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Abstract This paper follows up on the author’s recent paper “The Construction of Dis-
cretely Conservative Finite Volume Schemes that also Globally Conserve Energy or En-
thalpy”. In the case of the gas dynamics equations the previous formulation leads to an
entropy preserving (EP) scheme. It is shown in the present paper that it is also possible to
construct the flux of a conservative finite volume scheme to produce a kinetic energy pre-
serving (KEP) scheme which exactly satisfies the global conservation law for kinetic energy.
A proof is presented for three dimensional discretization on arbitrary grids. Both the EP and
KEP schemes have been applied to the direct numerical simulation of one-dimensional vis-
cous flow in a shock tube. The computations verify that both schemes can be used to simulate
flows with shock waves and contact discontinuities without the introduction of any artificial
diffusion. The KEP scheme performed better in the tests.

1 Introduction

Stemming from the pioneering work of Godunov [1], procedures for the construction of
non-oscillatory shock capturing schemes are by now well established [2–6]. In general they
add artificial diffusion either explicitly or implicitly via upwind operators in order to satisfy
total variation diminishing (TVD) or local extremum diminishing (LED) properties [7, 8].
However there is a risk that the artificial diffusion may compromise the accuracy of viscous
flow simulations. If the discrete scheme can be constructed to satisfy a global energy esti-
mate of some kind, then it should by stable, at least for smooth solutions, without the need
for artificial viscosity. The use of energy estimates to establish stability has a long history,
and it is discussed in the classical book of Morton and Richtmyer [9].

One route to achieving discrete energy estimates is to use difference operators which have
a skew-symmetric form. Typically these operators are derived by splitting the governing
equations in a mixture of conservation and quasilinear form [10]. However, in the treatment
of compressible flows with shock waves it is beneficial to write the discrete equations in
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conservation form. According to the theorem of Lax and Wendroff [11], this is sufficient to
guarantee that the discrete solution satisfies the correct shock jump conditions as long as it
converges in the limit as the mesh interval is reduced.

In inviscid compressible fluid flow the total energy, consisting of the sum of the inter-
nal and kinetic energy, is conserved, not just the kinetic energy. Correspondingly, it follows
from the governing equations that entropy is conserved if no shock waves are formed. In
a recent paper [12] the author showed that a semi-discrete scheme in conservation form
can be constructed so that it globally conserves a generalized entropy function in a smooth
flow. Such an entropy preserving (EP) scheme is obtained by an appropriate formulation
of the numerical fluxes across the interfaces between the grid cells. It requires the use of
entropy variables in the evaluation of the flux, although the standard conservative variables
are updated at each time step. There is some latitude in the definition of the generalized
entropy function h(u) of the state vector u. Harten [13] has given conditions such h(u) is a
convex function, so that the solution cannot become unbounded if h(u) remains bounded.
Multiplying the governing equations for ∂u

∂t
by wT = ∂h

∂u
then produces the evolution equa-

tion for ∂h
∂t

, while wT represents the entropy variables. Entropy variables have been used by
Hughes, Mallet and Franca [14], and also by Gerritsen and Olsson [15], who proposed a non
conservative entropy preserving scheme.

Although a bound on the kinetic energy does not assure a bound on the solution in a com-
pressible flow, correct simulation of the evolution of kinetic energy is a crucial requirement
for accurate simulations of turbulence, where there is an energy cascade between the differ-
ent eddy scales. In the present work it is shown that the interface fluxes of a semi-discrete
conservative scheme can be constructed in an alternative way which assures that the global
discrete kinetic energy evolves in a manner that exactly corresponds to the true equation
for kinetic energy. There is some latitude in the definition of the fluxes for such a kinetic
energy preserving (KEP) scheme, provided that the fluxes for the continuity and momentum
equations satisfy a compatibility condition.

