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A numerical method for computing flowfields abont fighter-type aircraft is described in this paper. The
time-dependent Euler equations are discretized on a single-block mesh in finite volume form and integrated to
steady state via a Runge-Kutta scheme with 2 tocal time step. Convergence is accelerated by employing enthalpy
damping and residual smoothing in addition to a multigrid sequencing of the computational mesh. While
specifically designed for application in the transonic regime, the method can be used efficiently even at super-
sonic and low-subsonic speeds. Very realistic fighter configurations can be handled as demonstrated by the

examples presented.

Introduction

HE advent of supercomputers and superminicomputers

has brought the solution of the Euler equations into the
toolbox of the aircraft designer. Indeed, methods of solving
the Navier-Stokes equations are available. However, the cur-
rent status of turbulence modeling lends a measure of unreli-
ability to predictions based on Navier-Stokes formulations. In
addition, such codes require very large running times, even on
supercomputers, and, therefore, cannot be exercised fre-
quently in a design environment, Currently, numerical meth-
ods based on the Euler equations offer an excellent compro-
mise between reliability, speed, and faithful representation of
the flowfield.

In recent years, several methods!-!! have been proposed for
the solution of the Euler equation, Key elements that deter-
mine the extent to which a code will be used in a project
environment are its relative ease of use and its running time.
All numerical methods are based on a discretization of the
flow equations, which in turn relies on a discretization of the
physical space about the configuration to be examined. Grid
generation has matured to the point that meshes about very
complex configurations can be generated. The grid generation
step can be very complicated, however, and at times it can be
carried out only by experienced users. It can, in addition, be
time consuming, a feature that may be unacceptable in a pre-
liminary design stage.

The space about relatively simple shapes can be represented
quite well by a single-block structured mesh. In the present
context, a structured mesh is one that has a definite topological
structure. Single-block meshes are relatively easy to generate.
For more complicated shapes (e.g., an aircraft with wings,
nacelles, horizontal and vertical tails, etc.), composite meshes
made up of several grids separately generated for each individ-
ual component would seem more appropriate. In such com-
posite meshes, the individual grids, which may be topologi-
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cally different, either meet at predefined interfaces!?!? or
overlap.!* The generation of grids in the latter class is consid-
erably easier than that of grids belonging to the former class.
A recently introduced, alternative discretization is provided by
unstructured grids.'*! However, methods based on unstruc-
tured grids have not yet reached the maturity level of methods
based on structured grids. With a mesh that is fine enough to
resolve a flowfield adequately, the storage requirements and
running times of such methods are beyond the capacity of
most current computers and the availability of most users. At
present, composite grids offer the most versatile approach to
the analysis of the flows about complex configurations. Un-
fortunately these, too, have drawbacks. First, as just men-
tioned, the grids are not generated easily. Second, the existence
of interfaces or overlaps between the constituent grids requires
special treatment of such artificial internal boundaries, in-
evitably leading to a deterioration of the convergence qualities
of the underlying flow-solution scheme and, as a result, longer
running times.

As will be illustrated in this paper, a single-block H-O mesh,
which can be easily generated, can be used to represent the
space around a large variety of configurations, including
rather complex ones. With such a mesh, a fast numerical
scheme can be designed to take advantage of the ordered se-
quence of mesh cells without the encumbrance of internal
mesh boundaries. Such a numerical scheme will be described in
this paper along with the grid generation process. The basis of
the method rests on an algorithm by Jameson!” for the integra-
tion of the time-dependent Euler equations to steady state via
a Runge-Kutta scheme. Acceleration to steady state is achieved
by the use of a local time step. Additional acceleration is
provided by smoothing of the residuals and by enthalpy damp-
ing. Finally, the ordered, regular mesh system makes it possi-
ble to imbed the numerical scheme in 2 multigrid sequence of
meshes to provide further acceleration. Excellent convergence
rates have been exhibited by this method, and flowfields over
a wide variety of aircraft configurations have been computed
in as little as 5-10 min of computing time on a CRAY-XMP-
class machine,

