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Abstract This work revisits an idea that dates back to the early days of scientific computing,
the energy method for stability analysis. It is shown that if the scalar non-linear conservation
law

∂u

∂t
+ ∂

∂x
f (u) = 0

is approximated by the semi-discrete conservative scheme

duj

dt
+ 1

�x

(
fj+ 1

2
− fj− 1

2

)
= 0

then the energy of the discrete solution evolves at exactly the same rate as the energy of the
true solution, provided that the numerical flux is evaluated by the formula

fj+ 1
2

=
∫ 1

0
f (û)dθ,

where

û(θ) = uj + θ(uj+1 − uj ).

With careful treatment of the boundary conditions, this provides a path to the construction of
non-dissipative stable discretizations of the governing equations. If shock waves appear in
the solution, the discretization must be augmented by appropriate shock operators to account
for the dissipation of energy by the shock waves. These results are extended to systems of
conservation laws, including the equations of incompressible flow, and gas dynamics. In
the case of viscous flow, it is also shown that shock waves can be fully resolved by non-
dissipative discretizations of this type with a fine enough mesh, such that the cell Reynolds
number ≤ 2.
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1 Introduction

Throughout the history of the development of discrete methods for linear and nonlinear
conservation laws, and in particular computational fluid dynamics, there has been an ongo-
ing struggle to find schemes which both assure physically correct non-oscillatory discrete
solutions, and also minimize the discretization errors. Standard shock capturing schemes
are formulated to satisfy total variation diminishing (TVD) or local extremum diminishing
(LED) properties through the addition of sufficient artificial diffusion. On the other hand
it seems that if the conservation law has an accompanying energy estimate, it should be
possible to construct discrete schemes which satisfy the same estimate, and must therefore
be stable without the need to introduce artificial diffusion, at least as long as the solution
remains smooth.

The use of energy estimates to establish the stability of discrete approximations to initial
value problems has a long history. The energy method is discussed in the classical book
by Morton and Richtmyer [1], and it has been emphasized by the Uppsala school under
the leadership of Kreiss and Gustafsson. Consider a well posed initial value problem of the
form

du

dt
= Lu, (1.1)

where u is a state vector, and L is a linear differential operator in space with approximate
boundary conditions. Then forming the inner product with u,

(
u,

du

dt

)
= 1

2

d

dt
(u,u) = (u,Lu). (1.2)

If L is skew self-adjoint, L∗ = −L, and the right hand side is

1

2
(u,Lu) + 1

2
(u,L∗u) = 0.

Then the energy 1
2 (u,u) cannot increase.

If (1.1) is approximated in semi-discrete form on a mesh as

dv

dt
= Av, (1.3)

where v is the vector of the solution values of the mesh points, the corresponding energy
balance is

1

2

d

dt
(vT v) = vT Av (1.4)

and stability is established if

vT Av ≤ 0. (1.5)

A powerful approach to the formulation of discretizations with this property is to construct
A in a manner that allows summation by parts (SBP) of vT Av, annihilating all interiors
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contributions, and leaving only boundary terms. Then one seeks boundary operators such
that (1.5) holds. In particular suppose that A is split as

A = D + B,

where D is an interior operator and B is a boundary operator. Then if D is skew-symmetric,
DT = −D, the contribution vT Dv vanishes leaving only the boundary terms.

Skew-symmetric and SBP operators of both second and higher order have been devised
for a variety of problems. The benefits of kinetic energy preserving schemes for the treatment
of incompressible viscous flow has also been emphasized by Moin and Stanford’s Center for
Turbulence Research. Honein and Moin have also examined skew-symmetric schemes for
compressible flow [2].

SBP operators are typically constructed by splitting the equations into a part in conser-
vation form and a part in quasilinear form. For example, the inviscid Burgers equation is
written as

∂u

∂t
+ 2

3

∂

∂x

(
u2

2

)
+ 1

3
u

∂u

∂x
= 0.

Then the use of second order central difference operators for both parts at every interior
point, and one sided operators at each boundary yields an SBP operator.

In nonlinear problems for which the solution may develop shock waves it is generally
beneficial to preserve conservation form in the discretization. According to the theorem of
Lax and Wendroff [3], this will assure that the discrete solution satisfies the correct shock
jump conditions, provided that it converges in the limit as the mesh interval is reduced to
zero. In any case it is highly desirable to maintain global conservation properties of the
true solution in the discrete solution. Small errors in the global conservation of mass, for
example, can lead to large errors in the solution of flows in ducts.

This paper presents a general procedure for constructing semi-discrete schemes for con-
servation laws in conservation form such that the discrete solution also exactly satisfies a
discrete global conservation law for a generalized energy or entropy function. To take ad-
vantage of this approach it is first necessary to identify an appropriate energy principle for
the governing equations. If shock waves appear in the solution the energy principle will
need to be modified to allow for their effect on the energy or entropy balance. Moreover,
in the light of Godunov’s theorem that monotonically varying discrete shocks can only be
obtained by locally first-order accurate schemes, the basic discretization scheme will need
to be augmented by appropriate shock operators.

The construction of shock operators for the inviscid Burgers equation and for the gas
dynamics equations has been discussed by Gustafsson and Olsson [4]. Shock capturing
schemes for gas dynamics have been widely studied (Godunov, Boris, Van Leer, Roe,
Harten, Liou, Jameson [5–12]). In general they add artificial diffusion either explicitly or
implicitly through the use of upwind operators. The aim of the present work is to devise sta-
ble schemes which would require the introduction of artificial diffusion only on the neigh-
borhood of discontinuities and nowhere else.

The next section discusses the Burgers equation and the energy principle. It is shown how
to construct a semi-discrete scheme in conservation form, together with boundary operators,
such that the discrete energy is bounded from above by the energy of the true solution. When
shock waves appear in the solution the energy balance has to be modified to account for the
dissipation of energy by the shock waves. It is then shown how to construct a shock operator
which enables the discrete solution to track the energy evolution of the true solution very
accurately, as verified by numerical experiments.
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Section 3 presents a procedure for constructing semi-discrete approximations to gen-
eral scalar conservation laws in conservation form such that a discrete energy principle is
satisfied exactly. The conditions for the construction of the numerical flux are given in The-
orem 3.1. Section 4 extends the method to the treatment of systems of conservation laws.
The conditions for the construction of the numerical flux such that a generalized entropy
balance is satisfied exactly are given in Theorem 4.3. The method requires that the system
can be symmetrized by a transformation of variables, as described in the work of Godunov,
Mock and Harten [13–15].

Section 5 applies the foregoing method to the treatment of three dimensional incom-
pressible flow. Theorem 5.2 states the discrete energy principle that is exactly satisfied by
semi-discrete finite volume schemes with polyhedral control volumes, as has also been veri-
fied numerically. Finally the treatment of the gas dynamics equations is discussed in Sect. 6.
It is shown that a semi-discrete finite volume scheme can be constructed to satisfy exactly a
discrete entropy balance as long as the numerical flux is constructed in the proper manner, as
stated in Theorem 6.1. The formula, however, for the numerical flux requires the introduc-
tion of entropy variables, and is expressed as an integral that does not have a closed form. It
is suggested that it should be evaluated by Gauss Lobatto integration.

2 Burgers Equation

The Burgers equation is the simplest example of a nonlinear equation which supports wave
motion in opposite directions and the formation of shock awaves, and consequently it pro-
vides a very useful example for the analysis of the energy method. Expressed in conservation
form, the inviscid Burgers equation is

∂u

∂t
+ ∂

∂x
f (u) = 0, a ≤ x ≤ b, (2.1)

where

f (u) = u2

2
(2.2)

and the wave speed is

a(u) = ∂f

∂u
= u. (2.3)

Boundary conditions specifying the value of u at the left or right boundaries should be
imposed if the direction of u is towards the interior at the boundary.

Smooth solutions of (2.1) remain constant along characteristics

x − ut = ξ.