Section 2 presents the derivation of the entropy preserving (EP) and kinetic energy pre-
serving (KEP) schemes for the one dimensional gas dynamics equations. In Sect. 3 the
formulation of the KEP scheme is extended to multi-dimensional viscous compressible flow
simulations on arbitrary grids. The KEP property is again assured by a compatibility condi-
tion between the fluxes for the continuity and momentum equations. The proof is completed
by showing that the finite volume scheme satisfies a discrete Gauss theorem for the pressure
and stress terms, provided that these are both evaluated at the cell interfaces by arithmetic
averages of their values in the neighboring cells.

In Sect. 4 both the EP and the KEP schemes are applied to the direct numerical simula-
tion (DNS) of one dimensional viscous flow in a shock tube. It is demonstrated in numerical
experiments that both schemes can successfully resolve the shock wave, contact disconti-
nuity and expansion fan without adding any artificial diffusion, provided that a fine enough
mesh is used with a number of cells of the order of the Reynolds number. Representative
numerical calculations include simulations at a Reynolds number in the range 2500–100000
based on the speed of sound on meshes with 512–16384 cells.

2 Entropy and Kinetic Energy Preserving Schemes for the One-Dimensional Gas
Dynamics Equations

This section presents the formulation of fully conservative schemes for one dimensional
gas dynamics which are either entropy preserving (EP) or kinetic energy preserving (KEP).
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In both cases the global conservation property is obtained by proper construction of the
interface flux between each pair of neighboring cells. The detailed proof for the EP scheme
has been given in [12], but in order to facilitate the comparison of the EP and KEP schemes
it is outlined here

Consider the gas dynamics equations in the conservation form

∂u

∂t
+ ∂

∂x
f (u) = 0. (2.1)

Here the state and flux vectors are

u =
⎡
⎣

ρ

ρv

ρE

⎤
⎦ , f =

⎡
⎣

ρv

ρv2 + p

ρvH

⎤
⎦ (2.2)

where ρ is the density, v is the velocity and p, E and H are the pressure, energy and
enthalpy. Also

p = (γ − 1)ρ

(
E − v2

2

)
, H = E + p

ρ
, (2.3)

where γ is the ratio of specific heats.
In the absence of shock waves the entropy

s = log

(
p

ργ

)
(2.4)

is constant, satisfying the advection equation

∂s

∂t
+ v

∂s

∂x
= 0. (2.5)

Consider the generalized entropy function

h(s) = ρg(s), (2.6)

where it has been shown by Harten [13] that h is a convex function of u provided that

d2g

ds2

/
dg

ds
<

1

γ
. (2.7)

Then h satisfies the entropy conservation law

∂

∂t
h(u) + ∂

∂x
F (u) = 0, (2.8)

where the entropy flux is

F = ρvg(s). (2.9)

Moreover, introducing the entropy variables

wT = ∂h

∂u
(2.10)
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it can be verified that

hufu = Fu

and hence on multiplying (2.1) by wT we recover the entropy conservation law (2.8) where
now the Jacobian matrix

∂f

∂w
= fuuw

is symmetric. Accordingly f can be expressed as the gradient of a scalar function G,

f = ∂G

∂w
(2.11)

and the entropy flux can be expressed as

F = f T w − G. (2.12)

Different choices of the entropy function g(s) have been discussed by Harten [13], Hughes,
Franca and Mallet [14], and Gerritsen and Olsson [15].

Suppose now that (2.1) is approximated in semi-discrete form on a grid with cell intervals
�xj , j = 1, n as

�xj

duj

dt
+ fj+ 1

2
− fj− 1

2
= 0, (2.13)

where the numerical flux fj+ 1
2

is a function of ui over a range of i bracketing j . In order

to construct an entropy preserving (EP) scheme multiply (2.13) by wT and sum by parts to
obtain

n∑
j=1

�xjw
T
j

duj

dt
= −

n∑
j=1

wT
j

(
fj+ 1

2
− fj− 1

2

)

= wT
1 f 1

2
− wT

n fn+ 1
2
+

n−1∑
j=1

f T

j+ 1
2

(
wj+1 − wj

)
.

