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1 Introduction

Since the development of the IAS computer built from 1942 to
1951 at the Institute of Advanced Studies under the supervision of
John von Neumann, computer engineers’ push to make the hard-
ware more practical and efficient has been driven and challenged
by a handful of applied fields. While it is widely recognized that
Aerodynamics played a key role in the development of modern
scientific computing, it is instructive to understand why. We argue
that the trigon formed by a compelling technological problem,
the availability of useful mathematical models of increasing com-
plexity, and the relentless pace of improvement in computing plat-
forms imposed by Moore’s law, is responsible for the amazing
advances in computational aerodynamics of the past 50 yr. More-
over, the particular nature of the aerospace industry imposes on
computational aerodynamics stringent requirements on both the
accuracy and robustness of the computations, which provided the
need and the impetus for the development of advanced numerical
techniques. This set of circumstances has brought and maintains
computational aerodynamics at the forefront of modern scientific
computing.

In the early dawn of aviation, empiricism dominated aerody-
namic design. Airfoil shapes were selected based on observation
of nature (e.g., lilienthal) or good physical insight and new
designs evolved following a build-test-modify process. By the late
1930 s, a deeper theoretical understanding of airfoil performance
at subsonic speeds had been gained primarily thanks to Prandtl’s
and Glauert’s pioneering work. This approach culminated in the
development of the NACA 6 series of airfoils, which was obtained
by hand calculations using the Theodorsen method for conformal
mapping. Nevertheless, wind tunnel testing remained the main
tool for aerodynamic analysis and design. The quest for super-
sonic flight, initiated in the late 1930’s in Germany and Italy, had
moved after World War II to the USA and the USSR, and the
onset of the cold war exacerbated the technological competition
between the two superpowers. The Mig 19, the first mass-
produced true supersonic fighter (Mach 1.35), entered production
in 1955, and was faster than the F-100 Super Saber, which was
only capable of Mach 1.05 in level flight. By the end of the decade
the speed had topped Mach 2.00 with the F104 (1958) and the
Mig21 (1959). Again, advances were made principally by superior
physical insight confirmed by wind tunnel tests. The discovery of
the area-rule by Richard T. Whitcomb, his development of super-
critical airfoils, and later of winglets are among the most notable
examples of this traditional build-test-modify approach. This
process was expensive, and in the 1960 s cost escalated with the
complexity of newer projects. For example, more that 20,000 h of

wind tunnel testing were needed for the development of the F111
or the Boeing 747. The need of gaining air-superiority together
with the explosive growth of civil air traffic consolidated the
strategic importance of aeronautical sciences in general and aero-
dynamics in particular.

By 1960, it began to be apparent that digital computers had
improved to the point of making it possible to attempt their use
for the calculation of the aerodynamic characteristics—at least of
isolated aircraft components—by solving a suitable mathematical
model. The conservation of mass, momentum and energy for a
viscous Newtonian fluid, which are generally referred to as the
Navier–Stokes equation, govern the dynamics of any flow under
the assumption that the fluid is a continuum; they have been
known for approximately 150 yr, but solution of this nonlinear set
of partial-differential equations is still daunting. Fortunately, since
efficient flight can be achieved only by establishing highly coher-
ent flows, useful predictions can be made with simplified mathe-
matical models. In particular, since the Reynolds’ number of a
typical aircraft is of the order of 107, aerodynamic forces such
as lift, Induced drag and in the case of transonic or supersonic
flight wave-drag, can be computed by using inviscid flow models.
It was precisely the availability of a hierarchy of models of
increased complexity and fidelity, which yield useful prediction at
different stage of a design, that allowed computational aerody-
namics to develop in-step with Moore’s law. The 1960s were
dominated by the development of boundary integral methods
(panel methods) based on the solution of a linear-potential equa-
tion both for purely subsonic or supersonic flow, for arbitrarily
complex geometry [1–3].1

The late 1960s and early 1970s have witnessed the emergence
of computational fluid dynamics for more general industrial
problems. In this wider arena, Spalding’s group at Imperial
College led the way. The split treatment of the pressure terms,
which culminated in the development of the SIMPLE method [5],
was born from unmatched physical insight as much as it was
grounded in the mathematical properties of the equations. The
development of advanced numerical methods coupled with the
path-breaking advances in turbulence modeling made in the same
period by Launder and Spalding [6] enabled the practical use of
CFD in an industrial setting.

