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ABSTRACT

Given the equations AX = XAT and AX =YB with arbitrary nonzero real matri-
ces A and B of the same size, we seek all real solutions X and Y which are: (1)
symmetric, (2) symmetric and positive semidefinite, and (3) symmetric and positive
definite. Necessary and sufficient conditions for the existence of such solutions and
their general forms are derived.

1. INTRODUCTION

An inverse problem of linear optimal control requires the solution of
equations of the form

AX =YB (1.1)
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where A, B are real n X m matrices, and the unknowns X and Y are
required to be real and symmetric, and possibly positive definite or semidefi-
nite. No assumption is made about the relative sizes of m and n; however, it
will be convenient to assume throughout that A # 0 and B # 0. Throughout
the paper definite and semidefinite matrices are assumed to be real and
symmetric. See [9] for partial solutions to problems of this kind and for some
history of the problem in the control-theoretic context. Here, the results of
[9] will be extended and presented in algebraic form.

The strategy adopted here is to first solve for the m X m matrix X, and
then for the n X n matrix Y in terms of X. Multiplication of (1.1) on the left
by B shows at once that for a symmetric Y, X must be such that B TAX is
symmetric. Hence, we first solve for the symmetric solutions X of the
equation

MX =XM7, (1.2)

where, in this case, M is the m X m real matrix B*A. Nonsingular and
nonsingular symmetric solutions of Equation (1.2) are considered by Taussky
and Zassenhaus [16].

The equations (1.1) and (1.2) are, respectively, special cases of the
well-known equations

AX—YB=C (1.3)
and

AX—-XB=C, (1.4)

treated in books [7, 12, 13] and in many papers [1, 3, 6, 8, 10, 11, 15], to
mention a few. For early references—to Frobenius (1878), Sylvester (1884),
and Cayley (1885), among others—see [13]. More recent results do not easily
apply to the problem of finding symmetric solutions X and Y of (1.1), and we
therefore give an independent self-contained analysis. However, the inter-
ested reader may wish to consult recent papers by Don [5] and Chu [4]
treating (among other topics) symmetric solutions of AX = B, which, in
particular, contain general solutions consistent with results obtained here for
our problem. [Indeed, Equation (1.1) may be seen as a special case of
AX = B in which B has a special form.] Also, the interesting and wide-rang-
ing paper of Magnus [14] (Theorem 4.1, in particular) includes analysis of the
symmetric solution matrices X and Y of Equation (1.3). However, problems
with definiteness conditions on the solution matrices are not considered in
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any of these papers. We also remark that general solutions of AX =B
derived in [9] seem to have been overlooked in many subsequent papers.

In Section 2 we consider solutions of (1.2) that are symmetric, positive
semidefinite, or positive definite. In Section 3 we introduce the notion of
matrices X that are admissible for the solution of (1.1), i.e., that satisfy
further conditions guaranteeing the existence of symmetric matrices Y for
which (1.1) is fulfilled with XT=X, X>0, and X > 0. Section 4 is then
devoted to the description of the solution pairs (XT=X, Y'=Y), (X>0,
Y7=7Y), and (X>0, Y'=Y). Section 5 contains a key lemma, and in
Sections 6 and 7, pairs with Y > 0 and Y > 0, respectively, are discussed. .

2. SOLUTIONS OF MX = XM"

We first obtain the general solution X of Equation (1.2), where M is a
real m X m matrix, and then specialize to solutions which are real and
symmetric, positive semidefinite, and positive definite. Let ] be a Jordan
normal form for M, and

M=vjv-1. (2.1)

With each Jordan block, say of size three, associate the permutation matrix
0o 0 1

Po=l0 1 0 (2.2)
1 0 0

and similarly for other sizes. Then define a block-diagonal matrix P of
permutation matrices P, each with the size of the corresponding Jordan
block of J. Then PJ=]J"P, P*=1, and J' = PJP.

Now the equation MX = XM" is equivalent to

Viv=IX = XV-TPIPVT,
where VT =(VT)™L or
J(VIXVTTP) = (VIXVTTP)].

Defining W=V 'XV~ TP, we have

X=v(wpP)Vv7’ (2.3)
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Then, using (2.1), (2.3), and PJT = JP, the equation MX = XM " is equivalent
to

JW=WwJ.