Discretization of the Euler Equations

An inviscid, rotational flow is uniquely defined at every
point in space by the values of the density p, the three Carte-
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sian components of velocity «,v,w, and the total energy E. The
Euler equations describe the motion of such a flow and are
derived from the physical laws of conservation, which embody
the notion that, in the absence of singularities, the time rates
of change of mass, momentum, and energy contained within
any given volume must be equal to the net flux of the quantity
through the boundary of the volume. In integral form, the
equations are written as

%jXSW‘m’dﬂaerF‘"’}-dS:O (1)
Q an

where 7 is the time, Q denotes a given volume, and 3Q is the
volume’s boundary. The W™} denotes the five-scalar quanti-
ties that are conserved, and F™ is the corresponding vector
flux. In a Cartesian coordinate system, the variables and fluxes
are given by

W = o, FU = [pu,pv,pw]” (2a)
W = oy, F@ = [pt+p, puv,puw]’ (2b)
W = py, F® = Loy, pv? + p, pow]T (20)
W = pw, F® = [puw,pvw,pw?+p]” (2d)
W = oF, FO = [pHu,pHv, pHw)" (2¢)

Assuming a perfect gas with a ratio of specific heats equal to
v, the pressure p and total enthalpy H can be expressed in
terms of the density, velocity, and energy to close the system
of equations. Thus,

__p
E= -1

H=FE+p/ip (3b)

+%(u2+v2+w2) (3a)

The solution to a specific flow about an aircraft-like body is
obtained numerically by first discretizing the total external
space into a large number of hexahedral cells and applying Eq.
{1) to each cell. It is assumed that the unknown variables are
to be solved for at the nodes of the mesh and that each node
(£.7,k} has a control volume consisting of the eight cells meet-
ing at that node (see Fig. 1). At each node, then

8 g
4 ( Y V,,) Wim + 104 =0 @
dar =1 H=1

Here, V, is the volume of the nth cell and Q4™ is the net flux
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Fig.1 Control volume around point /,7,k.
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through that cell. Denoting by 8§, the directed area of the &h
face (of the nth cell), and by F§™ the mean flux vector across
that face, the net flux through each cell is given by

Q™ = YFI™ . 8, )
¢

In Eq. (4), the fluxes across internal faces cancel exactly, and,
therefore, the net flux through each control volumie is the sum
of the fluxes through the external faces only. In Eq. (5), §;is
to be computed by performing a cross-product of the vectors
joining diagonally opposite corners of the &h face, and F{™ is
to be computed using averages of the values stored at the four
constituent corners of the face.

Spurious oscillations could be set up by this discretization
scheme and can take two forms. One type of oscillation can
occur on either side of discontinuities in the solution, such as
shocks. An odd-even point oscillation mode, which would give
a zero net contribution to the flux balance in each control
volume, could also be generated. It is possible that the latter
mode might be suppressed in a steady-state solution by the
boundary conditions, but it could adversely affect transients.
A numerical device to control such oscillations is to add to Eq.
(4) a dissipation term that goes to zero in the limit of zero mesh
spacing. The dissipation has a low background level every-
where in order to suppress the odd-even point oscillations, and
it is increased in the presence of a physical discontinuity in the
flowfield. The dissipation is constructed in a way that pre-
serves the conservation form of the equations. It is imple-
mented by subtracting from Q{™ in Eq. (4) a dissipative flux,
D™, which is the sum of three terms separately constructed
for each of the three computational coordinate directions. The
term in the /- coordinate direction is

Dr(:f") =div1jx — ik 6)

with
dije=r [6(2)—5(4)5§] (“ﬁ‘.'}.k - Wf“—)l.j,k) )

Similar terms are defined for the j and k directions. In Eq. (D),
32 is a second-difference operator, and ¢® and @ are adaptive
coefficients. The scaling factor r is based on an estimate of the
maximum local wave speed, This is the speed at which the
fastest wave could cross a mesh interval and, denoting by A¢*
the local time step used to integrate Eq. (4), it would be pro-
portional to 1/At*. The amount of background dissipation is
controlled by ¢*, and the dissipation near discontinuities is
controlled by ¢, The discontinuities are detected by mak-
ing ¢? proportional to a normalized second difference of the
pressure.