In aeronautics, prediction at transonic speeds were needed. The
importance of the transonic flight regimes is twofold. To a first
approximation, cruising efficiency is proportional to ML/D, the
product of the Mach number M with the lift L to drag D ratio
(aerodynamic efficiency). Since the aerodynamic efficiency is
insensitive to the velocity, as long as shock waves are not present,

Manuscript received October 4, 2010; final manuscript received November 21,
2011; published online December 6, 2012. Assoc. Editor: Gerard F. Jones.

1A more recent article by Hess [4] offers a comprehensive review of this
approach.
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it pays to increase the flight speed and cruise in the transonic
regime. Moreover, military aircraft maneuver in transonic flow,
and with the quest for high angle of attack maneuvering came the
danger of abrupt wing stall (AWS). Thus, in the 1970s, the battle-
ground shifted to the transonic regime, which requires the solution
of a potential equation of mixed-type (elliptic/hyperbolic) either
linearized or not. As a result, the first satisfactory methods for
treating the nonlinear equations of transonic flow [7–12] and
the hodograph method for the design of shock free supercritical
airfoils [13] were developed.

In the 1980s, the attention shifted to the solution of the Euler
equations and, later in the decade, to the Reynolds averaged
Navier–Stokes (RANS) equations. The last twenty years have seen
advances in the ability of predicting the flow on geometrically com-
plex configurations, as well as renewed efforts toward the accurate
simulation of time-dependent flow. Several accounts on the devel-
opment of numerical methods for inviscid flow models—either
based on a velocity potential equation or the Euler form of the con-
servation laws—have already appeared in the literature [14]. In this
paper, we focus on methods suitable for the numerical solution of
viscous models—either the Navier–Stokes equations or an averaged
form of it augmented by a suitable turbulence model for closure,
and present an account of our research on the subject, which spans
more than two decades of development.

The ultimate goal of aerodynamics is not the analysis of the
flow as much as it is the drawing of appropriate forms that enable
the designer to meet the mission requirements with maximum effi-
ciency and minimum cost. In the last two decades, the ultimate
goal of developing a tool for automatic shape optimization using
high-fidelity physical models has been realized. By casting the
shape optimization problem as a control problem—the shape of
the boundary being the control—constrained by a suitably chosen
set of partial-differential equations (the flow model), adjoint-
based design methods have been developed and gained acceptance
in industry, becoming one of the main tools for aerodynamic
design. The second part of this paper is an account of the develop-
ment of adjoint-based shape optimization methods and their effi-
cient implementation.

2 Solvers for Euler and RANS Equations

In a Cartesian coordinate system xi, by assuming the standard
Einstein summation convention on repeated indices, the conserva-
tion laws for a compressible fluid can be written as

@q
@t
þ @qvk

@xk
¼ 0

@qvi

@t
þ @qvivk

@xk
þ @p

@xi
¼ @ski

@xk

@qeT

@t
þ @qhvk

@xk
¼ @ski

vi

@xk
þ @

@xk
j
@T

@xk

where

eT ¼ eðq; sÞ þ v � v
2
¼ eðq; sÞ þ vE

and h ¼ ðeT þ ðp=qÞÞ is the enthalpy per unit mass. Also, for a
Newtonian fluid

sik ¼ k
@vl

@xl
dik þ l

@vi

@xk
þ @vk

@xi

� �

if Stokes’ postulate is applied k ¼ � 2
3
l: Also, heat conduction is

modeled by the standard Fourier form, where j is the coefficient
of heat conduction. When the right hand side of these equations is
neglected—for example, in the limit of high Reynolds’ number—
the equations reduces to the Euler form. It is well known that by

Reynolds averaging—or mass-averaging—these equations one
obtains a set of partial-differential equations for the mean flow
that closely resembles the Navier–Stokes equations, but the aver-
aging process gives rise to additional terms such as the Reynolds
stress tensor that requires additional modeling. Hence, solvers
developed for the Navier–Stokes equations are easily extended to
the Reynolds averaged equations (RANS) provided that a suitable
turbulence model is implemented for closure. (See paper by T.
Gatski in this special edition.)