If a faster moving wave over-runs a slower moving wave this would indicate a multi-valued
solution. Instead a proper weak solution is obtained by assuming the formation of a shock
wave across which there is a discontinuous transition between left and right state uL and uR .
In order to satisfy the conservation law (2.1) in integral form, uL and uR must satisfy the
jump condition

f (uR) − f (uL) = s(uR − uL), (2.4)
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where s is the shock speed. For the Burgers equation this gives a shock speed

s = 1

2
(uR + uL). (2.5)

Provided that the solution remains smooth, (2.1) can be multiplied by uk−1 and rearranged
to give an infinite set of invariants of the form

∂

∂t

(
uk

k

)
+ ∂

∂x

(
uk+1

k + 1

)
= 0.

Here we focus on the first of these

∂

∂t

(
u2

2

)
+ ∂

∂x

(
u3

3

)
= 0. (2.6)

This may be integrated over x from a to b to determine the rate of change of the energy

E =
∫ b

a

u2

2
dx (2.7)

in terms of the boundary fluxes as

dE

dt
= u3

a

3
− u3

b

3
. (2.8)

This equation fails in the presence of shock waves, as can easily be seen by considering the
initial data u = −x in the interval [−1,1]. Then a wave moves inwards from each boundary
at unit speed toward the center until a stationary shock wave is formed at t = 1, after which
the energy remains constant. Thus

E(t) =
{

1
3 + 2t

3 , 0 ≤ t ≤ 1,

1, t > 1.

In order to correct (2.8) in the presence of a shock wave with left and right states uL and uR ,
(2.6) should be integrated separately on each side of the shock. If the shock is moving at a
speed s there is an additional contribution to dE

dt
in the amount

s

(
u2

L

2
− u2

R

2

)
.

Substituting (2.5) for the shock speed

dE

dt
= u3

a

3
− u3

L

3
+ u3

R

3
− u3

b

3
+ 1

2
(uL + uR)

(
u2

L

2
− u2

R

2

)

which can be simplified to

dE

dt
= u3

a

3
− u3

b

3
− 1

12
(uL − uR)3. (2.9)

In the presence of multiple shocks, each will remove energy at the rate 1
12 (uL − uR)3.
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As was already observed by Morton and Richtmyer [1, page 142], a skew-symmetric
difference operator consistent with (2.1) for smooth data can be constructed by splitting it
between conservation and quasilinear form as

∂u

∂t
+ 2

3

∂

∂x

(
u2

2

)
+ 1

3
u

∂u

∂x
= 0.

Suppose this is discretized on a uniform mesh xj = j�x, j = 0,1, . . . n. Central differenc-
ing of both spatial derivatives at interior points yields the semi-discrete scheme

duj

dt
= 1

6�x

(
u2

j+1 − u2
j−1

) + 1

6�x
uj

(
uj+1 − uj−1

) = 0, j = 1, n − 1. (2.10)

The skew symmetric operator is completed by the use of one sided schemes at each boundary

du0

dt
= 1

3�x

(
u2

1 − u2
0

) + 1

3�x
u0(u1 − u0),

dun

dt
= 1

3�x

(
u2

n − u2
n−1

) + 1

3�x
un(un − un−1). (2.11)

Rewriting the quasilinear term as 1
6�x

(uj+1uj − ujuj−1) (2.10) and (2.11) can be expressed
in the conservation form

duj

dt
+ 1

�x

(
fj+ 1

2
− fj− 1

2

)
= 0, j = 1, n − 1, (2.12)

where

fj+ 1
2

= 1

6

(
u2

j+1 + uj+1uj + u2
j

)
(2.13)

and

du0

dt
+ 2

�x

(
f 1

2
− f0

)
= 0,

dun

dt
+ 2

�x

(
fn − fn− 1

2

)
= 0, (2.14)

where

f0 = u2
0

2
, fn = u2

n

2
. (2.15)

Now let the discrete energy be represented by trapezoidal integration as

E = �x

2

(
u2

0

2
+ u2

n

2

)
+ �x

n−1∑
j=1

u2
j

2
. (2.16)

Multiplying (2.12) by uj and summing by parts

�x

n−1∑
j=1

uj

duj

dt
= −

n−1∑
j=1

uj

(
fj+ 1

2
− fj− 1

2

)
= f 1

2
u0 − fn+ 1

2
un.
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Hence, including the boundary points, we find that

dE

dt
= u3

0

3
− u3

n

3
(2.17)

which is the exact discrete analog of the continuous energy evolution (2.8).
The formulation so far does not include the boundary conditions. Suppose that boundary

data u = g0 should be imposed at x0 if the left boundary x0 is an inflow boundary, and cor-
respondingly u = gn should be imposed at xn if the right boundary xn is an inflow boundary.
It is convenient to introduce the positive and negative wave speeds

a+(u) = max(a(u),0), a−(u) = min(a(u),0).

Then we modify the equations at the boundary points by adding simultaneous approximation
terms (SAT), so that instead of (2.14) we solve

du0

dt
+ 2

�x

(
f 1

2
− f0

)
+ τ

�x
a+

0 (u0 − g0) = 0,

dun

dt
+ 2

�x

(
fn − fn− 1

2

)
− τ

�x
a−

0 (un − gn) = 0, (2.18)

where the parameter τ determines the amount of the penalty if the boundary condition is
not satisfied exactly. The linear case has been analyzed by Mattsson [16]. Here we wish
to ensure stability in the nonlinear case. It is evident from (2.17) that outflow boundaries
(u0 < 0 or un > 0) promote energy decay. Thus we need only consider the effect of inflow
boundary conditions.

For this purpose suppose that d
dt

Etrue is the rate of change of energy that would result
if the boundary conditions were exactly satisfied. Then we wish to choose τ so that dE

dt
is

bounded from above by d
dt

Etrue

dE

dt
≤ d

dt
Etrue. (2.19)

Consider the construction at the left boundary assuming it is an inflow boundary. Suppose
that a+

0 is evaluated as 1
2 (u0 + g0). Omitting for the moment the contribution of the right

boundary we find that

d

dt
(E − Etrue) = u3

0

3
− g3

0

3
− τ

4
u0

(
u2

0 − g2
0

)
.

Suppose now that u0 has the value αg0. Then the rate of change of the energy is modified
by the cubic expression F(α)g3

0 where

F(α) = α3

3
− 1

3
− τ

4
α(α2 − 1).

Here g0 should be positive if it is truly an inflow boundary condition, so we require F(α) to
be nonpositive in the range of α corresponding to inflow, α > −1. However, F(α) = 0 when
α = 1 and u0 = g0, so its sign will change at α = 1 unless this is a double root. Here

F ′(α) = α2 − τ

4
(3α2 − 1)
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and the condition F ′(1) = 0 yields

τ = 2. (2.20)

Then

F(α) = −1

6
(α − 1)2(α + 2)

and is non positive whenever α > −2. A similar analysis at the right boundary confirms that
condition (2.20) is sufficient to assure the favorable energy comparison (2.19) whenever
either boundary is an inflow boundary.

