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1 Introduction

While the majority of aerodynamic simulations continue to be performed on structured meshes,
and the associated algorithms have realized a high level of maturity, mesh generation continues to
be a bottleneck in the treatment of really complex configurations. The generation of a structured
mesh can span one to two months of elapsed time, depending on the complexity of the geometry.
The use of unstructured meshes offers the prospect of substantially reducing the time required
to generate a grid about a complex shape. It is difficult, however, to achieve a comparable level
of accuracy on an unstructured mesh, especially for Reynolds-Averaged Navier-Stokes (RANS)
simulations. Further, the computational costs associated with the indirect-addressing algorithms
of an unstructured-mesh solver are substantially higher.

Following classical finite element theory, a number of vertex based schemes have been devel-
oped [1, 2]. The upwind schemes which have proved so successful on structured meshes are typically
formulated as cell-centered, finite-volume schemes, in which the integral form of the equations is
used to update the cell-averaged values of the conserved flow variables. This approach has also
been quite widely adopted on unstructured meshes [3, 4, 5, 6]. In order to obtain accurate values
at the center of each cell interface, it requires a reconstruction procedure to estimate the gradients
in each cell.

In the past, the present authors have developed cell-vertex schemes related to the Galerkin
formulation 7, 8, 9]. Both scalar diffusion and upwind biased schemes have been devised in this
context [10, 11]. One reason for preferring a cell-vertex scheme over a cell-centered one, is that the
number of cells in a tetrahedral mesh is about six times larger than the number of vertices, and in
the past, the available computer memory was a significant constraint on the size of the calculations
which could be attempted. On modern machines this is no longer a dominating consideration. In
this paper we propose a vertex-centroid (V-C) scheme which combines some of the features of cell-
vertex and cell-centered schemes. This leads to a neat reconstruction procedure. It also simplifies
the inter-mesh transfers of an unstructured-mesh multigrid scheme, in both the fine-to-coarse and
coarse-to-fine directions.
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2 Description of the Algorithms

2.1  Finite-Volume Scheme

We consider the two dimensional Euler equations for inviscid, compressible flow. Let p, p, u, v, F and
H denote the pressure, density, Cartesian velocity components, total energy and total enthalphy.
For a perfect gas,

1
p o= (- Dp(E - 52 +0%),
g = I

p
= 78

P

where ¢ is the speed of sound, and « is the ratio of specific heats. The Euler equations can be
written in integral form

g/wds-l—/fdy—gdxzo (1)
ot Jp B
for a domain D with boundary B, where the state and flux vectors are
— ‘ T
w = (p,pu,pv,pE)",
= (pu,pu®+ p, puv, puH)7, (2)
g = (pv,puv,pv®+p,pvH)T.

We assume the domain to be subdivided into small triangles. Equation (1) is applied directly to
each triangle to follow the evolution of the cell-averaged values of the state vector w. This leads to

the semi-discrete form
dw;

dt
where F; is the residual for cell j. This is evaluated as

Ri= Y hj

sides

+R;=0

where hjj is a numerical estimate of the flux (fAy — gAz) across the edge separating cell j and
a neighboring cell k. This is illustrated in Figure 1, which shows a cell numbered 0, and its three
neighbors.

Figure 1: Residual Summation.
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Figure 2: Left-Right Extrapolation.

2.2 Reconstruction

The accuracy of the scheme depends on the accuracy of the estimate of the fluxes hj;. Current
upwind schemes [3, 12] reconstruct values of the state vector w at the center of each edge from the
cell-averaged values and the gradients in the cells on the left and right side of each edge. These
values, which may be denoted as wy, and wg, are then used to construct the numerical flux taking
account of the convection and wave propogation across the edge. In order to estimate the gradients
in each cell, a least squares fit is constructed from the values in a set of neighboring cells.

In the present work, we adopt an alternative reconstruction procedure, in which the left and
right values are constructed in two steps. First we derive estimates of the state vectors at each
vertex, by considering the aggregate conserved values of mass, momentum and energy in the polygon
surrounding each vertex.