2.1 Discrete Formulation. The numerical solution of the
conservation laws requires three steps:

(i) the discretization of the computational domain,
(ii) the representation of the PDEs on the discretized domain,

both in space and time, and
(iii) the computation of the solution of the discretized

equations.

If the computational domain is simply connected and bounded
by uncomplicated shapes, this first step is almost trivial, but it
becomes challenging even for a relatively simple two-element air-
foil (i.e., a main foil plus a flap). The principal alternatives are
Cartesian meshes, body-fitted curvilinear meshes, and unstruc-
tured, possibly tetrahedral, meshes. Each approach has pros and
cons which have led to their use in particular applications. The
Cartesian mesh minimizes the complexity of the algorithm at
interior points and facilitates the use of high order discretization
procedures, at the expense of greater complexity, and possibly a
loss of accuracy, in the treatment of boundary conditions at
smooth curved surfaces. This difficulty may be alleviated by using
mesh refinement procedures near the surface. With their aid,
schemes which use Cartesian meshes have been developed to treat
very complex configurations [15–18].

Body-fitted meshes have been widely used, and are particularly
well suited to the treatment of viscous flow since the grid spacing
normal to a solid boundary can be clustered to provide adequate
resolution of boundary layers. With this approach, the problem of
mesh generation itself has proved to be a major pacing item. Pro-
cedures based on algebraic transformations [19–22], methods
based on the solution of elliptic equations, pioneered by Thomp-
son [23–26], and methods based on the solution of hyperbolic
equations marching out from the body [27] form the core of the
existing mesh generation software.

For very complicated configurations a multiblock approach is
generally used in which the domain is first decomposed into sev-
eral simpler subdomains (blocks). These blocks are then
discretized using body-fitted curvilinear meshes. The domain
decomposition can be such that there is a one-to-one matching of
the faces of neighboring blocks. or there may be an overlap of the
blocks yielding a so called overset mesh, as with the Chimera
scheme [28,29].

Alternatively, the flow domain can be discretized by triangula-
tion (tessellation). This yields a simplified domain discretization
[30] process at the expenses of a more complex data structure,
since in this case additional bookkeeping is required to identify
neighboring cells. More recently, unstructured meshes have been
extended to include arbitrarily shaped cells, such as prisms and
pyramids [31]. A good review of CFD methods for unstructured
meshes can be found in Ref. [32]. Alternative approaches such as
meshless and immersed boundary methods, albeit promising, have
not gained wide acceptance in aeronautics and will not be dis-
cussed further in this paper.

It is well known that a consistent representation of the PDEs
on the discrete domain can be obtained either by developing
approximate formulas for the operators directly, or by applying
the exact operators to an approximation of the unknowns in a
suitable basis. The first approach yields both finite difference and
finite volume discretizations, while the latter represents a finite
element approach.
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The finite volume approach pioneered by Spalding and his col-
laborators at Imperial College in the late 1960s (as it is described
in Ref. [33]), was introduced in computational aerodynamics by
Paullay and MacCormack [34] in 1972, and to-date, it remains the
most widely used discrete scheme.

An alternative route to the discrete equations is provided by the
finite element method. Whereas the finite difference and finite vol-
ume methods approximate the differential and integral operators,
the finite element method proceeds by inserting an approximate
solution into the exact equations. The Dassault-INRIA group led
the way in developing a finite element method for transonic poten-
tial flow. They obtained a solution for a complete aircraft (Falcon
50) as early as 1982 [35]. Euler methods for unstructured meshes
have been the subject of intensive development by several groups
since 1985 [36–40], and Navier–Stokes methods on unstructured
meshes have also been demonstrated [41–43] as early as the early
1990s.