At interior points evaluate f T

j+ 1
2

as the mean value of Gw
j+ 1

2

in the sense of Roe [4] such

that

Gw
j+ 1

2

(
wj+1 − wj

) = G
(
wj+1

) − G
(
wj

)
. (2.14)

Also evaluate the boundary fluxes as

f 1
2

= f (w1), fn+ 1
2

= f (wn). (2.15)

Then the interior fluxes cancel, and using (2.10) and (2.12), we obtain the entropy conser-
vation law in the discrete form

n∑
j=1

�xj

dhj

dt
= F(w1) − F(wn). (2.16)
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Gw
j+ 1

2

can be constructed to satisfy (2.14) exactly by evaluating it as the integral

Gw
j+ 1

2

=
∫ 1

0
Gw

(
ŵ(θ)

)
dθ, (2.17)

where

ŵ(θ) = wj + θ
(
wj+1 − wj

)
(2.18)

since then

G
(
wj+1

) − G
(
wj

) =
∫ 1

0
Gw

(
ŵ(θ)

)
wθdθ

=
∫ 1

0
Gw

(
ŵ(θ)

)
dθ

(
wj+1 − wj

)
.

Thus we obtain:

Theorem 2.1 The semi-discrete conservation law (2.13) satisfies the semi-discrete entropy
conservation law (2.16) is the numerical flux is calculated as

fj+ 1
2

=
∫ 1

0
f ŵ(θ)dθ, j = 1, n − 1,

where ŵ(θ) is defined by (2.18), and the boundary fluxes are defined by (2.15)

The construction of a kinetic energy preserving (KEP) scheme requires a different ap-
proach in which the fluxes of the continuity and momentum equations are separately con-
structed in a compatible manner. Denoting the specific kinetic energy by k,

k = ρ
v2

2
,

∂k

∂u
=

[
−v2

2
, v,0

]
.

Thus

∂k

∂t
= v

∂

∂t
(ρv) − v2

2

∂ρ

∂t

= − ∂

∂x

{
v

(
p + ρ

v2

2

)}
+ p

∂v

∂x
. (2.19)

Suppose that the semi-discrete conservation scheme (2.13) is written separately for the con-
tinuity and momentum equations as

�xj

dρj

dt
+ (ρv)j+ 1

2
− (ρv)j− 1

2
= 0, (2.20)

�xj

d

dt
(ρv)j + (ρv2)j+ 1

2
− (ρv2)j− 1

2
+ pj+ 1

2
− pj− 1

2
= 0. (2.21)

Now multiplying (2.20) by
v2
j

2 and (2.21) by vj , adding them and summing by parts,

n∑
j=1

�xj

(
vj

d

dt
(ρv)j − v2

j

2

dρj

dt

)
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=
n∑

j=1

�xj

d

dt

(
ρj

v2
j

2

)

=
n∑

j=1

v2
j

2

(
(ρvj )j+ 1

2
− (ρvj )j− 1

2

)
−

n∑
j=1

vj

(
(ρv2)j+ 1

2
− (ρv2)j− 1

2

)

−
n∑

j=1

vj

(
pj+ 1

2
− pj− 1

2

)

= −v2
1

2
(ρv) 1

2
+ v1(ρv2) 1

2
+ v1p 1

2
+ v2

n

2
(ρv)n+ 1

2
− vn(ρv2)n+ 1

2
− vnpn+ 1

2

+
n−1∑
j=1

{
1

2
(ρv)j+ 1

2

(
v2

j+1 − v2
j

) − (ρv2)j+ 1
2

(
vj+1 − vj

)}

+
n−1∑
j=1

pj+ 1
2

(
vj+1 − vj

)
. (2.22)