_ Zcells kak

w + =
verter Zcells Ak

where Ay is the area of cell k.

This recovery formula does not allow for the fact that the centroid of the polygon does not
coincide with the vertex. We have found it necessary to use an alternative procedure to estimate
the values at boundary verticies, where the discrepancy is particularly large. An improved recovery
procedure which is exact for linearly varying fields will be presented in a forthcoming paper [13].
We anticipate that this will significantly improve the accuracy on irregular meshes.

In the second step, we simply use linear extrapolation along the lines connecting the verticies
through the centroid of each cell to the center of the opposing edge, to form the left and right states
across each edge. This is illustrated in Figure 2, where the left state across edge 12 is extrapolated
from vertex 3 through centroid C'l, and the right state is extrapolated from vertex 4 through
centroid C2.

2.8 Limiters

In order to preserve monotonicity in the solution, the left and right values wy and wgr must be
limited so that they do not overshoot the values in the neighboring cells [3]. The results presented
in this paper were obtained using a symmetric limiter similar to that proposed by Jameson [10].
Following the notation of Figure 2, define the left and right differences

Awy, = wep — wa,

Awgp = w4 — wWos.
Then set,
1
wr, = wei+ -Q—E(AwL,A’wR),

1
wrp = wcz—iﬁ(AwL,AwR)
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where the factor % accounts for the relative distances along the directions of extrapolation, and £

is a limited average satisfying the following four properties:

L(u,v) = Lv,u) (P1)
L{au,ov) = al(u,v) (P2)
Llu,u) = u (P3)
L(u,v) = 0 if wv<0. (P4)

The limited average used in this work is

£(w,v) = 5(1 = R(w, 0)(u+v)
where B .
RO = el + o), )

and tol is a threshold proportional to the mesh width to the % power. Increasing the power ¢

reduces the severity of the limiter. The value ¢ = 1 corresponds to the minmod limiter. The
calculations presented here were performed with ¢ = 3. Alternative one-sided limiters have also
been investigated.

2.4 Numerical Flux

The numerical flux is constructed with upwind biasing to take account of wave propogation. The

flux across an edge has the form
h = fAy — gAz.

The Jacobian % has the eigenvalues @, Q,Q + cs, where s is the edge length, c is the speed of
sound, and @ is the rate of convection across the edge,

Q) = ulAy — vAz.
Following Roe [14], we can introduce a matrix Argp which exactly satisfies the relation
hr — hr, = ALr(wr — wi)

where
hgr = h(wgr), hr = h(wr).

Then one can take the eigenvalues of Arp to represent the eigenvalues of % across the interface.
Following Jameson [11] three families of numerical flux of increasing complexity can be identified:

(1) Scalar diffusion:
hrp = %(hR—i—hL) — —;—a(wR—wL) (3)
where the diffusion coeflicient should be no smaller that the largest wave speed
o> Q)+ cs.

This is similar to the diffusion used in the Jameson-Schmidt-Turkel scheme [15] and has also been
advocated by Tadmor [16].

(2) Schemes forming diffusion from differences of both fluz and state vectors:

hip = %(hR +hr) - %a(wR — wg) - %ﬂ(’m = h). )
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In order to produce full upwinding in supersonic flow, we have: @ = 0 and 8 = sign(M). In a
subsonic flow, a blend is required to contain the appropriate domain of dependence.

(8) Characteristic diffusion:

hrr = %(hR + hr) — ‘;‘IARLK’LUR — wp) ' (5)

where the diffusion matrix |Apy| is formed by decomposing Agy, in terms of its eigenvectors and
eigenvalues, and replacing the eigenvalues with their absolute values.

In this work, we have tested both scalar diffusion and the H-CUSP scheme, which defines
coefficients in Equation 4 such that in one-dimensional flow the numerical shock structure contains
a single interior point [11]. Results are presented for the H-CUSP scheme.