Numerical experiments have been conducted to verify the stability of the semi-discrete
scheme (2.12–2.13) with the boundary conditions (2.18–2.20). Shu’s total variation dimin-
ishing (TVD) scheme [17], was used for time integration. Writing the semi-discrete scheme
in the form

du

dt
+ R(u) = 0, (2.21)

where R(u) represents the discretized spatial derivative, this advances the solution during
one time step by the three stage scheme

u(1) = u(0) − �t R(u(0)),

u(2) = 3

4
u(0) + 1

4
u(1) − 1

4
�t R(u(1)),

u(3) = 1

3
u(0) + 2

3
u(2) − 2

3
�t R(u(2)),

where u(0) and u(3) denote the solution of the beginning and the end of the time step. If (2.21)
satisfies the TVD property with forward Euler time stepping, Shu’s scheme is also TVD
for time steps satisfying the CFL condition |a| �t

�x
≤ 1. This property has been designated

strongly stability preserving (SSP) by Gottlieb [18].
Figure 1 displays snap shots of the solution with initial data u = −x in [−1,1] at times

t = 0, .5,1,1.5 using a grid with 256 intervals. The true solution is a straight line connecting
wave fronts moving inwards from both boundaries at unit speed until a shock is formed at
t = 1. It can be seen that the discrete solution closely tracks the true solution prior to the
formation of the shock. After the shock is formed the discrete solution develops strong
oscillations in a zone expanding outward from the shock towards both boundaries. This is
consistent with the fact that according to (2.17), the discrete energy continues to grow at the
rate 2

3 t when t > 1 as illustrated in Fig. 2, and the energy must be absorbed in the solution.
It is evident that the scheme must be modified to preserve stability in the presence of

shock waves. It is well known from shock capturing theory [11, 12], that oscillations in
the neighborhood of shock waves are eliminated by schemes which are local extremum
diminishing (LED) or total variation diminishing (TVD). A semi-discrete scheme is LED if
it can be expressed in the form

dui

dt
=

∑
j

aij (uj − ui), (2.22)

where the coefficients aij ≥ 0, and the stencil is compact, aij �= 0 when i and j are not
nearest neighbors. This property is satisfied by the upwind scheme in which the numerical
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Fig. 1 Evolution of the solution of the Burgers equation

flux (2.13) is replaced by

fj+ 1
2

=

⎧⎪⎪⎨
⎪⎪⎩

u2
j if aj+ 1

2
> 0,

u2
j+1 if aj+ 1

2
< 0,

1
2 (u2

j+1 + u2
j ) if aj+ 1

2
= 0,

(2.23)

where the numerical wave speed is evaluated as

aj+ 1
2

= 1

2

(
uj+1 + uj

)
. (2.24)

Moreover, the upwind scheme (2.23) admits a stationary numerical shock structure with a
single interior point.

The LED condition only needs to be satisfied in the neighborhoods of local extrema,
which may be detected by a change of sign in the first differences �uj+ 1

2
= uj+1 − uj .

A shock operator which meets these requirements can be constructed as follows. The nu-
merical flux (2.13) can be converted to the upwind flux (2.23) by the addition of a diffusive
term of the form

dj+ 1
2

= αj+ 1
2
�uj+ 1

2
.
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Fig. 2 Discrete energy growth

The required coefficient is

αj+ 1
2

= 1

4

∣∣uj+1 + uj

∣∣ − 1

12

(
uj+1 − uj

)
. (2.25)

In order to detect an extremum introduce the function

R(u, v) =
∣∣∣∣

u − v

|u| + |v|
∣∣∣∣
q

,

where q is an integer power. R(u, v) = 1 whenever u and v have opposite signs. When
u = v = 0, R(u, v) should be assigned the value zero. Now set

sj+ 1
2

= R
(
�uj+ 3

2
,�uj− 1

2

)
(2.26)

so that sj+ 1
2

= 1 when �uj+ 3
2

and �uj− 1
2

have opposite signs which will generally be the
case if either uj+1 or uj is an extremum. In a smooth region where �uj+ 3

2
and �uj− 1

2
are

not both zero, sj+ 1
2

is of the order �xq , since �uj+ 3
2
−�uj− 1

2
is an undivided difference. In
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Fig. 3 Evolution of the solution of the Burgers equation with a switch

order to avoid activating the switch at smooth extrema, and also to protect against division
by zero, R(u, v) may be redefined as

R(u, v) =
∣∣∣∣

u − v

max {(|u| + |v|), ε}
∣∣∣∣ , (2.27)

where ε is a tolerance [11].
Finally the diffusion term is modified to

dj+ 1
2

= max
(
sj+ 3

2
, sj+ 1

2
, sj− 1

2

)
αj+ 1

2
�uj+ 1

2
.

Thus the coefficient is reduced to a magnitude of order �xq in smooth regions, while it has
the value αj+ 1

2
in the neighborhood of a shock. The value q = 8 has proved satisfactory in

numerical experiments.
Figure 3 shows the evolution of the discrete solution for the same case as Fig. 1, with

initial data u = −x in [−1,1], using the shock operator defined by (2.25–2.27). A stationary
shock with a single interior point is formed when t = 1 as expected. Figure 4 confirms that
the discrete energy grows at the rate 2t

3 until the shock forms and then remains constant.
The difference between the discrete energy and the true energy of the stationary solution is
− 1

2�x because of the zero value in the middle of the discrete shock. Once the numerical

shock structure is established the additional diffusive terms only contribute to
duj

dt
at the
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Fig. 4 Discrete energy growth
with a limiter

three points s − 1, s and s + 1 comprising the shock, for which

us−1 = 1, us = 0, us+1 = −1.

The only non-zero values of �uj+ 1
2

are

�us− 1
2

= −1, �us+ 1
2

= −1.

Also

as− 1
2

= −1

2
, αs− 1

2
= 1

3
,

as+ 1
2

= −1

2
, αs+ 1

2
= 1

3
.

Thus the additional contribution to dE
dt

due to the shock is
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1∑
s=−1

us

(
αs+ 1

2
�us+ 1

2
− αs− 1

2
�us− 1

2

)
= αs− 1

2
us−1�us− 1

2
− αs+ 1

2
us+1�us+ 1

2

= −2

3
.

This exactly cancels the contribution of 2
3 from the boundaries, so that the total rate of

change of the discrete energy is zero.
In the case of the viscous Burgers equation with the viscosity coefficient ν

∂u

∂t
+ ∂

∂x

(
u2

2

)
= ν

∂2u

∂x
(2.28)

the energy balance is modified by the viscous dissipation. Multiplying by u, and integrating
the right hand side by parts with ∂u

∂x
= 0 at each boundary, the energy balance equation

assumes the form

dE

dt
= u3

a

3
− u3

b

3
− ν

∫ b

a

(
∂u

∂x

)2

dx (2.29)

instead of (2.8). Suppose that ∂2u

∂x2 is discretized by a central difference operator at interior
points with one sided formulas at the boundaries corresponding to ∂u

∂x
= 0,

1

�x2

(
uj+1 − 2uj + uj−1

)
, j = 2, n − 1,

1

�x2
(u1 − u0) at the left boundary, (2.30)

1

�x2
(un − un−1) at the right boundary

as proposed by Mattsson [16]. Then summing by parts with the convective flux evaluated by
(2.13) as before, the discrete energy balance is found to be

dE

dt
= u3

0

3
− u3

n

3
− ν

n−1∑
j=0

(
uj+1 − uj

)2
. (2.31)

This enables the possibility of fully resolving shock waves without the need to add any
additional numerical diffusion via shock operators. The convective flux difference fj+ 1

2
−

fj− 1
2

can be factored as

1

3�x

(
uj+1 + uj + uj−1

) (
uj+1 − uj−1

)
.

Accordingly the semi-discrete approximation to (2.28) can written as

duj

dt
= aj+ 1

2

(
uj+1 − uj

) + aj− 1
2

(
uj−1 − uj

)
, (2.32)

where

aj+ 1
2

= ν

�x2
− uj+1 + uj + uj−1

3�x
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Fig. 5 Evolution of the solution of the viscous Burgers equation

and

aj− 1
2

= ν

�x2
+ uj+1 + uj + uj−1

3�x
.