Each term in the first sum containing the convective terms can be expanded as

{
(ρv)j+ 1

2

vj+1 + vj

2
− (ρv2)j+ 1

2

}(
vj+1 − vj

)

and will vanish if

(ρv2)j+ 1
2

= (ρv)j+ 1
2

vj+1 + vj

2
. (2.23)

Now evaluating the boundary fluxes as

(ρv) 1
2

= ρ1v1, (ρv2) 1
2

= ρ1v
2
1, p 1

2
= p1,

(2.24)
(ρv)n+ 1

2
= ρnvn, (ρv2)n+ 1

2
= ρnv

2
n, pn+ 1

2
= pn,

(2.22) reduces to the semi-discrete kinetic energy conservation law

n∑
j=1

�xj

(
ρj

v2
j

2

)
= v1

(
p1 + ρ1

v2
1

2

)
− vn

(
pn + ρn

v2
n

2

)

+
n∑

j=1

pj+ 1
2

(
vj+1 + vj

)
. (2.25)

Denoting the arithmetic average of any quantity q between j + 1 and j as

q̄ = 1

2

(
qj+1 + qj

)

the interface pressure may be evaluated as

pj+ 1
2

= p̄. (2.26)
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Also if one sets

(ρv)j+ 1
2

= ρ̄v̄, (2.27)
(
ρv2

)
j+ 1

2
= ρ̄v̄2 (2.28)

condition (2.23) is satisfied. Consistently one may set

(ρvH)j+ 1
2

= ρ̄v̄H̄ . (2.29)

The foregoing argument establishes

Theorem 2.2 The semi-discrete conservation law (2.13) satisfies the semi-discrete kinetic
energy global conservation law (2.25) if the fluxes for the continuity and momentum equa-
tions satisfy condition (2.23) and the boundary fluxes are calculated by (2.24).

Condition (2.23) allows some latitude in the construction of the fluxes. For example it is
also satisfied if one sets

(ρv)j+ 1
2

= ρv,

(
ρv2

)
j+ 1

2
= ρvv̄,

(ρvH)j+ 1
2

= ρvH̄

instead of (2.27–2.29).

3 Kinetic Energy Preserving (KEP) Scheme for Multi-Dimensional Viscous Flow

The extension of the entropy preserving (EP) scheme to multi-dimensional gas dynamics on
general grids has been given in [12]. In this section it is shown how to extend the kinetic
energy preserving (KEP) scheme to multi-dimensional viscous compressible flow. Denote
the density, velocity components, pressure, energy and enthalpy by p,vi,p,E and H , where
the superscript i is used to denote the ith coordinate direction. This is convenient because
subscripts will be needed to denote the grid location. Repeated superscripts will be used to
indicate summation over the coordinate directions. Also

p = (γ − 1)

(
ρE − vi2

2

)
, H = E + p

ρ
. (3.1)

The viscous stress tensor is

σ ij = μ

(
∂vi

∂xj
+ ∂vj

∂xi

)
+ λδij ∂vk

∂xk
, (3.2)

where δij is the Kronecker delta, and μ and λ are the viscosity coefficients. Usually λ =
− 2

3μ. The heat flux is

qj = −κ
∂T

∂xj
, (3.3)
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where T is the temperature and κ is the coefficient of heat conduction. The governing equa-
tions can now be written in conservation form as

∂u

∂t
+ ∂

∂xi
f i(u) = 0, (3.4)

where the state and flux vectors are

u =

⎡
⎢⎢⎢⎢⎣

ρ

ρv1

ρv2

ρv3

ρE

⎤
⎥⎥⎥⎥⎦

, f i =

⎡
⎢⎢⎢⎢⎣

ρvi

ρviv1 − σ i1 + pδi1

ρviv2 − σ i2 + pδi2

ρviv3 − σ i3 + pδi3

ρviH − vjσ ij − qj

⎤
⎥⎥⎥⎥⎦

. (3.5)

