given region [3]. The advantage of de-refinement is to reduce the number of
necessary points, thereby reducing the amount of required storage and increasing the rate
of convergence. However, as previously discussed, a great deal of caution must be taken
when removing points since this makes the computational domain more coarse — allowing
for the possibility of decreased accuracy.

The aforementioned considerations are well recognized, and an appreciation of them
is essential for successful computations. In the past, researchers involved with adaptive
techniques have implemented these notions in various roles. Initially, adapted cornpu-
tational meshes were generated with a priori knowledge of the location and nature of
cecurring phenomena. Later, schemes were devised which re-generated a mesh based
upon previously calculated results — adaptively altering the mesh.

To facilitate many of the aspirations which researchers in computational methods
have, unstructured meshing techniques have become the canvas upon which a great deal
of research emphasis has been placed [4]. The reasons why an unstructured philosophy is
attractive are numerous and varied, Although computational techniques performed under
the auspice of unstructured meshes have their limitations, their suitability for adaptive
meshing seems to be inherent since unstructered meshing permits the inseriion {or re-
moval) of points anywhere within the computational domain of complex multi-component
surfaces. As such, unstructured meshes are the tools used in this work.

The impetus for this research stems from the computational solution of a supersonic
shock wave/boundary layer interaction flow for which there is a great deal of experimental
data. Basically, the flow results from a two-dimensional shock wave (generated from a
wedge normal to a flat plate) interacting with a boundary layer in the third dimension.
(See Scttles and Dolling [5] for a comprehensive overview of the problem). Although the
geometry is simple, its resultant flow is complex. Some of the characteristic features which
are present include a vortex, multiple intersecting shock waves, and high compression
zones. Since the location of these phenomena is dependent on upstream conditions, it is
difficult to generate an appropriate mesh consistently and e priori. By using adaptive
alteration, enhanced meshing can be applied directly at locations where these phencmena.
are occurring, resulting in sharp capture of them. Although solutions of this flow have been
computed in the past, significant improvements would be achieved with the application
of mesh adaption.

A geometry identical to the shock wave/boundary layer interaction problem is used.



However, for illustrative purposes and initial testing, only a two-dimensional supersonic
flow with no boundary layer is considered.

2 Discretization and Tessellation

The geometric model is a basic one — comprised of a ramp at a given inclination (i.e., a
wedge) and bounding planes. The generation of these bounding surfaces and points he-
tween them is obtained through simple algebraic expressions. From this array of points,
a tessellation of the space must be imposed to provide the mesh connectivity. Any con-
nectivity will do as long as computations conducted over it are capable of recognizing
the features (e.g., cell geometry) of the governing mesh. However, if one desires a robust
and efficient computational solver, then a tessellation of the space by a single cell type is
beneficial. _

Tetrahedral tessellation of the computational domain is the comvention of most un-
structured meshings, and it was exploited in this research as well. Formation of a set
of tetrahedra can be performed m any of a number of ways. Two quite favorable meth-
ods are the so-called “advancing-front” [6] and Delaunay [7] tessellations. Both of these
approaches have their advantages, but Delaunay tessellation is particularly useful for re-
finement methods because of its ability to accept points in arbitrary locaticns at any
time,

The Delaunay tessellation of the computational space is obtained through application
of Bowyer’s Algorithm which may be stated as follows from [7):

Given o set Vi, of n points in k-space, the Delaunay tessellation is the unigue tessellation
of V. such that no pewnt P; € V, lies inside the circumsphere of any k-simplez.

In this work, the implementation of Bowyer’s Algorithm on a computer is similar to
the methods used in [7] and {8]. A bounding-box comprised of eight corner points which
encloses all points in the domain 1s constructed. This box 15 then divided into Delaunay
tetrahedra. Points to be included in the computational domain are then injected one at
a time, and any tetrahedral subspace breeched according to Bowyer’s rule is updated to
make that subspace Delaunay once again. To enhance the restrictions imposed by irregular
data storage, an octree data structure is utilized for quick and efficient searches. After
all desired points have been inserted, teirahedra not belonging to the the computational
domain (i.e., those between the bounding box and computational domain) are remaoved.