This formulation introduces dissipation terms that are of
third order, except in regions of steep pressure gradients. The
discretization of the convective terms can be shown to be sec-
ond-order accurate.

Time Integration

With a computational mesh that is independent of time, Eq.
(4} can be rewritten as

< WTe + ROV =0 ®

where R(W'™) denotes the residual and it is given by
1
R(Wimy = v (Qupk — Dy j i) &)
bk

and where Q; ; , and D, ; , respectively, are the total convective
flux and the total dissipative flux through the control volume
Vs, The steady-state solution is obtained by integrating Eq.
(8) with a multistage Runge-Kutta scheme. If only the steady-
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state solution is of interest, a locally varying time step Af can
be used. As discussed by Jameson,'® this class of schemes can
exhibit excellent stability properties and very fast convergence
rates.

With an N-stage scheme, the advance from time (¢) to time
(¢ + Ar) in each variable ¥ is computed by the following recur-
sive formulas:

W‘O)-—: Wir) (10a)

WO = W(r) - a AR (W) (10b)
Wi = W(t) —:a,,AtR(W("“)) (10c)
W(t+At-) = W (10d)

A five-stage scheme, with «a;=1/4, ay=1/6, ay;=3/8,
o4 =1/2, and as = 1, has worked very well in practice. Also, in
concert with the findings of Jameson,!® the artificial dissipa-
tion terms can be frozen at the values computed during the
second stage. This strategy not only decreases the computing
time but also increases the stability margin of the scheme.

Residual Smoothing

As indicated in previous studies, Ref. 3 for example, compu-
tational efficiency can be enhanced by a smoothing of the
residuals. The maximum permissible time step is set by the
local Courant number. This limitation is relaxed if each resid-
ual is replaced by an average of its neighbors, This average,
denoted by R, is computed implicitly by solving

(-8 — 6, 8)1~¢,8)R = R '8

where R designates the unsmoothed residual, 62, &2, 82 are
second-difference operations, and ¢,, ¢,, ¢, are smoothing co-
efficients.

Enthalpy Damping

Another useful technique for accelerating convergence to
the steady state in the case of a homoenthalpic flow is enthalpy
damping. This technique exploits the difference between the
transient value of the locally computed enthalpy and its
known, steady-state value, which is also the value at infinity.
One can assume that the rate of change of each variable is
proportional to this difference. Thus,

%’ +BW(H—-H,)=0 (12)

where 8 is a user-defined constant. This information can be
used at the end of each time step to obtain a new improved
estimate of a variable W by correcting the value B computed
at the end of the Runge-Kutta step through

W=W+pAtWH-H,)=0 (13}

In practice, a slight modification is needed when applying this
type of correction to the energy variable. In this case, Eq. (13)
is modified to

(PE) — (BE) + BAL[E + p—pH.] = 0 (14)

It is instructive to mention at this point that the spatial
accuracy of the scheme is not affected by any of these schemes
designed to accelerate convergency. The accuracy of the
steady-state solution reflects the accuracy with which the re-
siduals at each node of the basic computational method is
computed.
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Multigrid Strategy

The evolution in time of the solution is dependent on the
mesh spacing through the limitations that the grid sets on the
Courant number. Even though these limitations can be relaxed
by employing a smoothing of the residuals, the implication
remains that the time evolution is faster on coarser grids than
finer ones. It would seem advantageous, then, to devise a
strategy that would use this faster approach of the steady state
on a coarser grid to generate information that can be used to
accelerate the approach of the steady state on any given finer
grid. Alternatively, one could look at the time marching to
steady state as an iterative process of reducing the errors (i.e.,
residuals) at each node. Errors are reduced by an exchange of
information between nodes, and during each iterative cycle,
information to any particular node comes only from nodes
involved in computing the residual at the node. Again, one can
see that an exchange of information between two particular
points in space takes place faster on coarser grids. Such was
the basic idea of multigrid schemes when first presented by
Brandt.?® Here, the scheme described by Jameson? is followed.