2.5 Discretization of Navier-Stokes Viscous Terms

Following the same philosophy of an interplay between nodal and cell-centered quantities, the V-C
scheme can be readily extended to treat the Navier-Stokes equations for viscous flow calculations.
First the velocity derivatives, 2, are evaluated at the grid vertices by applying the Gauss theorem

Oxm !
du
—dA = d
Oz ?{u y

to a control volume around each interior vertex, as illustrated in Figure 3. The control volume is
defined by lines through the centroids of the cells, drawn parallel to the outer edge of each cell,
with a length equal to % the length of the outer edge, and containing % the area of the cell. Using
a rectangle rule of integration, the derivative is estimated as

2 wAyr _ 3 wpAy
Y Ap 2 A
where uy is the value of the velocity at the centroid, Ay is the triangle area, Ay is the outer edge
length, and the sum is over the triangles surrounding the vertex.
Modified control volumes are used at boundary vertices, closed by edges along the boundary.
The rate of strain tensor and energy flux are then calculated at each vertex. Finally the viscous
fluxes for each triangle are evaluated by a trapezoidal rule of integration using the vertex values.

Z (055AY — OzyAz).

edges

(Dzu)y =

2.6 Time Stepping Scheme

Following earlier work by the present authors, a hybrid multi-stage time-stepping scheme is used
in which the convective and diffusive terms are treated differently in order to expand the stability
region. The residual is split as

R(w) = Q(w) + D(w)
where Q(w) is the convective part and D(w) is the diffusive part. Then the hybrid multi-stage
time-stepping scheme is formulated as
v = w® - @ ALQ® + DO,
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Figure 3: Gradient Polygon about Vertex V.

where w(®) is the value of the state vector at the beginning of the time step, and for an m-stage
scheme, a,, = 1. Here
QO = Qw®), DO = D)
and
QW =Q(w"), D = pD(w®) + (1 - 8)D(w*).
The results presented herein have been calculated with a 5-stage scheme with the following coetfli-
cients:
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2.7 Multigrid Scheme

It is well established that multigrid acceleration can drastically reduce the computational costs of
flow simulations. With a structured mesh, a sequence of successively coarser grids can easily be
generated by eliminating alternate points in each grid direction. With unstructured meshes it is
not so easy to generate a suitable sequence of meshes, and in general, the cells of any pair of meshes
in the sequence may overlap each other in an arbitrary manner. This complicates the construction
of appropriate mesh transfer operators, and is one motivation for the introduction of automated
grid-coarsening schemes such as that proposed by Vassberg [17], or the popular agglomeration
techniques [18, 19]. Here we simplify the construction of mesh transfer operators by transferring
the flow variables from the cell centers to the vertices in an intermediate step.

The multigrid time stepping scheme is similar to that we have previously used [20]. Suppose
the grids are numbered consecutively from the finest to the coarsest grid. Then on any grid the
following procedure is used. First the solution vector on grid k£ must be initialized as

4]
’w;(C ) = Ty p_1wg—1,

where wy_ is the current state vector on grid ¥ — 1, and T% -1 is a transfer operator. Next it is
necessary to transfer a residual forcing function such that the solution on grid k is driven by the
residuals of grid £ — 1. This can be accomplished by setting

Py = Q-1 Re—1(wp—1) — Ri (wl(cO)) :
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(a) Coarse-Mesh Vertex in Fine-Mesh Cell
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1 2

(b) Fine-Mesh Vertex in Coarse-Mesh Cell

Figure 4: Area Stencils for Transfer Operators.

where Qg x—1 is another transfer operator. Then Rjy(wy) is replaced with Rp(wg) + Pg in the
time-stepping scheme. Thus the multi-stage scheme is reformulated as

,w](cq) = w,(co) — o Aty (R](cq_l) + Pk) .