We thus have

Lemma 2.1, All solutions X of MX = XM are characterized by Equation
(2.3) where W varies over all matrices commuting with J.

We next specialize to real solutions X7 =X, X >0, and X > 0. To that
end we may assume that J has the block-diagonal form

J=diag[],.]..].] (2.4)

where J, is a real Jordan matrix, J, has all its eigenvalues in the open upper
half of the complex plane, and ], is its complex conjugate; the corresponding
matrix P is

P=diag[P,,P,,P.], (2.5)

where again P, and P, are block-diagonal matrices of permutation matrices
of the type (2.2), each with the size of the corresponding Jordan block in
J.. ], and J,. Also, with a consistent partitioning,

v=[v.,v, V], - (2.6)

where V, is real and the columns of V are made up of eigenvectors and
generalized eigenvectors of M.

The detailed structure of the matrices W will be important in this
analysis, and the first observation is that they have block-diagonal form

W = diag[ W., W,,W,] (2.7)

consistent with that of J in (2.4). For the more detailed structure of W, Wy,
and W, we refer to Section 12.4 of [12]. They are necessarily block-diagonal
matrices if the corresponding blocks J,, J., or J, (respectively) are either
diagonal or nonderogatory. The nonzero blocks of W,, W, and W, corre-
sponding to eigenvalues with nonlinear elementary divisors have upper
triangular Toeplitz structure, so that the corresponding blocks in WP have
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Hankel form. Tt is important to note that such a matrix (of size two or more)
can never be positive definite, but may be positive semidefinite.
Observe also that we may write

T T

Y oo oo v
vi=|vF|=l0 0 I||V*|=KV* (2.8)

VT 0O I O Vo

where ( )* denotes the conjugate transpose and
I 0 0
K=]0 0 1}
0O I 0

Then Equation (2.3) takes the form of a congruence:

X =V(WPK)V*, (2.9)
where
W, P, 0 0
WPK=| 0 0 WP, | (2.10)

0 W,P, 0

[

Thus, X >0, or X >0, if and only if WPK =0, or WPK > 0, respectively.
We immediately see that W, =W, = 0 is a necessary condition for X >0,
and that X >0 requires that all the spectrum of M be real and that all
elementary divisors be linear. In this case we have P. = I.

These considerations lead to the following result (note that a matrix is
said to be simple if all elementary divisors are linear, i.e. if it is similar to a
diagonal matrix):

TreoREM 2.1

(a) The equation MX = XM" with M real has real nonzero symmetric
solutions X. Furthermore, writing M = V]V~ where ] is a Jordan matrix of
the form (2.4), all such solutions have the form

X=V(WP)VT,
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where W = diag[W_, W, W, ]| commutes with ], P is the permutation defined
by (2.5), W.P. is real symmetric, W, =W,, and W, P, is symmetric.

(b) All real solution X > 0 of MX = XM are obtained as in part (a) with,
in addition, W, =W, =0 and by choosing W, so that W, P > 0. Nonzero
positive semidefinite solutions exist if and only if M has at least one real
eigenvalue.

(c) Real solutions X > 0 exist for the equation MX = XM" if and only if
M is simple with all eigenvalues real. All such solutions have the form (2.3)
with P = P =1, and are obtained by choosing W =W, so that W > 0.

To illustrate the form of the matrices W appearing in part (a) of the
theorem, suppose that M has just one real eigenvalue with elementary
divisors of degree two and three. Then W, P, is a real matrix of the form

fay, a, | 0 b, b, ][O0 10 0 0]
a ! 0 0 byl[1 010 0 0
W.P.=|by, by|cy ¢ o _o_"o_f—o_"o‘"f
0 by! 0 ¢ ¢ |0 010 1 0O
K 10 0 ¢ |lo 011 0 0
| . | N
[ a, aOE b, b, 0]
ag 01b, 0 0
=B hoi e o ¢
by 0l ¢ ¢ O
0 0 i ¢ 0 0

Proof of Theorem 3.1. (a): It is clear that the three conditions, W, P, real
symmetric, W, =W,, and W, P, symmetric, when combined with (2.3) and
(2.7), determine real symmetric solutions X.