A multigrid scheme involves the exchange of information
among nodes of different grids covering the same physical
(and computational) space. The exchange is greatly simplified
if a coarser mesh is generated by eliminating alternate points in
each of the coordinate directions of a given mesh. With such
a setup, one can inject to each point on a coarse mesh (X + 1)
the values of the variables W at the coincident point on next
higher level mesh (K}. Once this is accomplished, Runge-
Kutta time steps can be performed on the coarse mesh, The
time step on the coarse grid is done with a modified residual,
however. The modified residual on the coarser mesh is ob-
tained by adding to the standard, computed residual a term
reflecting the difference between the residual computed on the
finer mesh and the residual computed on the coarser mesh
using the values transferred from the finer grid. Thus, on grid
level X +1, Egs. (10a-10c) are replaced by

W = T xWa (152)
Wi = W, — st (R + Py (15b)
Wl = W —anAt (R!((’?l +Px+1) (15¢)

where Ry, | is the residual, as computed on the K + 1 mesh and
Pio1= QxarxRe(Wi) — REL, (16)

is the additional term. The Q. x is a transfer operator denot-
ing a weighted average of the residuals at the 27 points nearest
the coincident point on mesh level X (including the point it-
self). The Py, | is constant as long as one operates on the K + 1
mesh without returning to a higher level. A number of time
steps can be performed on any grid level before passing on to
a coarser level or returning to the next higher level. In return-
ing to level K, the correction to W calculated on level X +1 is
used to provide an improved value of the variable on the finer
mesh. Denoting by W7, | the improved value of W on grid
K +1 after various time steps and after correcting for any
passage to a still coarser mesh X +2, an improved value of ¥
can be computed from

Wi = Wi + Ig g Wi — W, a7

Here, the operator Ik g, is defined in such a way that at
coincident points of the two meshes the value of W is simply
transferred. At intermediate points, a trilinearly interpolated
value of the difference between values at two mesh levels is
added to the current value on the finer mesh.

The transfer of information between grids and the computa-
tion of time steps on the coarser grids obviously entail some
computing times. However, the time steps are performed in
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only a fraction of the time needed on the fine mesh, and the
projected reduction in the total number of time steps more
than offsets the cost of sequencing through the grids, In the

Fig.2 Surface/wake grid on an aircraft with sweptback wings, hori-
zontal tails, and twin vertical tails.
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current scheme, a typical multigrid sequence calls for a single
time step on each grid level before passing on to a coarse grid
and a simple transfer of data without any time step in stepping
up through the grid levels. Occasionally, better convergence
has been observed by performing one time step on the way up
through the meshes,

Computational Mesh

In this work, an H-O mesh is used for space discretization,
and it is generated by combining a series of two-dimensional
meshes around selected cross sections of the aircraft. Each
mesh is generated by conformal mapping technique in planes
normal to the longitudinal axis of the aircraft. The technique
was originally suggested by Moretti?! and has been used by
Siclari®? for computing supersonic flows by space marching
techniques.

An arbitrary cross section can be mapped into a near circle
by removing corners through a sequence of Karmdn-Trefftz
mappings. Denoting by Z = X + §Y the physical ordinate and
by { the corresponding point in the mapped plane,

Z—Zo)_ K'—Zo)’
Z+Zﬁ - §'+20

iy )
i
i

it

(18)

d) Station 37

i
e
BT

g) Station 49

Fig.3 Representative cross-sectional grid planes on aircraft with twin vertical tails.
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where Z, is the location of the singularity and Z, its conjugate
value. The == is the external angle of the corner being re-
moved. The number of mappings is equal to the number of
corners to be remoeved, and on mappings subsequent to the
first, Z and Z, are identified with the ordinates in the most
recently mapped plane. In the near-circle plane, a computa-
tional grid is obtained in a straightforward manner. One fam-
ily of lines is given by a set of radial lines centered on & point
equidistant from the vertical and horizontal extremes of the
mapped cross section. The mesh is completed by a second set
of lines wrapping around the mapped body. This second set is
gradually distorted to a perfect circle at a predetermined dis-
iance denoting the outer boundary of the mesh.