The result w,(cm) then provides initial data for grid k + 1. Finally, the accumulated correction on
grid k has to be transferred back to grid £ — 1 with the aid of an interpolation operator Ix_y k.
The fine-to-coarse transfer operators are defined next. The flow variables are first distributed
to the vertices with area weighting, as in the reconstruction procedure, and the sum of the residuals
in the surrounding triangles is accumulated at each vertex. Next the flow variables are transferred
from the vertices of the fine mesh to the vertices of the coarse mesh, by finding the fine-mesh
triangle which contains the coarse-mesh vertex, and interpolating the fine-mesh values with area

weighting, as shown in Figure 4(a).
wy = Aywy + Agwz + Azws
‘ Ay + A+ A3
Also the residuals are transferred by finding the coarse-mesh triangle which contains a given fine-

mesh vertex. The residual at the fine-mesh vertex is distributed to the three coarse-mesh vertices
with the area weighting of Figure 4(b).

Akva
Ar+ A+ Az’

Finally the flow variables at the coarse-mesh centroids are formed as the arithematic average of the
values at the vertices of each cell

Ry =Rp+

We = g(wl + wq +’ID3),

while the residuals are distributed from a vertex to the surrounding cells with the area weighting
illustrated in Figure 5. Triangle 1 receives (41 Ry,)/(>_x Ax) from V,, with similar contributions
from its other two vertices. This procedure conserves the sum of the residuals between the coarse
and fine meshes.

The coarse-to-fine mesh interpolation operator reverses the process. The coarse mesh corrections
are first transferred to the coarse-mesh vertices with area weighting, then the correction at each
fine-mesh vertex is interpolated between the three vertices of the coarse-mesh triangle in which it
is contained, with area weighting as in Figure 4(b). Finally, the correction in each fine-mesh cell is
taken as the arithematic average of the corrections at the three vertices of that cell.
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Figure 5: Area Stencil for Residual Re-Distribution.

3 Results

In order to evaluate the accuracy and efficiency of the vertex-centroid (V-C) scheme, we have
performed calculations for a variety of airfoils in subsonic and transonic flow. In this section we
present results for the standard test case of a RAE-2822 airfoil at a Mach number of M = 0.75,
and an angle of attack o = 3.0°.

In order to assess the dependence of the accuracy on the mesh size, each result is provided for
a series of increasingly fine meshes, with respectively (40 x 9), (80 x 17), (160 x 33) and (320 X 65)
nodes; the first number is in the chordwise direction, and the second in the normal direction. In
addition, the multigrid scheme with a W-cycle was used to accelerate the calculation on each of
these meshes, so a total of 3 grids were used to obtain the result on the (40 x 9) mesh, while 4, 5
and 6 grids were used, respectively, for the calculations on the successively finer meshes. In every
case, the coarsest grid used in the multigrid sequence contained (8 x 3) nodes.

For all the grids, the mesh nodes were generated via a conformal mapping of the airfoil section
to a near circle. Nodes are evenly distributed in the mapped plane, so that they are bunched
near the leading and trailing edges in the physical plane. Alternate rows of points were shifted a
half-mesh interval in the mapped plane to produce a distribution of points which permits a very
regular triangulation. Finally, a constrained Delaunay triangulation algorithm [21, 22] was used to
connect the mesh points while preserving the integrity of the profile. Figure 6 shows a close up of
the trailing edge region for the four solution grids.

The results of the calculations are presented in the following figures. For each calculation, we
show the solution on each of the four meshes. The (40 X 9) mesh in the top left, the (80 x 17) mesh
in the top right, the (160 x 33) mesh in the bottom left, and the (320 X 65) mesh in the bottom right.
To represent the solution, we display a plot of the pressure coefficient, Cp = (p — Poo)/ (3P0t
with the axis upward in the negative direction. We also show a porcupine plot of the computed

value of a measure of the entropy, z% / (p%)’y, along the surface of the profile, with positive values
in the outward normal direction. This is a useful measure of the numerical error, as entropy should
be generated only through the occurrence of shock waves in the inviscid flow.