In an effort to retain surface integrity, a system incorporating the notion of protected
tetrahedra 1s enforced. The first group of points to be inserted inte the bounding box
are the initial surface points. Once these tetrahedra are formed, a sweep of the space is
made and any tetrahedra which have three forming points on a surface and the fourth
on the bounding box are flagged. All of the remaining points are then injected, and if an
injected point breeches a flagged tetrahedron, the point is rejected unless it is compatible
with the surface face(s) of that tetrahedron.

Currently, the adaptively altered meshes used are produced from a Delaunay re-
meshing of the whole space based upon a modified set of points. However, it is a simple
task to alter this procedure so that updated meshes are obtained directly from their pre-



decessor without the need for redundant and computationally costly re-meshings. In fact,
this is the essence of why a Delaunay tessellation is so amenable to adaptive techniques.

3 Mathematical Model and Numerical Description

The adaptive alteration method of this paper is applied to the solution of the conservation
equations of luid mechanics which govern the flow of compressible fluids. In there inviscid
form they are referred to as the Euler Equations and may be drafted in compact integral
form for a domain £ with bounding surfaces 9§ as follows:

%/ffnwdn+ffmmdan=0, (1)

where w 1z a vector of dependent variables; T is a flux matrix; and n is a surface unit
normal. All of these are defined as:
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where the primative variables g, p, €,, ks, u, v, and w are the thermodynamic density,
pressure, total internal energy, and total enthalpy, and three Cartesian velocity compo-
nents respectively. Furthermore, we restrict our analysis to that of a perfect gas, and are
obliged with an cquation of state of the form (v is the ratio of specific heats)

P Ly s 2 2
607(7_1)p+§(u + v +w). (2)

FEquaticns 1 and 2 form a complete set which is used to solve for w. However, these
cquations apply to a continuum and must be translated into a form appropriate for use in
a discrete space. For the sake of brevity, only the resulting equations of the discretization
will be stated. For a more complete derivation, see Jameson and Baker [8].

It 15 assumed that the computational domain is spanned by fefrafedre and that the de-
pendent variables are stored at the nodes of the tetrahedra. Applying Galerkin’s Method
to Equation 1 using a piecewise linear test function, and after some algebraic manipula-
tion, a discrete approximation is arrived at. From [8], it may be written as:

% sz; Qk) w.} +3 (Fnag), = o, (3)
F= 1(F1+F2+F3).
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The sums in Equation 3 are over all tetrahedra which meet at a common node < to
form a control volume surrounding that node. F is the average of the flux matrix from the
three nodes which form the face of the tetrahedra on the bounding control surface with
n as the normal of that plane. In crder to aid conceptualization, Equation 3 is directly
interpretable as a finite volume approximaticn of the conservation laws (Equation 1). It
may be re-written as a first-order ordinary differential equation in time to yield

dw;

dt

+ R{w,) =0, (4)

where R({w;) represents a numerical flux-residual at nede <.

Numerical dissipation must be added to this discrete approximation for the purpose of
removing undamped and/or lightly damped error modes, as well as to prevent solution os-
cillation near large gradients (e.g., shock waves) for more precise resolution. Reference (8]
presents the form of these dissipative terms which will be stated here as a dissipative
residual D(w,}, and is lumped with R{w;).

A Runge-Kutta multi-stage time-stepping scheme is used to integrate Equation 4 (with
dissipation included) forward in time. Only stcady flows are considered here, and 1t follows
that the unsteady term in Equation 4 should approach zero in the limit of a steady state.
Since a steady state is sought, the time accuracy of the integration is not of concern and
convergence acceleration techniques such as residual averaging and enthalpy damping can
be applied. In this work, a five-stage time-stepping scheme was employed with no residual
averaging and no enthalpy damping.

4 Adaptive Technique

4.1 Criteria for Adaption

In order to adaptively alter a mesh, an ability to determine which parts of the compu-
tational field require special treatment is necessary. If an accurate understanding of the
local discretization error were available, then this would serve as an ideal moniter for
alteration. In fact, it would also allow for a more jusiified application of de-refinement
techniques since the spacing between points could be maximized according to restrictions
dictated by the order of the error. Unfortunately, it is not always a simple matter to
determine what the discretization error of & given numerical scheme is. This is especially
true of finite-volume/finite-element approaches.