A typical cross section of the aircraft may cut through one
of more components (e.g., fuselage, wing, nacelles, tails), and
these may be connected or separated. In the latter case, the
separate pieces are connected by slits. If slits are present, care
is taken to match up grid points on either side of the slit. By
having grid continuity across a slit, application of boundary
conditions in the numerical scheme is simplified. The distance
to which each two-dimensional mesh extends is kept constant.
Upstream of the aircraft’s nose, the first mesh plane on the
aircraft is extended to a predetermined distance with gradually
increasing spacing between the planes. This portion of the grid
is purely cylindrical; then, if the first aircraft mesh plane is
very close to the nose, as it typically is, a degenerate axis is
present in the grid upstream of the aircraft. A similar strategy
produces a cylindrical grid downstream of the aircraft. This
part of the grid wraps around a slit, since the last cross section
includes the wing’s trailing edge and/or wake. In a typical
grid, one-half of the planes is positioned along the aircraft’s
length, and the other half of the planes is divided between the
upstream and the downstream portions of the grid.

The grid generated about an F-14-like aircraft (wing, na-
celle, horizontal and twin vertical control surfaces} is depicted
in Figs. 2 and 3. The wing and both control surfaces have
sweptback leading and trailing edges. In Fig. 2 the surface grid
is shown reflected about the symmetry plane, The 0 grid
around several representative cross sections of the aircraft are
shown in Fig. 3. On this configuration, the wake slit coming
off the wing is gradually warped to intercept the rearward
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Fig.4 Computed surface pressure distributions; fighter-type air-
craft; My =0.80, o =20 deg.
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horizontal tail. As the back end of the aircraft is approached,
additional wake slits appear between the engine nacelle, each
of the horizontal and vertical tails, and the ‘‘pancake’ be-
tween the twin vertical tails, All the slits eventually join to
form an ‘‘inverted-T* slit extending to infinity.

For supersonic freestreams, a more efficient use of grid
points is to vary the distance to which the two-dimensional
mesh extends in each cross-sectional plane, from a small value
near the aircraft’s nose to a larger value downstream. In addi-
tion, because of the restricted domains of dependence and
influence, a larger percentage of the grid planes can be concen-
trated along the aircraft’s length.

Boundary Conditions

At node points lying on the aircraft, flow tangency is en-
forced at the end of each time step by setting to zero any
normal component of velocity. In addition, fluxes through
faces lying on the aircraft surface are explicitly set to reflect
this condition. Continuity is enforced across wake slits behind
the wing by replacing the values of each variable at matching
nodes by their average. Similarly, values at nodes sharing a
common grid point on the degenerate axis ahead of the aircrafit
are replaced by the average. At the outer boundaries of the
mesh, appropriate inflow or outflow boundary conditions are
imposed using Riemann invariants to attenuate the spurious
reflections of outgoing waves into the field. With zero sideslip,
in addition, only one-half of the flowfield need be considered.
In this case, symmetry is enforced on the plane of symmetry of
the aircraft,

Numerical Examples

Flows over a wide variety of configurations and covering a
considerable Mach number range have been calculated with
the method. The solution algorithm is very efficient. In the
cases that will be shown, including those representing extreine
flow conditions, convergence to steady state is typically ob-
tained in 200-300 cycles. Fewer are needed for less severe flow
conditions. The mesh topology chosen is capable of treating
very complex bodies as is shown in Figs. 2 and 3. Pressure
distributions computed on that configuration for a Mach num-
ber of 0.80 and an angle of attack of 20 deg are shown in Fig.
4. In this computation the surface geometry is treated as a solid
body (i.e., both the inlet of the engine and the nozzle are
closed). The mesh contained a total of 65 half planes normal
to the longitudinal axis of the aircraft. Of these, half were on