It is possible to verify that the finite difference and finite vol-
ume methods lead to essentially similar schemes on structured
meshes, while the finite volume method is essentially equivalent
to a finite element method with linear elements when a tetrahedral
mesh is used. Provided that the flow equations are expressed in
the conservation law form, all three methods lead to an exact can-
cellation of the fluxes through interior cell boundaries, so that the
conservative property of the equations is preserved. The important
role of this property in ensuring correct shock jump conditions
was pointed out by Lax and Wendroff [44].

The discretization schemes described lead to nondissipative
approximations to the convective terms. Dissipative terms may be
needed for two reasons. The first is the possibility of undamped
oscillatory modes. The second reason is the need for the clean
capture of shock waves and contact discontinuities without
undesirable oscillations. These symptoms are present also when
solving the Navier–Stokes equations in regions, away from solid
boundaries, in which the mesh resolution is inadequate or the
viscous terms becomes negligibly small. Starting from the path-
breaking work of Godunov [45], a variety of dissipative and
upwind schemes designed to have good shock capturing proper-
ties have been developed in the 1980s and 1990s [43,46–61].
Today, a well established understanding of the requirements for
building robust and accurate shock capturing schemes exists. In
particular the construction of nonoscillatory schemes based on a
local extremum diminishing (LED) or essentially local extremum
diminishing (ELED) principle [62,63] has produced a very robust
class of methods that has proved to be both accurate and efficient
for the simulation of transonic and supersonic viscous flow in con-
junction with both characteristic, and convective upwind split
pressure (CUSP) flux-splitting [64]. Another approach which has
proved very successful is Liou’s AUSM [65].

2.1.1 Discretization of the Viscous Terms. The discretization
of the viscous terms of the Navier–Stokes equations requires an
approximation to the velocity derivatives @vi=@xj in order to cal-

culate the tensor sij . Then, the viscous terms may be computed

and included in the flux balance.
In order to evaluate the derivatives one may apply the Gauss

formula to a control volume V with the boundary S.

ð
V

@vi

@xj
dV ¼

ð
S

vinjdS

where nj is the outward normal. This formula can be applied to
both tetrahedral and hexahedral cell yielding

@vi

@xj
¼ 1

V

X
faces

�vinjS (1)

where �vi is an estimate of the average of vi over the face. If v
varies linearly over a tetrahedral cell this is exact. Alternatively,
assuming a local transformation to computational coordinates nj,
one may apply the chain rule and evaluate the transformation
derivatives @xi=@nj by using the same finite difference formulas

as the velocity derivatives @vi=@nj In this case, @v=@n is exact if v
is a linearly varying function. This formula can be carried out for
either cell-centered or vertex-based schemes. The most efficient
implementation of these formulas requires the introduction of
dual meshes for the evaluation of the velocity derivatives and the
flux balance.

A desirable property is that a linearly varying velocity distribu-
tion—as in a Couette flow—should produce a constant stress and
hence a null viscous flux balance. This property is not necessarily
satisfied in general by finite difference or finite volume schemes
on curvilinear meshes. Nevertheless, an accurate resolution of a
laminar boundary layer can be obtained with 16–32 grid points
normal to the boundary, as illustrated in Fig. 1.

In the case of an unstructured mesh, the weak form leads to a
natural discretization with linear elements, in which the piecewise
linear approximation yields a constant stress in each cell. This
method yields a representation which is globally correct when
averaged over the cells, as is proved by energy estimates for ellip-
tic problems [13], but it yields formulas that are not necessarily
locally consistent with the differential equations, when a Taylor
series expansion is substituted for the solution at the vertices of
the local stencil.