Conversely, if X is real then (2.3) implies

X =V(WP)VT=W(WP)V7,
and, since V = VK [Equation (2.8)],
V(WP)VT=V(KWPK)VT.

As V is nonsingular, it is easily seen that this implies W, = W, and W, = W,.
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If, in addition, X is symmetric, then also W, P, and W, P, must be symmetric.
This proves part (a).

Parts (b) and (c) follow from (a), taking into account Equations (2.9) and
(2.10). [ ]

3. ADMISSIBLE MATRICES

Now let us consider the equation AX =YB. Since (B’A)X must be
symmetric, the symmetric solutions X must be among those described by
Theorem 2.1, if we take M = B”A. In addition, any such X must be such that
the equation AX =YB (for Y) is consistent. Now AX = YB is equivalent to
BTYT = (AX)T, and this is consistent if and only if Im(AX)" € Im B”, where
the symbol C is used to denote either strict inclusion or equality. This in
turn is equivalent to Ker B C Ker AX, and this is the form of the consistency
condition that we will use. Obviously, this is trivially satisfied when B has
full rank and m < n, for then Ker B ={0}.

Now, it will be convenient to have a formal definition.

Derintrion 3.1, A real m X m matrix X will be called admissible if

(BTA)X = X(B™A)", (3.1)

XT =X, and Ker B C Ker AX.

Thus, admissible matrices are those generated by Theorem 2.1 (with
M = BTA) for which solution pairs (X,Y) of AX =YB also exist; it will be
seen in Section 4 that when X is admissible there are also (without further
conditions) solution pairs (X,Y) with YT =Y.

Before proving the main theorem on existence of admissible matrices, it
is convenient to establish a lemma.

Lemma 3.1. If (BTA)X = X(B'A)", XT"=X#0, and Im X CIm BTA,
then X is admissible.

Proof of Theorem 3.1.  We have only to show that Ker B C Ker AX. Let S
be the orthogonal projection onto Im B along Ker B. Then we have

Im X € Im B’A c Im B”,
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so that SX = X, and consequently SXA” = XA”. Since X=X and §T=§, we
obtain AXS = AX. Now if u € Ker B then Su = 0, so that also AXu =0, ie.
Ker B Cc Ker AX. ]

Turorem 3.1.  Let real n X m matrices A and B be given. Then:

(a) There exist nonzero admissible matrices X.

(b) There exist admissible matrices X > 0 if and only if B'A has at least
one real eigenvalue. If B"A has a nonzero real eigenvalue or a zero eigenvalue
with a nonlinear elementary divisor, then there exist nonzero admissible
matrices X = 0.

(c) There exist admissible matrices X > 0 if and only if B'A is a simple
matrix with all eigenvalues real and

rank AB” = rank A. (3.2)

The general form of these matrices X is given in Theorem 2.1, parts (a),
(b), and (c), respectively.

Remark 3.1.  The ungainly statement of part (b) is required because if
zero is the only real eigenvalue of BA and it has only linear elementary
divisors, then a nonzero admissible X >0 may or may not exist (see
examples below).

Proof of Theorem 3.1. (a): With M = B"A Equation (2.1) implies that
Im B'A = ImV]=ImV,J, +ImV, ] +ImV, ], .

Let us reduce J, further in the form ], = diaglJ,,J,] where J, is nilpotent
(has all eigenvalues zero) and ], is nonsingular. Partition V, accordingly:
V.= [VO,VP], and we have

Im B'A =1mV,J, +ImV, ] +ImV,], +ImV,],. (3.3)

Now X must have the form given in Equation (2.3), where ] commutes with
W, and hence

Im X = ImV,W, +ImV,W, + ImV,W, + ImV,W,, (34)

where W, in (2.7) is W, = diag[W,, W, ], corresponding to the above form of
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J.. Comparing (3.3) and (3.4), it is clear that W can be chosen in a manner
consistent with Theorem 2.1(a) and, at the same time, satisfy Im X € ITm B"A.
Because of the nullity of J,, care must only be taken to ensure that
ImV,W, € ImV,J,. This can generally be achieved by setting W, =0 and
then using Lemma 3.1.