Fig. 5 Isomach contours on upper wing/body surface and in a cross-
sectional plane; fighter-type aircraft; M. =0.80, «=20 deg.
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Fig. 6 Computed surface pressure distributions; fighter-type air-
craft; M =0.95, a=10 deg.

the aircraft, and the other half were split between the regions
upstream and downstream of the body. Each plane in turn
contained a 97 x 33 polar-like grid. Representative portions of
these planes were shown in Fig. 3. The computation over this
200,000-point mesh requires approximately 12 Mwords of
storage. The cross sections at which the surface distributions
are displayed in Fig. 4 correspond, in ascending order to sta-
tion 30 behind the glove; station 35 just before the location
where the wing leaves the fuselage; station 38 cutting through
the rear/outer portion of the wing and the pancake/engine
region; station 42 past the trailing edge of the wing where the
horizontal and vertical control surfaces are already present;
and station 47 close to the tail of the aircraft. Notice that the
solution is continuous across all wake slits. It is to be pointed
out in particular that at station 47 where the control surfaces
do not touch the engine nozzle that four separate wake slits are
present. In Fig. 4 there is indication of a shock close to the
leading edge of the glove and the wing. In Fig. 5, which depicts
the isomach contours on the body surface and in a midfuselage
cross-sectional plane. The location of the shock is indicated by
the clustering of contour lines near the leading edge. The re-
gion of supersonic flow can be seen to extend into the field as
a “‘bubble” leaning toward the symmeiry plane. A region of
supersonic flow also is present on the in-board portion of the
wing, just past the cross-plane that was depicted.

At a Mach number of 0.95 and an angle of attack of 10 deg,
the flow is supersonic over most of the wing, and the shock
moves back from the leading edge, as can be'noticed in Fig. 6.
Of interest in this case is the shock on the pancake just in front
of the vertical tails, which can be discerned in Fig. 7. Typically,
shocks in the present method are smeared over three or four
mesh cells, The smearing is largely dependent on the value
chosen for the dissipation coefficients, ¢ and 4, These are
kept constant throughout the examples presented. Conver-
gence rates and accuracy in shock representation were weighed
in selecting the coefficients. The convergence rate can be in-
creased at the cost of additional smearing of shocks. The solu-
tion elsewhere shows little sensitivity to the choice of dissipa-
tion coefficients.

This example demonstrates the geometric complexity that
can be handled by the method. The range of applicability and
the accuracy of the method will be examined in the following,
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Fig. 7 Isomach contours on upper wing/body surface and in a cross-
sectional plane; fighter-type aircraft; Mo =0.95, a=10 deg.
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Fig. 8 Computed surface pressure distributions; chine-forebody con-
figuration; M. =0.20, «=15 deg.

The next example illustrates the low-speed capability of the
algorithm. Figure 8 depicts surface distributions of pressure
coefficients computed on a generic fighter aircraft at a free-
stream Mach number of .20 and an angle of attack of 15 deg.
Streamline ‘‘ribbons’” are shown in Fig. 9. This configuration
features a chine-shaped forebody and a sharp-edged, cropped
delta wing. Typical cross sections are visible in Fig. 8. This
configuration is similar to one that has been tested by Erick-
son,?? and a sketch of his observations is also shown in Fig. 9.