As a basis for comparison, we first show in Figure 7 results for the RAE-2822 airfoil computed
with the cell-vertex scheme which we have previously used to perform calculations for complete
aircraft [7, 8, 9]. This scheme may be viewed as a modified Galerkin method, stabilized by artificial
diffusion adapted for unstructured meshes from the Jameson-Schmidt-Turkel (JST) scheme [15].

It is very robust, but exhibits a high level of numerical diffusion, as can be seen from the plots
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of the entropy along the surface. The multigrid acceleration scheme produces quite a high rate of
convergence, dropping the residuals 6 orders of magnitude in 100 cycles.

Next in Figure 8 we show the results of introducing the CUSP numerical flux into the cell-vertex
scheme. It can be seen both that the shock waves are captured more crisply, and that the levels of
spurious entropy generated ahead of the shock waves are greatly reduced. The convergence rates
are slightly slower, but still quite fast, dropping 4 orders in 100 cycles. Since 1993 it has been our
normal practice to use the CUSP scheme in preference to the JST scheme for calculations on both
structured and unstructured meshes.

In Figure 9 we present results computed with the new vertex-centroid (V-C) scheme using the
CUSP numerical flux. It can be seen that the shocks are captured extremely crisply with only
one interior point and without any overshoot in pressures. The production of spurious numerical
entropy is significantly less than that of the cell-vertex scheme. On the finest mesh, there is no
visible signs of entropy production ahead of the shock. However, the convergence rate is somewhat
slower, taking almost 500 cycles to drop the residuals by 4 orders of magnitude.

4 Conclusion

We consider the results we have obtained with the V-C scheme to be extremely promising. In fact,
the level of spurious numerical entropy production is lower than we have ever previously observed
with any scheme on either a structured or an unstructured mesh. Our tests have also shown that
the V-C scheme exhibits low numerical entropy production and remarkably crisp shocks when it is
stabilized with a simple scalar artificial diffusion.

These results have benefited from the use of very regular triangulations: we believe it is essential
to first validate the accuracy of the method with meshes of high quality. Our efforts are now focused
on improving the reconstruction method to maintain the highest possible accuracy on less regular
meshes [13]. We are also testing the scheme for viscous flows, and for three-dimensional calculations.
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Figure 6: RAE-2822 Grid Series, Close-Up of Trailing Edge Region.
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Figure 7: RAE-2822 Solution Series, Cell-Vertex HSCAL-JST Scheme.
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MACH 0750 ALPHA 3.000

CL 11194 CD 00462 CM -0.1938

GRID 320X65 NCYC 100 RESO.172E-06

Figure 8: RAE-2822 Solution Series, Cell-Vertex RHCUSP-SLIP Scheme.
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RAE 2822 - SCHEME : TRI. VERTEX-CENTROID RHCUSP-SLIP
MACH 0.750 ALPHA 3.000

CL 08837 CD 00512 CM -0.1589
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RAE 2822 - SCHEME : TRI. VERTEX-CENTROID RHCUSP-SLIP
MACH 0750 ALPHA 3.000

CL 10794 CD 00444 CM -0.1872

GRID 160X33 NCYC 500 RESO341E-07
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RAE 2822 - SCHEME : TRI. VERTEX-CENTROID RHCUSP-SLIP
MACH 0750 ALPHA 3.000

CL 10519 CD 00461 CM -0.1848

GRID 80X17 NCYC 500 RESO.577E-08

T T T T T T S S AR

Sdododiexky

RAE 2822 - SCHEME : TRI. VERTEX-CENTROID RHCUSP-SLIP
MACH 0750 ALPHA 3.000

CL 10794 CD 00437 CM -0.1862

GRID 320X65 NCYC 500 RESQ.279E-06

Figure 9: RAE-2822 Solution Series, Vertex-Centroid RHCUSP-SLIP Scheme.
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