The kinetic energy is again denoted by k where

k = ρ
vi2

2
,

∂k

∂u
=

[
−vi2

2
, v1, v2, v3,0

]
(3.6)

and the kinetic energy conservation law is

∂k

∂t
+ ∂

∂xj

{
vj

(
p + ρ

vi2

2

)
+ viσ ij

}
= p

∂vj

∂xj
− σ ij ∂vi

∂xj
. (3.7)

Suppose now that the domain is covered by a grid, and the equations are discretized
in finite volume form. The discrete variables may be associated either with nodes, each of
which is surrounded by a control volume, or with the control volumes themselves. In the
first case the control volumes may be taken as dual cells where the nodes are the vertices
of the primary cells. In the second case the control volumes are simply the primary cells,
and the discrete variables may be regarded as cell averages. Each interior control volume,
say o, is bounded by faces (not necessarily planar) with a directed face area Sop for the
face separating the control volumes o and p. Each boundary control volume is closed by
an outer face with directed area So which is the negative of the sum

∑
p Sop of the face

areas between o and its neighbors. The control volumes may be tetrahedral, hexahedral or
of mixed polyhedral form.

The semi-discrete finite volume scheme to be considered has the form

volo
duo

dt
+

∑
p

Si
opf i

op = 0 (3.8)

for every interior control volume, where Si
op are the projected areas of the face Sop in the

coordinate directions. At a boundary control volume b there is an additional contribution
Si

bf
i
b , where the boundary flux vector will be evaluated as

f i
b = f i (ub) . (3.9)

Multiplying (3.8) by

wT
o =

(
∂k

∂u

)

o

(3.10)
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and summing over the nodes

∑
o

volo
dko

dt
= −

∑
o

wT
o

∑
p

Si
op f i

op −
∑

b

wT
b Si

b f i
b , (3.11)

where the last sum represents the contribution of the boundaries.
Every interior face appears twice in the sums on the right hand side of (3.11) with oppo-

site signs for its discrete face area. Thus its contribution is
(
wT

p − wT
o

)
Si

op f i
op. (3.12)

Consider now contributions of the convective terms to (3.12). These are

(
vj

p − vj
o

)
Si

op

(
ρvivj

)
op

− 1

2

(
vj2

p − vj2

o

)
Si

op

(
ρvi

)
op

= (
vj

p − vj
o

)
Si

op

{(
ρvivj

)
op

− 1

2

(
ρvi

)
op

(
vj2

p − vj2

o

)}
.

Thus the convective contributions of the interior faces will vanish if

(
ρvivj

)
op

= 1

2

(
ρvi

)
op

(
vj

p + vj
o

)
. (3.13)

Defining the average of any quantity q between its values at o and p as

q̄ = 1

2

(
qp + qo

)
(3.14)

condition (3.13) will be satisfied if one set
(
ρvi

)
op

= ρ̄v̄i , (3.15)
(
ρvivj

)
op

= ρ̄v̄i v̄j . (3.16)

To complete the derivation it is now necessary to examine the contributions of the pressure
and stress tensor to (3.11). These can be expressed as

∑
o

vT
o

∑
p

Si
opP i

op −
∑

b

vT
b Si

bP
i
b , (3.17)

where

v =
⎡
⎣

v1

v2

v3

⎤
⎦ , P i =

⎡
⎣

pδi1 − σ i1

pδi2 − σ i2

pδi3 − σ i3

⎤
⎦ . (3.18)

Let P i
op be evaluated as

P i
op = 1

2

(
P i

p + P i
o

) = P̄ i . (3.19)

The first term in (3.17) is now

−1

2

∑
o

vT
o P i

o

∑
p

Si
op − 1

2

∑
o

vT
o

∑
p

P i
pSi

op.
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At every interior control volume o the fluxes vT
p Si

opP i
o generated by its neighbors can be

associated with o, so the contributions at o can be written as

−1

2
vT

o P i
o

∑
p

Si
op + 1

2
vT

p

∑
Si

opP i
o .