If B™A has only the zero eigenvalue, assume that it is already reduced to
Jordan canonical form J. We show how to find a block-diagonal W satistying
JW = WJ [and hence an X from (2.3)] so that Ker B € Ker AX. If the Jordan
block in question has size one, then we may suppose B'A =[0], the zero
matrix of size one. Since B # 0, B is a nonzero column vector and Ker B ={0}.
So we can take any scalar W#0 to satisfy JW=W] and generate a
symmetric X # 0. Clearly, Ker B Ker AX and hence X is admissible. When
there is a Jordan block of size greater than one, we again consider size three
as typical. Thus, consider

0 1 0 X, Xy X3
BlA=|0 0 1} X=|xy x5 0| (3.5)
0 0 0 x; 0 0

It is easily seen that either Ker B ={0} or Ker B is the span of the third unit
coordinate vector. In the first case Ker B € Ker AX trivially for any choice of
X1, Xy, x5 not all zero. In the second case choose x5 =0 and x;, ¥, not both
zero to obtain a nonzero admissible matrix.

(b): Referring to Theorem 2.1(b), we may use the same argument as in
part (a). The second statement of part (b) is required because the case in
which BTA has zero as the only real eigenvalue and its elementary divisors
are linear does not ensure the existence of an admissible X > 0 with X # 0.
Consider two examples. First, if

_J1 o _fo o
A“[o o]’ B [1 0]’

then BTA = 0. Thus, zero is the only eigenvalue of B”A, and trivially the
elementary divisors are linear. In this case we may take

11 0
X“[o 0]’

which is nonzero, positive semidefinite, and admissible. In contrast, if A =1I,
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and

0 0 0
B=|0 0 11

0 -1 0

then B"A = BT and has zero as the only real eigenvalue, and it is simple.
However, a little calculation verifies that there is no nonzero, positive

semidefinite, admissible X.
(c): First, if X >0 and is admissible, then AX =YB for some Y so that
AXAT = YBAT. But now A and AXAT have the same rank, so

rank A = rank AXAT = rank YBAT < rank BA” = rank ABT.

But rank ABT <rank A, so equality obtains throughout and rank AB” =
rank A, as required. It follows from Theorem 2.1(c) that B'A is a simple
matrix with all eigenvalues real.

Conversely, given that B'A is simple with all real eigenvalues, we can
construct an X > 0 such that (BYA)X = X(B"A)" as indicated in Theorem
2.1(c). We have only to show that given the rank condition (3.2), there is an
X of this form for which the consistency condition Ker B C Ker AX is
satisfied.

It has already been remarked that if B has full rank then the consistency
condition is satisfied. So let rank B = r < m, and first reduce B to canonical
form by a real equivalence transformation,

= — 0 Qjn—rs
B= EBF [0 I]rB (3.6)

m—7rg (]

where E and F are suitable nonsingular matrices. If we define
A=EAF~", X=F'XF, Y=E "YE™',

then it is easily verified that AX=YB, X>0,(BA)X = X(B"A)", and B"A
is similar to BTA. Further, the conditions

rank ABT=rank A and rank A BT =rank A

are equivalent. It follows that, without loss of generality, we may assume that
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B is given in the canonical form (3.6). Then with a partition of A consistent
with (3.6) we have

ABT= |:O AIZ:I

0 Ay

and rank AB” =rank A implies that the first m —r; columns of A are
linearly dependent on the last r; columns. In other words, there is a matrix
K such that

_|:A12K Ay
ApK Ap |

But also

0 0
BTA = ,
{AzzK Azz]

and it obviously has m — rj linearly independent eigenvectors corresponding
to the zero eigenvalue of the form

U,
v=| _ Ko, |
Thus, we may write

VA:[ Vo 0 ]

- KVu sz

where V|, and V,, are nonsingular. As B’A is simple, J is diagonal and has
the form J = diag[0, J,], where the zero matrix has size m —ry (and J, may
be singular). Note also that P =P, =1.

As in Theorem 2.1(c) [see also Equation (2.8)], we have X =V(W, P V™.
We may now choose W, to be diagonal (although more general choices are
also admissible). Thus, let W = diag[ W;, W, ], where W, has size m — r; and
W,, W, are both positive definite and diagonal. Then certainly X > 0.