The semi-discrete approximation satisfies condition (2.22) for a local extremum diminishing
scheme if aj+ 1

2
≥ 0 and aj− 1

2
≥ 0. This establishes Theorem 2.1:

Theorem 2.1 The semi-discrete approximation (2.12) using the numerical flux (2.13) and
the central difference operator (2.30) for ∂2u

∂x2 is local extremum diminishing if the cell
Reynolds number satisfies the condition

ū�x

ν
≤ 2, (2.33)

where the local speed is evaluated as

ū = 1

3

∣∣uj+1 + uj + uj−1

∣∣ . (2.34)

It has been confirmed by numerical experiments that shock waves are indeed fully re-
solved with no oscillation if the cell Reynolds number satisfies condition (2.33). Figure 5
shows the evolution of the discrete viscous Burgers equation using this scheme for the same
initial data as before, u = −x in [−1,1]. The Reynolds number uL

ν
based on the boundary



166 J Sci Comput (2008) 34: 152–187

Fig. 6 Discrete energy growth
for the viscous Burgers equation

velocity u = ±1 and the length of the interval was 2048, and the solution was calculated on
a uniform mesh with 1024 intervals, so that the cell Reynolds number condition (2.33) was
satisfied in the entire domain. It can be seen that a stationary shock wave is formed at the
time t = 1, and it is finally resolved with three interior points. Correspondingly the energy
becomes constant after the shock wave is formed, as can be seen in Fig. 6.

3 The One Dimensional Scalar Conservation Law

Consider the scalar conservation law

∂u

∂t
+ ∂

∂x
f (u) = 0, (3.1)

u(x,0) = u0(x),

u specified at inflow boundaries.
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Correspondingly, smooth solutions of (3.1) also satisfy

∂

∂t

(
u2

2

)
+ ∂

∂x
F (u) = 0, (3.2)

where

Fu = ufu

since multiplying (3.1) by u yields

u
∂u

∂t
+ ufu

∂u

∂x
= 0.

Defining the energy as

E =
∫ b

a

u2

2
dx

it follows from (3.2) that smooth solutions of (3.1) satisfy the energy equation

dE

dt
= F(ua) − F(ub). (3.3)

Introducing the function G(u) such that

Gu = f

and multiplying (3.1) by u we obtain

u
∂u

∂t
+ u

∂f

∂x
= ∂

∂t

(
u2

2

)
+ ∂

∂x
(uf ) − f

∂u

∂x

= ∂

∂t

(
u2

2

)
+ ∂

∂x
(uf ) − Gu

∂u

∂x

= ∂

∂t

(
u2

2

)
+ ∂

∂x
(uf − G)

= 0.

Thus F and G can be identified as

F = uf − G, G = uf − F. (3.4)

For the inviscid Burgers equation

F = u3

3
, G = u3

6
.

Suppose now that (3.1) is discretized on a uniform grid over the range j = 0, n. Consider a
semi-discrete conservative scheme of the form

duj

dt
+ 1

�x

(
fj+ 1

2
− fj− 1

2

)
= 0 (3.5)
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at every interior point, where the numerical flux fj+ 1
2

is a function of ui over a range brack-
eting uj such that fj+ 1

2
= f (u) whenever u is substituted for the ui , thus satisfying Lax’s

consistency condition. Multiplying (3.1) by uj and summing by parts over the interior points
we obtain

�x

n−1∑
j=1

uj

duj

dt
= −

n−1∑
j=1

uj

(
fj+ 1

2
− fj− 1

2

)

= −u1f 3
2
− u2f 5

2
· · · − un−2fn− 3

2
− un−1fn− 1

2

+ u1f 1
2
+ u2f 3

2
+ u3f 5

2
· · · + un−1fn− 3

2

= u1f 1
2
− un−1fn− 1

2
+

n−2∑
j=1

fj+ 1
2

(
uj+1 − uj

)
.

Suppose now that

fj+ 1
2

= Gu
j+ 1

2

, (3.6)

where Gu
j+ 1

2

is the mean value of Gu in the range from uj to uj+1 such that

Gu
j+ 1

2

(
uj+1 − uj

) = G
(
uj+1

) − G
(
uj

)
. (3.7)

Then, denoting G(uj ) by Gj ,

�x

n−1∑
j=1

uj

duj

dt
= u1f 1

2
− un−1fn− 1

2
+

n−2∑
j=1

(
Gj+1 − Gj

)

= u1f 1
2
− un−1fn− 1

2
− G1 + Gn−1.

Now let (3.1) be discretized at the end points as

du0

dt
+ 2

�x

(
f 1

2
− f0

)
,

dun

dt
+ 2

�x

(
fn − fn− 1

2

)
, (3.8)

where

f0 = f (u0), fn = f (un)

and define the discrete approximation to the energy as

E = �x

2

(
u2

0

2
+ u2

n

2

)
+ �x

n−1∑
j=1

u2
j

2
.

Then

dE

dt
= u0f0 − unfn − G0 + Gn

= F0 − Fn. (3.9)
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Thus the energy balance (3.3) is exactly recovered by the discrete scheme. Equations (3.6)
and (3.7) are satisfied by evaluating the numerical flux as

fj+ 1
2

=
∫ 1

0
f (û(θ))dθ, (3.10)

where

û(θ) = uj + θ
(
uj+1 − uj

)
(3.11)

since then

Gj+1 − Gj =
∫ 1

0
Gu(û(θ))uθdθ

=
∫ 1

0
Gu(û(θ)dθ

(
uj+1 − uj

)
.

Thus we have established Theorem 3.1:

Theorem 3.1 If the scalar conservation law (3.1) is approximated by the semi-discrete con-
servative scheme (3.5), it also satisfies the semi-discrete energy conservation law (3.8) if the
numerical flux fj+ 1

2
is evaluated by (3.10) and (3.11).

In the case of Burgers equation formulas (3.10) and (3.11) yields the same numerical flux
that was defined in Sect. 2

fj+ 1
2

= u2
j+1 + uj+1uj + u2

j

6
. (3.12)

In the case of a general polynomial flux

f (u) = uq

q
(3.13)

note that

G(u) =
∫ u

0
f (v)dv = uq+1

q(q + 1)

and

Gj+1 − Gj = 1

q(q + 1)

(
u

q+1
j+1 − u

q+1
j

)

= uj+1 − uj

q(q + 1)

(
u

q

j+1 + u
q−1
j+1 · · · + u

q

j

)
.

Thus the numerical flux should be evaluated as

fj+ 1
2

= 1

q + 1

(
u

q

j+1 + u
q−1
j+1uj · · · + u

q

j

)
. (3.14)

If (3.10) cannot be evaluated in closed form one may approximate it by numerical inte-
gration. The Lobatto quadrature rule which uses the end points and n − 2 interior points
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is suitable for this purpose, giving an exact result for polynomials of degree up to 2n − 3.
Taking n = 3 yields Simpson’s rule

fj+ 1
2

= 1

6

(
f

(
uj+1

) + 4f

(
1

2

(
uj+1 + uj

)) + f
(
uj

))

which is exact for the Burgers equation.
In order to enforce appropriate inflow and outflow boundary conditions we introduce

simultaneous approximation terms (SAT). Denote the wave speed by

a(u) = ∂f

∂u

and let

a+ = 1

2
(a + |a|), a− = 1

2
(a − |a|).

Then we replace (3.8) by

du0

dt
+ 2

�x

(
f 1

2
− f0

)
+ τ

�x
a+(u0 − g0) = 0,

dun

dt
+ 2

�x

(
fn − f 1

2

)
− τ

�x
a−(un − gn) = 0,

⎫⎪⎪⎬
⎪⎪⎭

(3.15)

where g0 and gn denote the boundary values that should be imposed at inflow boundaries,
and the magnitude of the penalty for not exactly satisfying the boundary conditions is deter-
mined by the parameter τ .

In the case of the polynomial flux f (u) = uq

q
, q even, let a(uL,uR) be the average nu-

merical wave speed between the states uL and uR such that

a(uL,uR)(uR − uL) = fR − fL.

Then

a(uL,uR) = 1

q

u
q

R − u
q

L

uR − uL

.

Now at the left boundary, for example, modify the equation by simultaneous approximation
terms so that

du0

dt
= − 1

�x

(
f 1

2
− f0

)
− τ

�x
a+(u0, g0)(u0 − g0)

= − 1

�x

(
f 1

2
− f0

)
− τ

k�x

(
u

q

0 − g
q

0

)
.