Here
∑

p Su
op = 0 because it is the sum of the face areas of a closed volume. Thus one can

add vT
o P i

o

∑
p Si

op to obtain

1

2
P iT

o

∑
p

(
vp + vo

)
Si

op = σ ij
o

∑
p

v̄j Si
op + po

∑
p

v̄iSi
op.

This represents the finite volume discretization of

p
∂vi

∂xi
− σ ij ∂vj

∂xi

for the control volume o. A boundary control volume b receives the contributions

1

2
P iT

b

∑
p

vpSi
bp

from the neighbors while it returns the contributions

−1

2
P iT

b vb

∑
p

Si
bp − P iT

b vbS
i
b

giving the total

1

2
P iT

b

∑
p

(
vp + vb

)
Si

op − P iT

b vb

∑
p

Si
bp − P iT

b vbS
i
b

= 1

2
P iT

b

∑
p

(
vp + vb

)
Si

bp + P iT

b vbS
i
b − P iT

b vbS
i
b

= σ
ij

b

(∑
p

v̄j Si
bp + v

j

bS
i
b

)
+ Pb

(∑
p

v̄iSi
bp + vi

bS
i
b

)
− σ

ij

b v
j

bS
i
b − Ppvi

bS
i
b.

Combining this result with the result for the interior control volumes, and including the
convective terms for the boundaries, we finally obtain the semi-discrete global kinetic energy
conservation law

∑
o

volo
dko

dt
=

∑
b

Si
o

{
vi

o

(
po + ρo

vi2

o

2

)
− vi

oσ
ij
o

}

+
∑

o

(
po

∑
p

v̄iSi
op − σ ij

o

∑
p

v̄j Si
op

)
, (3.20)
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where the first sum on the right hand side over the boundary control volumes represent the
flux through the boundaries and the second sum is the finite volume discretization of

∫
D

(
p

∂vi

∂xi
− σ ij ∂vj

∂xi

)
dV .

This establishes Theorem 3.1.

Theorem 3.1 The semi-discrete conservation law (3.8) satisfies the semi-discrete global
kinetic energy conservation law (3.20) if the interface fluxes satisfy condition (3.13) and the
boundary fluxes are evaluated by (3.9).

Note that the discrete viscous terms

−
∑

o

σ ij
∑

p

v̄j Si
op

guarantee dissipation of the discrete energy because
∑

p v̄j Si
op is the consistent discretiza-

tion of ∂vj

∂xi in the control volume. Then splitting ∂vj

∂xi into its symmetric and anti-symmetric
parts as

∂vj

∂xi
= 1

2

(
∂vj

∂xi
+ ∂vi

∂xj

)
+ 1

2

(
∂vj

∂xi
− ∂vi

∂xj

)

the contribution of the viscous terms amounts to

−
∑

o

{
1

2
μ

(
∂vj

∂xi
+ ∂vi

∂xj

)(
∂vj

∂xi
+ ∂vi

∂xj

)
+ λ

(
∂vk

∂xk

)2
}

.

Setting λ = − 2
3 μ this is

∑
o

1

2
μ

(
∂vj

∂xi
+ ∂vi

∂xj
− 2

3
δij ∂vk

∂xk

)2

.

The discretization of the viscous terms covered by the proof does not have the most compact
possible stencil. Consequently it might allow an updamped odd-even mode.

4 Direct Numerical Solution of One-Dimensional Viscous Flow in a Shock Tube

This section presents the results of numerical experiments in which both the entropy preserv-
ing (EP) and the kinetic energy preserving (KEP) schemes have been applied to the direct
numerical simulation (DNS) of one dimensional viscous flow in a shock tube. In an analysis
of discrete solution methods for the viscous Burgers equation [12] it was established that
the EP scheme will satisfy the conditions for a local extremum diminishing (LED) scheme
if the local cell Reynolds number Rec ≤ 2. Here Rec is defined as

v�x

ν
,
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where v is the velocity and ν is the kinematic viscosity. This indicates the need to use a
mesh with a number of cells proportional to the global Reynolds number vL

ν
, where L is the

global length scale.
The compressible Navier Stokes equations are not amenable to such a simple analysis,

but it can still be expected that the number of mesh cells needed to fully resolve shock waves
and contact discontinuities will be proportional to the Reynolds number, given that the shock
thickness is proportional to the coefficient of viscosity, as has been shown by G.I. Taylor and
W.D. Hayes [16, 17].