This computation was carried out on a mesh consisting of 49
longitudinal planes, each of which contained 49 points in the
azimuthal direction and 24 points in the radial direction. It is
remarkable that the flow features are captured with this rela-
tively coarse mesh. This example also has been computed on a
mesh containing twice as many points in each coordinate direc-
tion on the CRAY-2 machine of the NASA Ames National
Acrodynamic Simulator. The flow features were largely un-
changed in passing to the finer mesh. The major noticeable
difference concerned the vortices, which were slightly tighter
on the finer mesh.
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Fig.9 Top view of streamline “‘ribbons’’ on chine-forebody configu-
ration; My =0.20, o=15 deg; inset: experimental tracks of vortex
cores (from Ref. 23).
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At this point, it should be mentioned that the convergence
rate of the algorithm for a particular geometry and set of flow
conditions has shown little sensitivity to mesh size. Thus, on
refining a mesh, the time needed to advance one time step
increases in proportion to the number of grid points, but the
number of time steps needed to achieve convergence (usually
defined as a reduction in the residual by three orders of magni-
tude) is largely unchanged.

For this generic fighter configuration, increasing the angle
of attack to 25 deg increases the interaction between the chine
and wing vortices. The chine vortex is pushed outboard
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Fig. 11 Top view of streamlines on chine-forebody configuration;
Mo =0.20, o =25 deg; inset; experimental tracks of vortex cores (from

Ref. 23).
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Fig. 12 Computed surface pressure distributions; biconic missile
body; Ms=6.0, a=0 deg.

sooner, as can be observed in Fig. 10. Vortices can be identi-
fied as “humps’ in a pressure plot. The chine vortex starts
wrapping around the wing vortex earlier along the length of
the body. The wing vortex is substantially larger than it was at
the lower angle of attack. The computations are again in qual-
itative agreement with the observation of Erickson, as can be
seen from Fig. 11.

The last example addresses the flow past a spherically
biunted, on-axis biconic body at Mach 6. This configuration,
which consists of a conical shape with a half angle of 12.84 deg
in the front part followed by another conical section with a
7-deg half angle, has been tested in the Langley 20-in. Mach-6
tunnet by Miller and Gnoffo.** Computations were done with
a mesh comprising 65 longitudinal planes, of which 8 were
located upstream of the body and 8 were set downstream, Each
cross-sectional plane contained 49 points in the circumferential
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Fig. 13 Computed surface pressure distributions; biconic missle
body; Muw=6.0, a=5 deg.
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Fig. 14 Computed surface pressure distributions; biconic missile
body; Mo =6.0, a=10 deg.

direction and 33 in the radial direction. The outer boundary of
the mesh was gradually expanded, as described earlier, to cre-
atec a “‘supersonic’’ mesh. Predictions of surface pressure dis-
tributions were in very good agreement with experimental data
for all three angles of attack computed (0, 5, and 10 deg) as can
be seen from Figs. 12-14. Total force coefficients (decom-
posed along in the normal and axial directions) also were pre-

J. AIRCRAFT

Fig. 15 Pressure contours on surface and three cross-sectional
planes; biconic missile body; M« =6.0, a=35 deg.

Table1 Computed and experimental aerodynamic coefficients
for biconic missile body

Theory Experiment
o, deg Cn Ca Cn Ca
0 —0.005 0.073 -0.003 0.096
5 0.151 0.091 0.153 0.102
10 0.313 0.120 0.313 0.119

dicted quite well, as can be noticed from Table 1, Pressure
contours on the surface and in three cross-sectional planes are
depicted in Fig. 15 for the 5-deg incidence case. As can be seen,
the bow shock is captured quite well. The clustering of lines on
the surface of the body just in front of the second plane which
is depicted is a result of the change in body slope angle there.

Concluding Remarks

The algorithm described in this paper has proved very reli-
able and efficient over a considerable Mach number range,
from subsonic through transonic to high supersonic flow con-
ditions. Even in cases of extreme flow condition, where sub-
stantial flow separation is encountered, it has exhibited excel-
lent convergence properties, The mesh topology used sim-
plifies the grid generation process and is capable of adequately
describing bodies of considerable geometric complexity. The
simplicity and speed of the combined grid generation/solution
algorithm procedure make the method an ideal tool in a pre-
liminary design environment. Preliminary qualitative and
quantitative comparisons with experimental data at both the
low and the high ends of the Mach regime have attested to the
accuracy of the predictions. Validation of the method against
experimental data is currently underway.
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