Although the discretization error describes the deviation from the analytical solution
of a set of cquations to be solved, other measures of deviation can be used as close ap-
proximations to this error. Qualitatively, these error indicators, or sensors, serve to signal
where interesting phenomena may be occurring, thereby indicating a need for alteration.
Since alteration is occurring according to results from computations, it is referred to as
adaptive alteration.

There are many types of sensors which can be used [9, 3, 10]. In fact, those sensors
which are used for shock capturing can also be incorporated to interrogate the compu-
tational domain for adaption determination. In this work, the simple sensor as given by
Holmes [8) which examines the pressure of a node of a cell with respect to the average



pressure in that cell is used. If the difference of the node’s pressure to the average pressure
is greater than some percentage change, then that cell is marked for adaption.

4.2 Mesh Alteration

There are several ways in which a celi can be altered for adaption purposes. Ultimately,
the goal is to generate cells of an appropriate size such that they follow suit with the
type of improvement to the mesh which is being sought. Identifying the existing set of
n-points and its tessellation as V, and Ty, the set of adaptively obtained points V,, should
be such that modified tessellation T,,,,, has cells with a “pood” aspect-ratio (e.g., mo
long thin tetrahedra). Thus, even if m is large, if the resulting mesh quality is poor, the
implemented procedure will prove to have been somewhat futile.

It is difficult to state explicitly conditions which must be adhered to for successful
modified tessellations. This is particularly true for tessellations such as Delaunay, where
the tessellation of an introduced point is dependent upon the pre-determined tessellation
surrounding that point. However, in general, if V. is chosen such that Vi+m has a distri-
bution of points which gradually changes density from poini-te-point, then an acceptable
tessellation is usually achieved.

In this work, the following types of cell divisions were employed for those cells marked
for alteration:

¢ Lach cell had a point placed at its centroid (the arithmetic average of the positions
of the forming nodes).

s Surface cells had an additional point placed at the centroid of the surface face(s).

¢ Cells containing a boundary edge(s) had a point placed at the midpoint of that
edge.

‘I'his type of division was necessary because it was found that refinement of the bound-
ary was essential for proper point distributions and successful convergence to a solution.
Divisions based upon the circumcenter were also tried and were successful. It was found
that depending upon the nature of the cell being altered, one method would be more
advantageous than the other. Thus, the form of the initial mesh can have a significant
effect on subsequent alterations. At present, no consistent policy exists for obtaining the
most appropriate division, and further research on this topic is required.

5 Results

A-supersonic Mach 2 flow over a 20° wedge was calculated. Imposed boundary condi-
tions were as follows: i) Side bounding surfaces, wedge surface, and floor surface ahead
of the wedge were treated as zero.normal flux walls {with slip); #i) The inlet surface was
set at freestream Mach 2 values; and #43) The remaining two planes (“top-surface” and
“exit-surface” } were set according to theoretical oblique shock wave jump conditions and
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Figure 1: Pressure Coefficient Distribution at Various Adaption Stages

shock inclination. Condition 442 was imposed as a means of decoupling boundary con-
dition concerns from the research. The initial condition was uniform freestream values
everywhere.

Six mesh alterations were calculated. Results obtained from the initial mesh, an
intermediate altered mesh, and the final altered mesh are presented in Figures 1 and 2.
In Figure 1, values are given along a line on a side-surface through the middle of the exit-
surface. Figure 2 is the side-surface images of Figure 1 with a correspondence between
levels of alteration. The evidence is compelling that adaptive alteration significantly
cnhances the flow resolution.
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Figure 2: Bounding Plane Mesh and Pressure Field at Various Adaption Stages
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6 Future Work

It is clear that further applications of adaptive alteration should be explored, and it
is certain that its methods will evolve and improve. Eventually, adaptively calculated
solutions to the three-dimensional shock wave/boundary layer interaction problem are
desired. However, it is presently felt that a concerted effort should be made for the
determination of robust criteria which specify the character of the initial mesh and the
manner 1n which this should be modified to yield an appropriate pont distribution for an
advantageous resultant tessellation.
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