The subspace Ker B is clearly spanned by vectors of the form [16 ], where

« is an arbitrary (m — r)-vector. Thus, if

u
x=[0]€KerB,



200 A. JAMESON, E. KREINDLER, AND P. LANCASTER

‘|

(3.7)

W, 0

A22K Azz “KVn V22 0 W2

A 12 K A 12 Vll 0
0 Vy

[Vﬁ -VSKT}

Multiplying out the right-hand side, it is found that AXx =0, i.e. Ker BC
Ker AX, as required. ]

4. SOLUTIONS WITH Y*'=Y

We first consider the problem of finding solution pairs (X,Y) for AX = YB
where both X and Y are real symmetric and no definiteness conditions are
imposed. The solution pairs (X >0, YT=Y) and (X >0, YT =Y) then follow
at once from Theorem 3.1. It will be convenient to use the language of
generalized inverses here (see Reference [2], for example). For any (possibly
rectangular) matrix M a matrix X is a (1)-inverse of M if MXM = M. If, in
addition, X satisfies XMX = X, then we call X a (2)-inverse of M. It is well
known that such inverses always exist but are not unique. The first two
theorems of this section include only cosmetic improvements of the results
in [9].

Tueorem 4.1. If X is a nonzero admissible matrix, then there is a
nonzero Y such that YT =Y and AX = YB. Also, there exists a real m X n
matrix U such that

AX(UB) = AX, (4.1)
and the general real symmetric solution Y of AX = YB is given by
Y = AXU + UTXAT — UTBTAXU + Y,, (4.2)
where Y, is any real symmetric matrix for which Y4B = 0.

Proof. We first verify that there is a U for which (4.1) is satisfied. Let
B’ be any (1)-inverse of B. Then it is easily seen that I — B'B is a projection
onto Ker B. Since X is admissible, we have Ker B C Ker AX, and it follows
that AX(I — B'B) = 0. Thus, we can take U = B! in Equations (4.1) and (4.2).
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We now proceed by verification. Multiply (4.2) on the right by B, and
using (4.1) and the symmetry of B7AX, it is found that AX =YB and YT =Y.
The general solution has the form (4.2) because AX =Y,B and AX =Y,B
imply (Y, —Y,)B=0. |

At the expense of the further rank condition [shown in Theorem 6.1 to be
necessary for the solution pair (X >0, Y > 0)]

rank B'A = rank A, (4.3)
a more compact form of the general solution (4.2) can be obtained.

Tueorem 4.2.  If X is an admissible matrix and the rank condition (4.3)
holds, then the general real symmetric solution Y of AX = YB is given by

Y = AX(BTAX) ¥ XAT +Y,, (4.4)

where (BTAX)* denotes any (2)-inverse of B'TAX, and Y, is any real symmet-
ric matrix for which Y,B = 0.

Proof. Let U=(BTAX)*XA". As (BTAX)* is a (1)-inverse and B'AX is
symmetric,
BTAX(B"AX)” XATB = BTAX,
or
B"A(XUB — X) = 0.
Then rank B'A = rank A implies that also
A(XUB - X) =0.

Thus, U satisfies Equation (4.1)
Now put U=(BTAX)*XAT in (4.2), and use the fact that (BTAX)* is a
(2)-inverse and the symmetry of BTAX to obtain (4.4). | |

Combining the existence statement of Theorem 4.1 with Theorem 3.1, we
obtain the first major result on the existence of solution pairs of AX =7YB.
Here, and in the sequel, the phrase “a nonzero pair (X,Y)” means that both
X#0and Y#0.
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Tueorem 4.3.  Let real n X m matrices A and B be given. Then:

(a) There exist nonzero solution pairs (X" =X, Y'=Y) of AX =YB.

(b) There exist solution pairs (X >0, YT =Y) of AX =YB if and only if
B'A has at least one real eigenvalue. If B'A has a nonzero eigenvalue or zero
eigenvalue with a nonlinear elementary divisor, then there exist solution pairs
(X20,YT=Y) with X # 0 (see Remark 3.1).

(c) There exist solution pairs (X >0, YT =Y) of AX =YB if and only if
B™A is a simple matrix with all eigenvalues real and rank ABT = rank A.

These solutions X and Y all have the forms given in Theorems 2.1 and
4.1, respectively.