Then if u0 = αg0, the penalty term modifies the rate of change of the discrete energy by
F(α)g

q

0 where

F(α) = αq+1 − 1

q + 1
− τ

q
α(αq − 1).

F (1) = 0, and F(α) will cross the axis at α = 1 unless F ′(1) = 0. Here

F ′(α) = αq − τ

2k
((q + 1)αq − 1)
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and F ′(1) = 0 if τ = 2, giving

F ′(α) = 1

q
(1 − αq).

Then F ′(α) > 0 in the interval −1 < α < 1, and F ′(α) < 0 when α > 1. Consequently
F(α) ≤ 0 in the entire range α > −1, yielding a favorable modification of the energy growth
for all in flow conditions.

4 Discrete Conservation of Energy or Entropy for a One Dimensional System

In this section it is shown how to extend the procedure described in Sect. 3 in order to
discretely satisfy an additional invariant for a system of conservation laws. Consider the
system

∂u

∂t
+ ∂

∂x
f (u) = 0, (4.1)

where u now denotes the state vector, and f (u) is the flux vector. Suppose that h(u) is a
convex function of u that can be regarded as an energy density. Multiplying (4.1) by

wT = hu

we obtain

hu

∂u

∂t
= ∂h

∂t
= −wT ∂f

∂x
= f T ∂w

∂x
− ∂

∂x
(f T w).

Suppose also that there exists a scalar function G(u) such that

Gw = Guuw = f T . (4.2)

Then

∂h

∂t
= Gw

∂w

∂x
− ∂

∂x
(f T w) = −∂F

∂x
, (4.3)

where the flux for h is

F = f T w − G. (4.4)

The relation (4.2) implies that

fw = Gww

and hence fw is symmetric. In the case of a system for which fu is not symmetric, such as
the equations of gas dynamics, this precludes the choice

h(u) = uT u.

The conditions under which a system of conservation laws can be written in symmet-
ric hyperbolic form have been studied in papers by Godunov, Mock and Harten [13–15].
Suppose that there exists a convex function h(u) such that

hufu = Fu (4.5)

for some scalar function F(u). Then

∂h

∂t
= hu

∂u

∂t
= −hufu

∂u

∂x
= −Fu

∂u

∂x
.
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Thus h(u) satisfies the conservation law

∂

∂t
h(u) + ∂

∂x
F (u) = 0. (4.6)

Here h(u) is a generalized entropy function and F(u) is the corresponding entropy flux. The
main theorems are as follows:

Theorem 4.1 Suppose (4.1) can be symmetrized by a change of variables from u to w, so
that it assumes the form

uw

∂w

∂t
+ fw

∂w

∂x
= 0,

where uw and fw are symmetric and uw is positive definite. Then

u = qw, uw = qww

for some convex function q(w), while

f = Gw, fw = Gww

and (4.1) has an entropy function

h(u) = uT w − q(w) (4.7)

and entropy flux

F(u) = f T w − G(w). (4.8)

Theorem 4.2 Suppose h(u) is an entropy function for (4.1). Then

wT = hu

symmetrizes (4.1).

The proofs are given by Harten [15].
Suppose now that (4.1) is approximated in semi-discrete form on a uniform grid over the

range j = 0, n as

duj

dt
+ 1

�x

(
fj+ 1

2
− fj− 1

2

)
= 0, (4.9)

where the numerical flux fj+ 1
2

is a function of ui over a range bracketing uj . Then we can
construct a scheme which discretely satisfies the energy or entropy conservation law in the
same manner as for the scalar case. Multiplying (4.9) by wT

j = huj
and summing by parts

over the interior points

n−1∑
j=1

wT
j

duj

dt
=

n−1∑
j=1

huj

∂uj

∂t
=

n−1∑
j=1

dhj

dt

= wT
1 f 1

2
− wT

n−1fn− 1
2
+

n−2∑
j=1

f T

j+ 1
2

(
wT

j+1 − wT
j

)
.
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Now suppose that

f T

j+ 1
2

= Gw
j+ 1

2

, (4.10)

where Gw
j+ 1

2

is a mean value of Gw between wj and wj+1 in the sense of Roe, such that

Gw
j+ 1

2

(
wj+1 − wj

) = Gj+1 − Gj, (4.11)

where Gj denotes G(wj ). Then

�x

n−1∑
j=1

dhj

dt
= wT

1 f 1
2
− wT

n−1fn− 1
2
− G1 + Gn−1.

Now let (4.1) be discretized at the end points as

du0

dt
+ 2

�x

(
f 1

2
− f0

)
= 0,

dun

dt
+ 2

�x

(
fn − fn− 1

2

)
= 0,

where

f0 = f (u0), fn = f (un).

Then we obtain the discrete conservation law

�x

2

(
dh0

dt
+ dhn

dt

)
+ �x

n−1∑
j=1

dhj

dt
= wT

0 fn − wT
n fn − G0 + Gn

= F0 − Fn, (4.12)

where F is the entropy flux (4.4).
Gw

j+ 1
2

can be constructed to satisfy (4.11) exactly in the form

Gw
j+ 1

2

=
∫ 1

0
Gw

(
ŵ(θ)

)
dθ,

where

ŵ(θ) = wj + θ
(
wj+1 − wj

)
(4.13)

since then

Gj+1 − Gj =
∫ 1

0
Gw

(
ŵ(θ)

)
wθ dθ

=
∫ 1

0
Gw

(
ŵ(θ)

)
dθ

(
wj+1 − wj

)
.

Thus we can state Theorem 4.3:

Theorem 4.3 The semi-discrete conservation law (4.9) satisfies the semi-discrete entropy
conservation law (4.12) if the numerical flux fj+ 1

2
is constructed as

fj+ 1
2

=
∫ 1

0
f

(
ŵ(θ)

)
dθ, (4.14)

where ŵ(θ) is defined by (4.13).
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For some systems, such as the equations of gas dynamics, it may not be possible to
express the integral (4.14) in closed form. Then one may rescale the interval of integration
for θ to (−1,1) so that

fj+ 1
2

= 1

2

∫ 1

−1
f (w̃(θ)) dθ,

where

w̃(θ) = 1

2

(
wj+1 + wj

) + 1

2
θ

(
wj+1 − wj

)

and apply the n point Lobatto rule.
In general neither boundary is necessarily purely inflow or outflow. Consequently, in or-

der to impose proper boundary conditions it is essential to distinguish ingoing and outgoing
waves at the boundaries. For this purpose we can split the Jacobian matrix A = fu into
positive and negative parts A±. Suppose that A is decomposed as

A = R
R−1,

where the columns of R are the right eigenvectors of A, and 
 is a diagonal matrix com-
prising the eigenvalues. Then

A± = R
±R−1,

where 
+ and 
− contain the positive and negative eigenvalues respectively. Now the
boundary conditions maybe imposed by adding simultaneous approximation terms (SAT)
at the boundaries. Accordingly we set

du0

dt
+ 1

�x

(
f 1

2
− f0

)
+ τ

�x
A+(u0 − g0) = 0,

dun

dt
+ 1

�x

(
fn − fn− 1

2

)
− τ

�x
A−(un − gn) = 0, (4.15)

where g0 and gn define the exterior data and the parameter τ determines the magnitude of
the penalty when the solution is not consistent with the incoming waves. Appropriate values
of A0 and An may be obtained by taking them to be the mean valued Jacobian matrices in
the sense of Roe [8] such that

A0(u0 − g0) = f (u0) − f (g0),

An(un − gn) = f (un) − f (gn). (4.16)

If shock waves appear in the solution, the scheme needs to be modified by shock opera-
tors. A desirable property of a shock capturing scheme is that the numerical shock structure
for a stationary shock should contain no more than one interior point [12]. This can be
achieved by characteristic upwind schemes or the CUSP scheme [12]. The characteristic
scheme can be constructed by adding matrix diffusion. Let fj denote f (uj ). Following Roe
[8], we introduce the mean Jacobian matrix Aj+ 1

2
such that

Aj+ 1
2

(
uj+1 − uj

) = fj+1 − fj .