Anisotropic grids are needed in order to resolve the thin bound-
ary layers which appear in viscous flows at high Reynolds num-
bers. Otherwise, an excessively large number of grid cells may be
required. The use of flat tetrahedra can have an adverse effect on
both the accuracy of the solution and the rate of convergence to a
steady state. This has motivated the use of hybrid prismatic-
tetrahedral grids in which prismatic cells are used in the wall
regions [66]. A review of many of the key issues in the design of
flow solvers for unstructured meshes is given by Venkatakrishnan
[67].

Fig. 1 Computed velocity profiles for 2D laminar boundary layer—finite volume cell-centered
formulation with a CUSP dissipation. Similarity solution of both components of the velocity is
verified.
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2.1.2 Time-Stepping Schemes. When the spatial operators are
discretized separately from the time derivative, one obtain a set of
coupled ordinary differential equations, which can be written in
the form

@w

@t
þR wð Þ ¼ 0 (2)

where R wð Þ is generally called the residual symbol consisting of
the flux balances defined by the space discretization scheme,
together with the added dissipative terms. The name originates
from the observation that, at a steady state, it must necessarily be
R wð Þ ¼ 0. If the objective is simply to reach the steady state and
details of the transient solution are immaterial, the time-stepping
scheme may be designed solely to maximize the rate of conver-
gence. Both explicit schemes, in which the space derivatives are
calculated from values of the flow variables at known at the begin-
ning of the time step, and implicit schemes, in which the formulas
for the space derivatives include unknown values of the flow vari-
ables, have been studied extensively. The permissible time step
for an explicit scheme is limited by the Courant–Friedrichs–Lewy
(CFL) condition, whereas implicit schemes are not. Thus, implicit
schemes will require a smaller number of time steps to reach a
steady state, which come at the expenses of an increase in the
computational effort per time step. The prototypical implicit
scheme can be formulated by estimating @w=@t as a linear combi-
nation of RðwnÞ and Rðwnþ1Þ:

wnþ1 ¼ wn � Dt 1� lð ÞR wnð Þ þ lR wnþ1
� �� �

This can be linearized as

Iþ lDt
@R
@w

� �
dwþ DtR wnð Þ ¼ 0

If one sets l ¼ 1 and lets Dt!1 this reduces to the Newton
iteration, which has been successfully used in two-dimensional
calculations [68,69]. In the three-dimensional case with, say, an
N � N � N mesh, the bandwidth of the matrix that must be
inverted is of order N2. Direct inversion requires a number of
operations proportional to the number of unknowns multiplied by
the square of the bandwidth of the order of N7. This is prohibitive,

and forces recourse to either an approximate factorization method
or an iterative solution method.

Alternating direction methods, which introduce factors corre-
sponding to each coordinate, are widely used for structured
meshes [70,71]. They cannot be implemented on unstructured tet-
rahedral meshes that do not contain identifiable mesh directions,
although other decompositions are possible [72,73]. If one choo-
ses to adopt the iterative solution technique, the principal alterna-
tives are variants of the Gauss–Seidel and Jacobi methods. A
symmetric Gauss–Seidel method with one iteration per time step
is essentially equivalent to an approximate lower–upper (LU) fac-
torization of the implicit scheme [74–77]. On the other hand, the
Jacobi method with a fixed number of iterations per time step
reduces to a multistage explicit scheme, belonging to the general
class of Runge–Kutta schemes [78]. Schemes of this type have
proven very effective for wide variety of problems, and they have
the advantage that they can be applied equally easily on both
structured and unstructured meshes [79–82].