5. PRELIMINARY RESULTS WITH Y> 0 ano Y >0

In this section a technical lemma is established which will play an
important part in the examination of solution pairs (X,Y) with Y > 0 and
Y > 0. We first need some geometric ideas. Let b,,...,b, be an orthogonal
basis for Im B, and write

#B,=[by,by,....b,.],
an n X r matrix, where r is the rank of B. Then define Q =%, %], the

orthogonal projection onto Im B.
Since (Im B)* = Ker BT [where ( )* denotes the orthogonal comple-

ment], there is an orthonormal basis b, ,,,...,b, for Ker BT such that
b,,b,,....b, is an orthonormal basis for R". Then, if we define
‘@2=[br+l"">bn]’ (51)

we have %, %, =1 — Q, the orthogonal projection onto Ker B,

For an nXn symmetric matrix Y we define the compression Y, =
@] Y%,. Then construct an orthonormal basis of eigenvectors for Y,,, say
Uy,..., %, such that

Yu; =0 for j=1,2,...,d
and

Yur=Au, #0 for k=d+1,...,r.
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Thus d is the dimension of Ker Y;;. Now let
U, =luy,...,uyl, Uy=luyiy,-.ou,], (5.2)

and define the projection

R=2,U, U], (5.3)
It is easily seen now that
[#.U, #U, %] (54)
is an orthogonal matrix, and
Ulasl 0 0 Y,
UlBT (Y[BU, BU, B,]=|0 Yoo Yauj, (5.5)
BT Yis Yy Yo

where Y,, is nonsingular and, in general, Y;,, Y,,, Y55 are nonzero. The block
matrix on the right is just the representation of ¥, with respect to the
orthonormal basis for R™ defined by the columns of (5.4) (see Chapter 4 of
[12], for example).

The relevance of the following lemma for investigation of the solutions of
AX=YB with Y>0 can be seen from the fact that B’AX=B"YB>0
follows from Y > 0.

Lemma 5.1, Let X be a nonzero admissible matrix for which BTAX > 0.
Let BY be the Moore-Penrose inverse of B (see [2, 12], for example), and use
Theorem 4.1 to define a corresponding solution of AX =YB by

Y, = AXB' +(B")" xAT — (B")" (B"AX) B". (5.6)

Let R be the orthogonal projection defined by Y, as in the above construction
(see equation (5.3)), and let Y, = a(I — BB") and Y =Y, +Y,,. Then:

(a) There exist numbers a > 0 such that (X,Y) is a nonzero solution pair
with Y = 0 if and only if RY,=0.

(b) There exist numbers a > 0 such that (X,Y) is a nonzero solution pair
with Y > 0 if and only if R = 0.
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Note that the orthogonal projection onto Im B may now be written in the
forms Q= %#,%! = BB"=(B")"B”.

Proof of Lemma 5.1.  Since AX =Y,B and B"AX » 0, we have BTY,B >
0. In other words, Y, is positive semidefinite on the image of B. In the
representation (5.5) of Y, this implies that Y,, > 0 (when B # 0).

It follows from (5.6) that Y,Q = AXBT, and substituting this back into
(5.6) gives

Y, =Y,0+0QY, - Y,0,
or
(I-Q)y(I-Q)=0.

In other words, Y, is zero on Im(I — Q) = Ker B”. Since I — Q = %, B [see
(5.1)], this implies that in the representation (5.5) of Y, we have Y, =0.
Thus, there is an orthonormal basis for R™ in which the representation of Y;
has the form

0 0 Y,
0 Yy Yy, (5.7)
YL Y5 O

where Y,, > 0.

Now further solutions of AX=YB can be generated by adding to Y,
symmetric matrices Y, with the property that Y,B = 0. Clearly, for any real
a, matrices

Yo=a(l—Q)=a(l- B,5])
have these properties. Since %%, =0 and BLB, =1
BIY B, = al.

Thus, in the representation (5.5) for Y, we have Y5, = @I and all other blocks
are zero. Combining this with the representation (5.7) for Y, it is found that
a matrix Y =Y, + Y, satisfies AX =YB and has the representation

0 0 Y,
0 Yy Y. (5.8)

Yfg Y2T3 al
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Now we set about the proof of statements (a) and (b). (a): Suppose first
that RY, = 0. From (5.5) we have

Y, =UlDBY,B,.