In the numerical experiments the viscous stress was calculated at each cell interface by
discretizing the velocity and temperature gradient on a compact stencil as

(
∂v

∂x

)

j+ 1
2

= 1

�x

(
vj+1 − vj

)
,

(
∂T

∂x

)

j+ 1
2

= 1

�x

(
Tj+1 − Tj

)
.

The coefficient of viscosity was calculated as a function of the temperature by Sutherland’s
law

μ = 1.461 × 10−6 T 3/2

(T + 110.3)

taking λ = − 2
3μ, the viscous stress and heat flux assume the form

σj+ 1
2

= 4

3
μ

(
∂u

∂x

)

j+ 1
2

,

qj+ 1
2

= −κ

(
∂T

∂x

)

j+ 1
2

,

where the coefficient of heat conduction κ was obtained from the Prandtl number Pr as

κ = μcp

Pr
.

The Prandtl number was taken to be .75.
Numerical experiments were performed using three different flux formulas

1. Simple averaging:

fj+ 1
2

= 1

2

(
f

(
uj+1

) + f
(
uj

))
.

2. The entropy preserving (EP) scheme:

fj+ 1
2

=
∫ 1

0
f

(
ŵ(θ)

)
dθ,

where w denote the entropy variables and

ŵ(θ) = wj + θ
(
wj+1 − wj

)
.
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3. The kinetic energy preserving (KEP) scheme:

(ρv)j+ 1
2

= ρ̄v̄,

(
ρv2

)
j+ 1

2
= ρ̄v̄2,

(ρvH)j+ 1
2

= ρ̄v̄H̄ .

In the EP scheme the entropy variables were taken to be

wT = ∂h

∂u
,

where

h = ρe
s

γ+1 = ρ

(
p

ργ

) 1
γ+1

.

Accordingly the entropy variables assume the comparatively simple form

w = p∗

p

⎡
⎣

u3

−u2

u1

⎤
⎦ , u = p

p∗

⎡
⎣

w3

−w2

w1

⎤
⎦ ,

where

p∗ = γ − 1

γ + 1
e

s
γ+1 = γ − 1

γ + 1

(
p

pγ

) 1
γ+1

.

It was remarked in [12] that the energy or entropy preserving property could be impaired
by the time discretization scheme. One solution to this difficulty is to use an implicit time-
stepping scheme of Crank-Nicolson type in which the spatial derivatives are evaluated using
the average value of the state vectors between the beginning and the end of each time step,

ūj = 1

2

(
un+1

j + un
j

)
.

This requires the use of inner iterations in each time step. In order to avoid this cost, Shu’s
total variation diminishing (TVD) scheme [18] was used for the time integration in all the
numerical experiments. Writing the semi-discrete scheme in the form

du

dt
+ R(u) = 0, (4.1)

where R(u) represents the discretized spatial derivative, this advances the solution during
one time step by the three stage scheme

u(1) = u(0) − �t R(u(0)),

u(2) = 3

4
u(0) + 1

4
u(1) − 1

4
�t R(u(1)),

u(3) = 1

3
u(0) + 2

3
u(2) − 2

3
�t R(u(2)).
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Fig. 1 Simple averaging of the flux: 4096 mesh cells, Reynolds number 25000, computed solution values +,
exact inviscid solution −