Radical improvements in the rate of convergence to a steady
state can be realized by the multigrid time-stepping technique.
The concept of acceleration by the introduction of multiple grids
was first proposed by Fedorenko [83]. There is by now a fairly
well-developed theory of multigrid methods for elliptic equations
based on the concept that the updating scheme acts as a smoothing
operator on each grid [84,85]. This theory does not hold for hyper-
bolic systems. Nevertheless, there is overwhelming evidence that
multigrid methods accelerate the evolution of a hyperbolic system
to a steady state [86–92]. Multigrid acceleration has proven
extremely successful for the solution of the inviscid Euler equa-
tions, but less effective in calculations of turbulent viscous
flows at high Reynolds numbers using the Reynolds averaged
Navier–Stokes equations. The highly anisotropic grids required to
resolve boundary layers and wakes, cause simple multigrid meth-
ods to yield fast initial convergence—albeit normally sufficient
for engineering application—which generally slows down as the
calculation proceeds to a low, less than optimal, asymptotic rate.
This has motivated the introduction of semicoarsening and
directional coarsening methods [93–99].

Multigrid methods have been applied on unstructured meshes
by interpolating between a sequence of separately generated
meshes with progressively increasing cell sizes [41,42,100,101]. It
is not easy to generate very coarse meshes for complex configura-
tions. An alternative approach, which removes this difficulty, is to
automatically generate successively coarser meshes by agglomer-
ating control volumes or by collapsing edges. This approach
yields comparable rates of convergence and has proven to be quite
robust [102–105].

Multigrid methods driven by optimized explicit time-stepping
schemes, have been the preferred approach by the authors since
they are naturally suitable for parallel computing. They were fully
validated by the mid 1990s and they provide a quick and accurate
prediction of viscous flow (Fig. 2).

Multigrid methods have also been applied to time-dependent
calculations. In this case a multigrid explicit scheme can be used
in an inner iterative loop to solve the equations of a fully implicit
time-stepping scheme [106]. This method has proved effective for
the calculation of unsteady flows that might be associated with
wing flutter [107,108] and also in the calculation of unsteady
incompressible flows [109]. It has the advantage that it can be
added as an option to a computer program which uses an explicit
multigrid scheme, allowing it to be used for the efficient calcula-
tion of both steady and unsteady flows. A similar approach has
been successfully adopted for unsteady flow simulations on
unstructured grids by Venkatakrishnan and Mavriplis [110].

3 Aerodynamic Shape Optimization

The use of computational simulation to scan many alternative
designs has proved extremely valuable in practice, but it still suf-
fers the limitation that it does not guarantee the identification of

Fig. 2 Business jet configuration. Iso-CP Navier–Stokes solu-
tion with 240 blocks and 5.8 million mesh points. M 5 0.82,
a 5 1.0 deg.
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the best possible design. Thus, the ultimate goal of computational
simulation methods should not just be the analysis of prescribed
shapes, but the automatic determination of the true optimum shape
for the intended mission. This is the underlying motivation for the
combination of computational fluid dynamics with numerical opti-
mization methods.

Some of the earliest studies of such an approach were made by
Hicks et al. [111,112]. The principal obstacle was the large compu-
tational cost of determining the sensitivity of the cost function to
variations of the design parameters by repeated calculation of the
flow. Another way to approach the problem is to formulate aerody-
namic shape design within the framework of the mathematical
theory for the control of systems governed by partial-differential
equations [113]. In this view, the wing is regarded as a device to
produce lift by controlling the flow, and its design is regarded as a
problem in the optimal control of the flow equations by changing
the shape of the boundary. If the boundary shape is regarded as
arbitrary within some requirements of smoothness, then the full
generality of shapes cannot be defined with a finite number of
parameters, and one must use the concept of the Frechet derivative
of the cost with respect to a function. Clearly such a derivative can-
not be determined directly by separate variation of each design
parameter, because there are now an infinite number of these.

Using techniques of control theory, however, the gradient of
the cost function can be determined indirectly by solving an
adjoint equation which has coefficients determined by the solution
of the flow equations. The cost of solving the adjoint equation is
comparable to the cost of solving the flow equations, with the
consequence that the gradient with respect to an arbitrarily large
number of parameters can be calculated with roughly the same
computational cost as two flow solutions. Once the gradient has
been calculated, a descent method can be used to determine a
shape change which will make an improvement in the design. The
gradient can then be recalculated, and the whole process can be
repeated until the design converges to an optimum solution, usu-
ally within 50–100 cycles. The fast calculation of the gradients
coupled with fast solvers makes optimization computationally fea-
sible even for designs in three-dimensional viscous flow.