But, using (5.3), RY, =0 implies U/#] Y, =0 and hence Y,; = 0. Now the
four bottom right blocks of (5.8) are congruent to

Y, 0
0 @l —YEY5'"Y, [

and so, by choosing « large enough, we can make
Yoo Yy
YL al

positive definite and hence Y > 0.
Conversely, if Y= 0, it obviously follows from (5.8) that we must have
Y,; =0, and from (5.5) we obtain

UIT‘@ITYI[‘@IUI '@1[]2 ,@2] =0.

Since the matrix on the right is unitary, this implies U{% Y, = 0 and hence
RY,=0.

(b): If R =0, then the kernel of &Y, 4, is trivial and the first row and
column of blocks in (5.5) and (5.8) simply do not appear. Then, as above, «
can be chosen so that Y > 0. For the converse, we can only have Y> 0 in
(5.8)if R=0. N

ExampLE. Let

A[

0 0 O
, B=|0 1 1j
0 0 1

SO
SO =D
(=)
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Then
‘ 0 0 0 0 0 0
BA=|0 1 0], Bt=|o 1 -—-1]|.
0 1 0 0 0 1

It is easily verified that all admissible matrices have the form

0 0 x4
X=10 ¢ ¢

LTI J 2

for an arbitrary real parameters x5, £, x55. From (5.6) is found that

0 0 X3
Y, = 0 & 0
—x3 0 0

and Y, = diag[ «,0,0]. Thus, X determines the class of “partners”

a 0 —x5
Y=| 0 3 0 | (5.9)
—x;5 0 0

The representation (5.8) for Y is found to be

0 0 —x4
0 3 0 |,
—x5 0 «
and also
0o 0 O
R=]0 0 0.
0 0 1

For case (a) the hypothesis RY; = 0 is equivalent to x,; =0, and in this
case we can choose « so that Y > 0. Since R # 0, it follows from case (b), and
is obvious from (5.9), that there are no solutions Y=Y, + Y, with Y > 0.
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6. SOLUTIONS WITH Y= 0

In this section we establish results concerning the three cases XT= X,
X >0, X > 0 together with Y = 0. The first of these is obtained immediately
from Theorem 4.3(b) by transposition: since there is no hypothesis on the
relative size of m and n, the roles of X and Y are reversed if, in the equation
AX =YB, A is replaced by BT and B is replaced by A”. The other two cases
are covered in the next theorem. We note again a certain complication with
the case of nonnegative solution pairs which (as in Theorems 3.1 and 4.3)
arises when BTA is nilpotent (i.e. has only zero eigenvalues).

TaeEorEM 6.1

(2) If B*A has a positive eigenvalue, then AX = YB has a nonzero solution
pair (X = 0,Y > 0). Conversely, if there exists a nonzero solution pair (X > 0,
Y > 0), then AB has a nonnegative eigenvalue.

(b) The equation AX = YB has solution pairs (X >0, Y > 0) if and only if
B”A is simple with all eigenvalues nonnegative, and

rank AB” = rank A = rank B’A. (6.1)

Proof. (a): Let A>0 be an eigenvalue of B'A. if A has a linear
elementary divisor, choose the corresponding entry w in W, [of Equation
(3.4) to be positive. If A has an elementary divisor of degree two, there are
blocks in WP and JWP, respectively, of the form

w W, Aw+w,  Aw,
. 6.2
[wl 0} and [ A, 0 (62)

In this case, choose w; =0 and w > 0. Thus, when X has an elementary
divisor of degree one or two, there is a semidefinite block of JWP. Clearly,
the construction can be extended to eiementary divisors of any degree, and
on setting all other entries of W equal to zero we obtain

X =wov?, BTAX = Awvo”, (6.3)

where BTAv = Av, v # 0, and A > 0. Clearly, X# 0 and X> 0. Also Im X C
Im BTAX because A # 0, so the admissibility of X follows from Lemma 3.1.
Note also that the admissible X in (6.3) is such that BTAX > 0, are required
by Lemma 5.1.
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We are now to apply Lemma 5.1(a) to prove the existence of Y > 0 such
that (X,Y) is a nonzero solution pair. With X given by (6.3), Equation (5.6)
gives

Y, = w[AmuTBJr +(B") voTAT - (BT)T(BTAX)B*] .
Writing o7 = A7'0"ATB and BBT = Q, this takes the form
w p
Y=~ (Avo ATQ + QAvo AT — QAL TATQ). (6.4)
To construct the projector R determined by X (and hence Y,), first form

w
Y, =B, B, = i BIAW ™A' S,

The eigenvalues of Y;, are (w /Mllull® and zeros. We now find an orthogo-
nal U such that

w
UY, U" = diag[o,...,o, -/THuHZ].