Decomposing the Jacobian matrix in terms of its eigenvectors and eigenvalues as

Aj+ 1
2

= R
R−1
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as in the treatment above of the boundaries, define the absolute Jacobian matrix as
∣∣∣Aj+ 1

2

∣∣∣ = R|
|R−1,

where |
| is a diagonal matrix containing the absolute values of the eigenvalues. Then the
upwind flux can be expressed as

fU
j+ 1

2

= 1

2

(
fj+1 + fj

) − 1

2

∣∣∣Aj+ 1
2

∣∣∣ (uj+1 − uj

)
. (4.17)

Also let fC
j+ 1

2

be the central flux defined by (4.14). Then we construct the flux throughout

the domain as

fj+ 1
2

=
(

1 − Sj+ 1
2

)
fC

j+ 1
2

+ Sj+ 1
2
fU

j+ 1
2

, (4.18)

where Sj+ 1
2

is a switching function with values in the range 0 ≤ Sj+ 1
2

≤ 1, of the order of
a high power of �x except in the neighborhood of a shock wave, where it should have a
value of unity. The switching function can be constructed in a manner similar to the switch
used for the Burgers equation, (2.26) and (2.27). The same formulas may be used to detect
extrema in either the pressure or the entropy. Alternatively we can use these formulas to
identify extrema in the characteristic variables by applying them to

�vj+ 1
2

= R−1
j+ 1

2
�uj+ 1

2
.

5 Incompressible Fluid Flow

The procedure for discretely satisfying the basic conservation laws plus an additional invari-
ant, which has been proposed in Sect. 4, requires the systems to be expressed in symmetric
form so that (4.2) holds. In the case of incompressible flow the pressure is not directly re-
lated to the state vector via an equation of state, and must be determined indirectly from the
continuity equation. Denoting the velocity components by vi , and the pressure and density
by p and ρ, three dimensional inviscid incompressible flow is described by the continuity
equation and three momentum equations

∂vi

∂xi

= 0, (5.1)

ρ

(
∂vi

∂t
+ vj

∂vi

∂xj

)
+ ∂p

∂xi

= 0, i = 1,2,3. (5.2)

In order to express the momentum equations in symmetric conservation form introduce the
reduced pressure

p̂ = p − 1

2
ρq2, (5.3)

where q2 = v2
i . For convenience suppose that units are chosen such that ρ = 1. Using (5.1),

the momentum equations can be expressed as

∂vi

∂t
+ ∂

∂xj

(
vivj

) + ∂

∂xi

(
p̂ + v2

j

2

)
= 0. (5.4)
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These can be written in state vector form as

∂u

∂t
+ ∂

∂xi

f i(u) + ∂P i

∂xi

= 0. (5.5)

Here the state and flux vectors are

u =
⎡
⎣

v1

v2

v3

⎤
⎦ , f i(u) = viu + ei

q2

2
, (5.6)

where ei is the unit vector in the i direction and

P i = ei p̂. (5.7)

Then

∂vi

∂u
= eT

i ,
∂

∂u

(
q2

2

)
= uT

and the Jacobian matrices are

Ai = ∂f i

∂u
= viI + ueT

i + eiu
T . (5.8)

The flux vectors f i are homogeneous functions of the state variables of degree two, with the
consequence that

Aiu = 2f i(u). (5.9)

Moreover

f iT (u) = ∂Gi

∂u
, (5.10)

where

Gi(u) = ui

q2

2
= 1

3
uT f i(u). (5.11)

Multiplying (5.4) by vi

vi

∂vi

∂t
+ vi

∂

∂xj

(
vivj

) + vi

∂

∂xi

(
p̂ + v2

j

2

)
= 0. (5.12)

Interchanging the indices in the second term, it may be grouped with the last term to give

vj

∂

∂xi

(
vivj

) + vivj

∂vj

∂xi

= ∂

∂xi

(
viv

2
j

)
.

Thus (5.12) reduces to

∂

∂t

(
v2

i

2

)
+ ∂

∂xi

(
viv

2
j + vip̂

) − p̂
∂vi

∂xi

= 0.
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Fig. 7 Convergent-divergent duct: o = nodes of primary cells, − = dual cells

Defining the energy flux as

F i(u) = vi(p̂ + q2) = vi

(
p + q2

2

)
= vipt , (5.13)

where pt is the total pressure, we obtain the energy conservation law

∂

∂t

(
v2

i

2

)
+ ∂F i

∂xi

= p̂
∂vi

∂xi

, (5.14)

where the right hand side vanishes provided that the continuity equation is satisfied. The
total kinetic energy in a domain D with volume element dV is

E =
∫

D

v2
i

2
dV .

Now (5.8) may be integrated to give

dE

dt
=

∫

B

niF
idS +

∫
p̂

∂vi

∂xi

dV, (5.15)

where B is the boundary of D, ni is the inward normal and dS is the area element.
Suppose now that the domain is covered by a grid, and the equations are discretized in

finite volume form with the discrete flow variables defined at the nodes, each of which is
contained in a polyhedral control volume. In the case of either a hexahedral or a tetrahedral
grid the control volumes may be taken as the dual cells connecting the centers of the primary
cells. For example, one could construct the dual cells of a tetahedral mesh by dividing each
primary cell about its median into subcells of equal volume which are assembled at the
nodes to form the “median” dual cells. Examples of discretization schemes on the median
dual mesh include the Airplane code of Jameson, Baker and Weatherill [19], and Stanford
University’s CDP code [20]. A representative two-dimensional grid is shown in Fig. 7.

The control volumes of the boundary nodes extend into the interior and are closed by
faces on the boundary. Now the control volume of each interior node, say node o, consists
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of faces (not necessarily planar) with a directed face area Sop for the face separating nodes
o and p. The control volume of a boundary node o is closed by a vector face area So which
is the negative of the sum

∑
p Sop of the face areas between o and each of its neighbors. The

semi-discrete finite volume scheme has the form

duo

dt
+ 1

volo

∑
p

Si
op

(
f i

op + P i
op

)
, (5.16)

where the sum is over the faces of the control volume containing o, Si
op is the projected

area in the i direction of the face separating o and p, f i
op and P i

op are the convective and
pressure fluxes between o and p, and the repeated superscript i denotes summation over the
coordinate directions.

At a boundary node there is an additional contribution Si
of

i
o where fo = f (uo) is the flux

evaluated with the nodal values of the state vectors. The discrete energy is the sum

E = 1

2

∑
o

volo uT
o uo (5.17)

over the nodes o, and its rate of change is

dE

dt
=

∑
o

volo uT
o

duo

dt
, (5.18)

where volo
duo

dt
is given by the sum (5.16) over the faces for that node. Each interior face

appears twice in the resulting double sum because it is contained in the sums (5.16) for the
two nodes it separates, while each exterior face appears once. The convective contribution
of each interior face to dE

dt
is thus

(
uT

p − uT
o

)
Si

op f i
op,

where the flux

f iT

op = ∂Gi
op

∂u
. (5.19)

Provided f i
op is constructed so that

f iT

op (up − uo) = Gi
p − Gi

o (5.20)

exactly, the convective contribution of each interior face is thus

Si
op

(
Gi

p − Gi
o

)
.

If one associates all terms containing Go with the node o, it receives the inner product of
the sum of its face areas Sop with Go, but this sum is zero. Thus the only contribution of
the convective terms to dE

dt
is a sum over the boundary nodes. However, the sum of the

vector areas Sop for a boundary node is the negative of its external area So, so the convective
contribution to dE

dt
is

∑
boundary nodes

Si
o Gi

o.
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There remains in the sum (5.18) the convective contribution
∑

boundary nodes

Si
o uT

o f i
o .