3.1 General Approach. For flow about an airfoil or wing,
the aerodynamic properties which define the cost function are
functions of the flow-field variables (w) and the physical location
of the boundary, which may be represented by the function F ,
say. Then

I ¼ I w;Fð Þ

and a change in F results in a change

dI ¼ @IT

@w

� 	
I

dwþ @IT

@F

� 	
II

dF (3)

in the cost function. Here, the subscripts I and II are used to distin-
guish the contributions due to the variation dw in the flow solution
from the change associated directly with the modification dF in
the shape. This notation assists in grouping the numerous terms
that arise during the derivation of the full Navier–Stokes adjoint
operator, outlined later, so that the basic structure of the approach
as it is sketched in the present section can easily be recognized.

Suppose that the governing equation R which expresses the
dependence of w and F within the flow-field domain D can be
written as

R w;Fð Þ ¼ 0 (4)

Then, dw is determined from the equation

dR ¼ @R
@w

� 	
I

dwþ @R
@F

� 	
II

dF ¼ 0 (5)

Since the variation dR is zero, it can be multiplied by a Lagrange
Multiplier w and subtracted from the variation dI without chang-
ing the result. Thus, Eq. (3) can be replaced by

dI ¼ @IT

@w
dwþ @IT

@F dF � wT @R

@w

� 	
dwþ @R

@F

� 	
dF

� �

¼ @IT

@w
� wT @R

@w

� 	
 �
I

dwþ @IT

@F � wT @R

@F

� 	
 �
II

dF (6)

Choosing w to satisfy the adjoint equation

@R

@w

� 	T

w ¼ @I

@w
(7)

the first term is eliminated, and we find that

dI ¼ GdF (8)

where

G ¼ @IT

@F � wT @R

@F

� 	

The advantage is that Eq. (8) is independent of dw, with the result
that the gradient of I with respect to an arbitrary number of design
variables can be determined without the need for additional flow-
field evaluations. In the case that Eq. (4) is a partial-differential
equation, the adjoint Eq. (7) is also a partial-differential equation
and determination of the appropriate boundary conditions requires
careful mathematical treatment.

In Ref. [114], Jameson derived the adjoint equations for tran-
sonic flows modeled by both the potential flow equation and the
Euler equations. The theory was developed in terms of partial-
differential equations, leading to an adjoint partial-differential
equation. In order to obtain numerical solutions both the flow and
the adjoint equations must be discretized. However, the control
theory might be applied directly to the discrete flow equations
which result from the numerical approximation of the flow equa-
tions by finite element, finite volume or finite difference proce-
dures. This leads directly to a set of discrete adjoint equations
with a matrix which is the transpose of the Jacobian matrix of
the full set of discrete nonlinear flow equations. On a three-
dimensional mesh with indices ijk, the individual adjoint
equations may be derived by collecting together all the terms mul-
tiplied by the variation dwijk of the discrete flow variable wijk. The
resulting discrete adjoint equations represent a possible discretiza-
tion of the adjoint partial-differential equation. If these equations
are solved exactly they can provide an exact gradient of the
inexact cost function which results from the discretization of the
flow equations. Moreover, the discrete adjoint equations derived
directly from the discrete flow equations become very compli-
cated when the flow equations are discretized with higher order
upwind biased schemes using flux limiters. On the other hand any
consistent discretization of the adjoint partial-differential equation
will yield the exact gradient in the limit as the mesh is refined.