The test case for the numerical experiments was the well known example originally pro-
posed by Sod [19]. The shock tube extends over the range 0 ≤ x ≤ 1, with a discontinuity in
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Fig. 2 Entropy preserving scheme: 4096 mesh cells, Reynolds number 25000, computed solution values +,
exact inviscid solution −

the initial data at x = .5. The left and right states are

pL = 1.0, pR = .1,

ρL = 1.0, ρR = .125,

vL = 0, vR = 0.
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Fig. 3 Kinetic energy preserving scheme: 4096 mesh cells, Reynolds number 25000, computed solution
values +, exact inviscid solution −

The Reynolds number is based on the speed of sound of the left state

Re = ρLcL

μ
, cL =

√
γpL

ρL

.
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Fig. 4 Simple averaging of the flux (coarse mesh): 512 mesh cells, Reynolds number 2500, computed solu-
tion values +, exact inviscid solution −

The numerical experiments confirm that the EP and KEP schemes both enable direct nu-
merical simulation (DNS) of the viscous flow in the shock tube, provided that a fine enough
mesh is used, while significant oscillations can be observed in the solution when simple flux
averaging is used (scheme 1). It is interesting that the oscillations are primary observed in
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Fig. 5 Entropy preserving scheme (coarse mesh): 512 mesh cells, Reynolds number 2500, computed solution
values +, exact inviscid solution −

the expansion region. As a representative example, Figures 1–3 show the solutions for a
Reynolds number Re = 25000 which were obtained with the three schemes on a grid with
4096 cells, at the time t = .2136. The figures also display the exact inviscid solution with
a solid line. With simple flux averaging there are oscillations in the entropy (measured by
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Fig. 6 Kinetic energy preserving scheme (coarse mesh): 512 mesh cells, Reynolds number 2500, computed
solution values +, exact inviscid solution −

p

ργ − p0
ρ

γ
0

of the order of .01. With the EP scheme these oscillations are reduced to the order

of .001, while with the KEP scheme they are further reduced to the order of .0001. When the
Reynolds number is increased to 1 million, and the calculations are performed on a mesh
with 204800 cells, it remains true that the only observable oscillations appear in the expan-
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sion region, but with reduced amplitude, while the three schemes exhibit the same order
of merit. On the other hand the oscillations in the expansion region are amplified as the
Reynolds number and number of mesh cells are reduced, as is illustrated in Figs. 4–6. In all
cases (surprisingly to the author) the KEP scheme performs better than the EP scheme for
this model problem, while simple flux averaging is inadequate.

5 Conclusion

As a sequel to [12], the derivations in this paper establish that it is possible to construct
semi-discrete approximations to the compressible Navier Stokes equations in conservation
form which also discretely preserve the conservation of either entropy (the EP scheme) or
kinetic energy (the KEP scheme). Both these schemes enable the direct numerical simulation
of one dimensional viscous flow in a shock tube, provided that the number of cells in the
computational mesh is of the order of the Reynolds number.

The performance of both the EP and the KEP schemes improves as the Reynolds number
and the number of mesh cells are simultaneously increased. For the model problem exam-
ined in this paper, one-dimensional viscous flow in a shock tube, the KEP scheme performs
better than the EP scheme.

The Kolmogoroff scale for the small eddies that can persist in a viscous turbulent flow
is of the order of 1

Re
3
4

. Accordingly it appears that by using a mesh with the order of Re3

cells, direct numerical simulation (DNS) of viscous turbulent flow with shock waves will be
feasible in the future for high Reynolds number flows. Current high-end computers attain
computing speeds of the order of 100 teraflops (1014 floating point operations/second). This
is about 1 million times faster than high-end computers 25 years ago. A further increase
by a factor of million to 1020 flops could enable DNS of viscous compressible flow at a
Reynolds number of 1 million. This is still short of the flight Reynolds numbers of long
range transport aircraft in the range of 50–100 million, but the eventual use of DNS for
compressible turbulent flows can clearly be anticipated.
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