Thus the total convective contribution to dE
dt

is

−
∑

boundary nodes

Si
o

(
uT f i

o − Gi
o

)
, (5.21)

where So is the outward face area of node o.
It remains to evaluate the contribution of the pressure to the discrete energy balance. For

this purpose it is necessary to prove a discrete analog of the Gauss theorem
∫

D

vi

∂p

∂xi

dV =
∫

B

pvndS −
∫

D

p
∂vi

∂xi

dV, (5.22)

where vn is the normal velocity through the boundary. Across each face there is a contribu-
tion uT

o

∑
p Si

opP i
op from the pressure. Suppose that the pressure flux is evaluated as

P i
op = 1

2

(
P i

o + P i
p

)
. (5.23)

The sum (5.18) then contains

1

2

∑
o

uT
o P i

o

∑
p

Si
op + 1

2

∑
o

uT
o

∑
p

P i
p Si

op.

At every interior node o the fluxes uT
pSi

op P i
o generated by the neighbors can be associated

with o, while uT
o P i

o

∑
p Si

op = 0. Thus one can subtract this quantity to produce

−1

2
P iT

o

∑
p

(up + uo)S
i
op

while represents −p̂o vol(� · u)o. A boundary node o receives the contributions

1

2
P iT

o

∑
p

up Si
po = −1

2
P iT

o

∑
p

up Si
op

from its neighbors while it retains the contributions

1

2
P iT

o uo

∑
p

Si
op + P iT

o uoS
i
o

giving the total

− 1

2
P iT

o

∑
p

(up + uo)Si
op + P iT

o uo

∑
p

Si
op + P iT

o uo Si
o

= −1

2
P iT

o

∑
p

(up + uo)S
i
op − P iT

o uo Si
o + P iT

o uo Si
o.
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The first two terms represent −p̂o volo(�·u)o. The third term represents the surface integral
on the right hand side of (5.22). This establishes Theorem 5.1.

Theorem 5.1 The finite volume discretization of vi
∂p

∂xi
represented by

∑
o

uT
o

∑
p

Si
opP i

op,

where P i
op is evaluated as the arithmetic average exactly satisfies the discrete analog of the

Gauss Theorem (5.22).

Combining the boundary contribution from the pressure with the contribution (5.21) of
the convective terms we obtain

−
∑

boundary nodes

Si
o

(
uT f i

o − Gi
o − uT P i

o

) = −
∑

boundary nodes

Si
oF

i
o ,

where F i
o is the discrete energy flux

F i
o = vi

o pto

evaluated with the nodal values of vi and pt . This establishes Theorem 5.2

Theorem 5.2 If the discrete flux vector f i
op is constructed so that it satisfies (5.20), and the

pressure flux is evaluated by (5.23), the rate of change of the discrete energy is exactly

dE

dt
= −

∑
boundary nodes

Si
oF

i
o +

∑
o

vol p̂o(� · u)o,

where the second sum is over all the nodes and (� · u)o is the consistent discretization of
� · u at node o.

Since f i(u) is a quadratic function of u, (5.20) is satisfied exactly by using Simpson’s
rule to evaluate

f i
op =

∫ 1

o

f (uo + θ(up − uo))dθ

= 1

6

(
f (uo) + 4f

(
1

2
(uo + up)

)
+ f (up)

)
.

While the proof of Theorem 5.2 is somewhat intricate, the author has numerically con-
firmed that it is satisfied to machine accuracy in test calculations for two different cases,
flow past a circular cylinder, and flow through a convergent divergent duct.

6 Gas Dynamics

In this section the theory developed in Sect. 4 is applied to the three dimensional gas dy-
namic equations. Because the Jacobians for the conservative variables are not symmetric,
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the formulation requires a transformation of variables which symmetrizes the equations. In
conservation form the equations are

∂u

∂t
+ ∂

∂xi

f i(u) = 0. (6.1)

Here the state and flux vectors are

u =

⎡
⎢⎢⎢⎢⎣

ρ

ρv1

ρv2

ρv3

ρE

⎤
⎥⎥⎥⎥⎦

, f i =

⎡
⎢⎢⎢⎢⎣

ρvi

ρviv1 + δi1p

ρviv2 + δi2p

ρviv3 + δi3p

ρviH

⎤
⎥⎥⎥⎥⎦

, (6.2)

where ρ is the density, vi are the velocity components, and E and H are the specific energy
and enthalpy. Also

p = (γ − 1)ρ

(
E − v2

i

2

)
, H = E + p

ρ
, (6.3)

where γ is the ratio of specific heats.
In the absence of shock waves the entropy

s = log

(
p

ργ

)
(6.4)

is constant along streamlines,

∂s

∂t
+ vi

∂s

∂xi

= 0.

Harten shows in his paper [15] that

h(s) = ρg(s), F i(s) = ρvih(s) (6.5)

constitute a generalized entropy function and entropy fluxes provided that

g̈(s)

ġ(s)
<

1

γ
. (6.6)

This equation ensures the convexity of h(u), which satisfies the entropy conservation law

∂

∂t
h(u) + ∂

∂xi

F i(u) = 0. (6.7)

Moreover the conservation equations (6.1) are symmetrized by the variables

wT = ∂h

∂u
(6.8)

assuming the form

uw

∂w

∂t
+ ∂f i

∂w

∂w

∂xi

= 0, (6.9)

where uw and ∂f i

∂w
are symmetric, and uw > 0.

Hughes, Franca and Mallet [21] and Gerritsen and Olsson [22] have proposed schemes
using the entropy variables. Reference [21] presents a finite element formulation for the
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Navier Stokes equations, choosing

h(s) = −ρs (6.10)

in order to obtain a symmetric form for the viscous terms. Gerritsen and Olsson treat the
Euler equations, and prefer the form

h(s) = ρe
s

γ+α = ρ

(
p

ργ

) 1
γ+α

, (6.11)

where α is a parameter to be chosen, because it leads to a homogeneous function u(w) such
that

u(θw) = θβu(w), (6.12)

where

β = −γ + α

γ − 1
(6.13)

and

uww = βu. (6.14)

The convexity condition (6.6) is satisfied if α > 0 or α < −γ . The choice α = 1 yields the
comparatively simple form

w = p∗

p

⎡
⎢⎢⎢⎢⎣

u5

−u2

−u3

−u4

u1

⎤
⎥⎥⎥⎥⎦

, u = p

p∗

⎡
⎢⎢⎢⎢⎣

w5

−w2

−w3

−w4

w1

⎤
⎥⎥⎥⎥⎦

, (6.15)

where

p∗ = − 1

β
e

s
γ+1 = (γ − 1)

(
w1 − w2

1

2w5

)
. (6.16)

Multiplying (6.1) by wT we obtain the entropy evolution equation in the form

hu

∂u

∂t
= ∂

∂t
h(u) = −wT ∂

∂xi

f i(u).

The left hand side can also be expressed as

wT ∂u

∂t
= wT uw

∂w

∂t
.

Gerritsen and Olsson split this as

β

β + 1
wT uw

∂w

∂t
+ 1

β + 1
wT ∂u

∂t
= 1

β + 1

(
uT ∂w

∂t
+ wT ∂u

∂t

)

= 1

β + 1

∂

∂t
(uT w)

= 1

β + 1

∂

∂t

(
wT uww

)
,
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in view of the homogeneity relation (6.14). Thus h(u) can be regarded as an energy function
for the system (6.1).

Gerritsen and Olsson also show that by splitting the spatial derivatives between the con-
servation and quasilinear forms as

β

β + 1

∂

∂xi

f i(w) + 1

β + 1

∂f i

∂w

∂w

∂xi

and using central differencing for both at interior points, one obtains a skew-symmetric op-
erator which discretely satisfies the entropy conservation law (6.7). Since entropy will be
generated by shock waves, artificial diffusion is still required for their capture. The skew-
symmetric form, which has been further investigated by Yee, Vinokur and Djomehri [23],
gives up conservation form for the basic conservation laws (6.1) in favor of discrete entropy
conservation. However, the formulation of Sect. 4 actually allows discrete entropy conserva-
tion while retaining conservation form for the basic equations, as is shown in the following
paragraphs.