The discrete adjoint equations, whether they are derived
directly or by discretization of the adjoint partial-differential
equation, are linear. Therefore they could be solved by direct
numerical inversion. In three-dimensional problems on a mesh
with, say, n intervals in each coordinate direction, the number of
unknowns is proportional to n3 and the bandwidth to n2. The com-
plexity of direct inversion is proportional to the number of
unknowns multiplied by the square of the bandwidth, resulting in
a complexity proportional to n7. The cost of direct inversion can
thus become prohibitive as the mesh is refined, and it becomes
more efficient to use iterative solution methods. Moreover,
because of the similarity of the adjoint equations to the flow equa-
tions, the same iterative methods which have been demonstrated
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to be efficient for the solution of the flow equations are efficient
for the solution of the adjoint equations.

Studies of the use of control theory for optimum shape design
of systems governed by elliptic equations were initiated by Piron-
neau [115]. The control theory approach to optimal aerodynamic
design was first applied to transonic flow by Jameson
[114,116–120]. He formulated the method for inviscid compressi-
ble flows with shock waves governed by both potential flow and
the Euler equations [114]. Numerical results showing the method
to be extremely effective for the design of airfoils in transonic
potential flow were presented in Ref. [121], and for three-
dimensional wing design using the Euler equations in Ref. [122].
Subsequently the method has been employed for the shape design
of complex aircraft configurations [123,124], using a grid pertur-
bation approach to accommodate the geometry modifications. The
method has been used to support the aerodynamic design studies
of several industrial projects, including the Beech Premier and the
McDonnell Douglas MDXX and blended wing-body projects. The
application to the MDXX is described in Ref. [118]. The
experience gained in these industrial applications made it clear
that the viscous effects cannot be ignored in transonic wing
design, and the method has therefore been extended to treat the
Reynolds averaged Navier–Stokes equations [120]. Adjoint meth-
ods have also been the subject of studies by a number of other
authors, including Baysal and Eleshaky [125], Huan and Modi
[126], Desai and Ito [127], Anderson and Venkatakrishnan [128],
and Peraire and Elliot [129]. Ta’asan et al. [130], who have imple-
mented a one shot approach in which the constraint represented
by the flow equations is only required to be satisfied by the final
converged solution. In their work, computational costs are also
reduced by applying multigrid techniques to the geometry modifi-
cations as well as the solution of the flow and adjoint equations.

More recently, the continuous adjoint methods has been imple-
mented on unstructured tetrahedral meshes. Figure 3 depicts the
computed density contours of the original and optimized aircraft.
It shows that the shock wave footprint is more diffuse in the opti-
mized configuration, consistent with the fact that the computed
drag has been reduced from 235 to 215 counts [131].

4 Conclusion and Future Challenges

Progress in both algorithms and computer hardware has
evolved computational aerodynamics into an economical and
indispensable tool for aerodynamic design. It has indeed become
the main tool used in industry to carry out the initial phases of a
design—conceptual and preliminary; while wind tunnel testing
provides the final validation. The design of the wing planform,
high-speed wing lines, wing tips, wing-body fairings, vertical tail
is today carried out primarily via CFD. Furthermore, CFD pro-
vides an avenue for extending wind tunnel test results to flight
Reynolds numbers. In spite of these successes, much remains to
be achieved. On the numerical side, there remains the need both
to improve the accuracy of computational simulations, and to
assure known levels of accuracy. This will be crucial for CFD to
become an acceptable tool in the certification process of new air-
frames, a goal that would greatly reduce the costs of bringing new
aircrafts into service. Today, adjoint-based optimization techni-
ques enable the aerodynamicist to optimize transonic wings for
cruise condition. While they are not intended to replace the judge-
ment and insight of the aircraft designers, they are a powerful ena-
bling tool that allows the designers to focus their efforts on the
creative aspects of aircraft design, by relieving them of the need
to spend large amounts of time exploring small variations. The
next challenge is the development of optimization techniques for
off-design conditions, and for time-dependent flow. This will
require advances in both numerical algorithms and modeling of
highly separated turbulent flow. To meet this challenge, current
efforts focus on the development of higher order accuracy meth-
ods based on spectral differences and on a discontinuous Galerkin
approach, and on the development of well calibrated large eddy
simulation (LES) models.
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