Consider a finite volume discretization of (6.1) on a mesh similar to that described in
Sect. 5, with u stored at the mesh nodes, each of which is contained in a control volume.
The semi-discrete finite volume scheme at node o is

duo

dt
+ 1

volo

∑
p

Si
opf i

op = 0, (6.17)

where the sum is over the faces of the control volume containing o, Si
op is the projected area

in the i direction of the face separating o and p, and f i
op is the flux in the i direction between

o and p. Then multiplying by volo wT
o and summing over the nodes we obtain the discrete

entropy equation
∑

o

volo wT
o

duo

dt
=

∑
o

volo
dho

dt
= −

∑
o

wT
o

∑
p

Si
opf i

op. (6.18)

As was shown in Sect. 5 the contribution of each interior face to this sum is

(wT
p − wT

o )Si
opf i

op,

where the flux can be expressed as

f i
op = Gi

wop
. (6.19)

Provided that f i
op(w) is constructed so that

f iT

op (wp − wo) = Gi
p − Gi

o (6.20)

exactly, the contribution of each interior face is thus

Si
op

(
Gi

p − Gi
o

)
.

Associating all terms containing Gi
o with the node o, an interior node recovers a total contri-

bution consisting of the inner product of the sum of the face areas Si
op of its control volume

with Gi
o, but the sum is zero. The sum of the face area Si

op separating a boundary node from
the neighbors is the negative of its external face area Si

o, so the total contribution of the
interior faces reduces to

∑
boundary nodes

Si
oG

i
o.
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There remains in the sum (6.19) the contribution
∑

boundary nodes

Si
ow

T
o f i

o .

Thus the rate of change of the discrete entropy can finally be expressed as

d

dt

∑
o

volo ho = −
∑

boundary nodes

Si
o

(
wT

o f i
o − Gi

o

)

= −
∑

boundary nodes

Si
oF

i
o (6.21)

using the relation (4.8). This establishes

Theorem 6.1 If the flux vector f i
op is constructed so that it satisfies (6.20), the rate of change

of the discrete entropy is exactly

−
∑

boundary nodes

Si
oF

i
o ,

where F i
o is the entropy flux evaluated with the values uo.

The theorem holds for any choice of the entropy function (6.6) which satisfies the con-
vexity requirement. Equation (6.20) is satisfied exactly if the flux f i

op is evaluated in the
manner described in Sect. 4 as

f i
op =

∫ 1

0
f i(ŵ(θ))dθ, (6.22)

where

ŵ(θ) = wo + θ(wp − wo). (6.23)

The entropy variables are needed only in the flux evaluation by these formulations. Aside
from this (6.17) represents a standard finite volume approximation of (6.1) in conservation
form. Because the entropy variables, such as those specified in (6.11), contain fractional
powers of p and ρ, it appears that one must resort to numerical integration to evaluate
(6.22).

For this purpose the interval of integration may be shifted to [−1,1] as in Sect. 5, so that
f i

op is expressed as

f i
op = 1

2

∫ 1

−1
f i(w̃(θ))dθ,

where

w̃(θ) = 1

2
(wp + wo) + 1

2
θ(wp − wo).

Then we may use the n point Lobatto formula. The 3 point formula is Simpson’s rule

f i
op = 1

6

[
f (w̃(−1)) + 4f (w̃(θ)) + f (w̃(1))

]
.
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The 5 point formula

f i
op = 1

180

[
9(f (w̃(−1)) + f (w̃(1))) + 49(f (w̃(−θa)) + f (w̃(θa))) + 64f (w̃(0))

]
,

where θa = 1
7

√
21 appears to be a good compromise between accuracy and computational

cost.

7 Conclusion

The foregoing sections demonstrate that both scalar conservation laws and systems of con-
servation laws which satisfy an entropy principle can be approximated in semi-discrete con-
servation form in a manner that also globally satisfies the corresponding discrete energy or
entropy principle. This provides a path to the construction of stable non-dissipative discrete
operators. However, if the governing equations support weak solutions containing shock
waves (Burgers equation, gas dynamics), the energy or entropy principle is no longer valid
in its basic form, and must be modified to account for energy dissipation or entropy produc-
tion by the shock waves. Correspondingly the discrete formulation must be augmented by
shock operators which restore the energy or entropy balance.

Since the inception of finite volume methods in computational fluid dynamics [24], there
has been an issue of whether it would be better to calculate the interface flux by averaging
the flux vectors

fj+ 1
2

= 1

2

(
fj+1 + fj

)

or by calculating the flux from the average of the state vectors

fj+ 1
2

= f

(
1

2

(
uj+1 + uj

))
.

Theorem 4.3 suggests that neither is the best choice. Instead, the use of (4.14) for the evalu-
ation of the numerical flux is consistent with the discrete entropy principle.

In the course of the original development of the Jameson-Schmidt-Turkel (JST) scheme
[25], which has been widely used to calculate transonic and supersonic flows, the scheme
which was initially tested added artificial diffusion only in regions with strong pressure
gradients, such as the neighborhood of shock waves. However, in numerous numerical ex-
periments it appeared that the use of non-reflecting boundary conditions was not sufficient
to assure convergence to a completely steady state, with the residuals reduced to machine
zero. This led to the introduction of a higher-order background diffusive terms which were
switched off at shock waves to prevent oscillations. It now appears worthwhile to reexamine
whether satisfaction of the discrete entropy principle would allow the background dissipa-
tion to be substantially reduced or eliminated in simulations of both steady and unsteady
flows. Certainly any artificial diffusive terms in a compressible large eddy simulation will
need to be very carefully controlled in order to obtain correct energy spectra.

The Kolmogoroff scale of the smallest eddies in a turbulent flow with a Reynolds num-
ber Re is 1

Re
3
4

. Theorem 2.1 and the supporting numerical experiments indicate that shock

waves can be fully resolved without any added numerical diffusion if the mesh interval is
reduced to the order of 1

Re , slightly smaller than the Kolmogoroff scale. Accordingly it can
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be estimated that direct numerical simulation (DNS) of three dimensional compressible tur-
bulent flow will require a mesh with the order of Re3 cells in order to resolve the full range
of turbulent eddies, and also any shock waves that may appear in the flow. At the time of the
introduction of the JST scheme in 1981, high-end computers attained speeds in the range of
100 megaflops (108 floating point operations per second). During the past 25 years computer
performance has increased by a factor of about a million, with current high-end computers
attaining speeds in the range of 100 teraflops. A further increase in performance by a factor
of a million to 1020 floating point operations per second should enable fully resolved DNS
of flows with Reynolds numbers in the range of 1 million on a mesh with 1018 cells, using
an entropy preserving discretization with no added numerical diffusion. This is still a little
short of flight Reynolds numbers of long range transport aircraft which are in the range of
50–100 million, but the eventual use of DNS for large scale compressible turbulent flows
can clearly be foreseen.

Remaining questions include the extension of the present approach to higher-order dis-
cretizations, and the best choice of a discrete time stepping scheme. Discrete energy con-
servation could be preserved by an implicit time stepping scheme of Crank-Nicolson type,
in which the spatial derivatives are evaluated using the average value of the state vectors
between the beginning and the end of the time step,

ūj = 1

2

(
un+1

j + un
j

)
.

Then, if we approximate the time derivative as

duj

dt
= 1

�t

(
un+1

j − un
j

)

it follows that

ūj

duj

dt
= 1

2�t

(
un+12

j − un2

j

)
.

Accordingly, if the numerical fluxes are calculated by formula (3.10), or (4.14) in the case of
a system, the discrete energy or entropy balance will correspond exactly to the continuous
energy or entropy conservation law. However, the implementation of such scheme would
require computationally expensive inner iterations. Moreover, it is hard to provide a rigorous
estimate of the impact on both accuracy and stability in the case that the inner iterations are
not fully converged.
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