In fact, if a =/ |lulDu then
U=[uy,...,u,_;,a],

where u,,...,u,_;, a form an orthonormal system. We write U,=
luj,ug,...,u,_;1, U=[U,, al Then (5.3) gives

R=BUUB = B(UUT — aa” ) BT

=B(1—aad") B,

=Q(I~ AvaAT)Q,

llull®

after some simplification [using « = #[Av and a =(1/ [lulDul.
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For brevity, write b = Av; then

R= Q(1~ 2bbT)Q,
[l
and (6.4) gives
w
QY, = T\'beT'
Hence
w 1 r
RY, = ')TQ(I— IIulIgbb )beT,
w bTQb
=—|1-—— |Qbb".
X ( 1l )Q

But b7Qb = v'AT%, BAv = u'u = lull®> and so RY,=0. It follows from
Lemma 5.1(2) that there are nonzero matrices Y=Y, +Y,> 0 for which
AX =YB.

Conversely, if AX=YB, X>0, and Y >0, then

0 < BTYB = BTAX = V(JWPK)V *.

This implies JWPK > 0 and hence W, =W, =0 [in Equation (2.10)] and
JW.P. > 0. Since we also have W, P, > 0, and W, # 0 (since X # 0), it is seen
from the earlier discussion that this demands the presence of a nonnegative
eigenvalue for BA. For example, in Equation (6.2) we must have w;=0,
w>0,and A=0.

(b): To prove part (b) assume first that B"A is simple with all eigenvalues
nonnegative and that (6.1) holds. Since rank AB” =rank A we obtain the
existence of an admissible X > 0 from Theorem 3.1(c). With such an X, and
as rank BTA = rank A, we may employ a Moore-Penrose inverse in Theorem
4.9, and define Y,=a(I — BB")>0 to obtain a solution pair (X,Y) with
X>0,Y=0.

For the converse, let X = LL¥, where L is nonsingular. Then
L-YBTYB)L-T= L~YB'AX)L~"= L~'(B'A)L > 0. This implies that B’A
is simple with nonnegative values. Furthermore, AX =YB and X >0 imply

rank A = rank AX = rank YB,
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and also
rank BTA = rank BYAX = rank BTYB.

But Y > 0 implies that rank B YB = rank YB, and consequently rank B"A =
rank A. The necessity of rank AB” = rank A has been shown in Theorem
3.1(c). <

Notice that since, according to Theorem 6.1(b), rank B7A = rank A is
necessary for the solution pair (X > 0, Y > 0), one may use Theorem 4.2 to
obtain a general form for Y > 0 when X > 0. We replace in Equation (4.4)
the 2-inverse ( )* by the Moore-Penrose inverse ( )7 and require, in
addition to Y,B =0, that ¥, > 0. As in the proof of Theorem 6.1(b), X > 0
implies BTAX > 0, whence (BAX)" > 0. This gives Y > 0 in Equation (4.4).

7. SOLUTIONS WITH Y >0

Of the three cases X'=X, X >0, and X > 0, together with Y > 0, the
first two cases are already covered by transposition of the equation (1.1) and
interchange of X and Y. Thus, solution pairs (X”= X, Y > 0) are character-
ized using Theorem 4.3(c), and solution pairs (X > 0, Y > 0} are character-
ized similarly using Theorem 6.1(b). The remaining case is covered by:

Tueorem 7.1.  The equation AX =YB has a solution pair (X>0,Y>0)
if and only if B*A is simple with all eigenvalues nonnegative, and

rank AB” = rank A = rank B = rank B"A. (7.1)

Proof. Let BTA=VJV™!, where J=diag0,J;] and J, >0 with size
p=rank BTA. Let W be an m X m diagonal matrix, with W > 0, and define
X=VWVT Then X>0 and B'AX =V(JWIVT=V,(JW)V], where V=
[Vy, Vil and V| is m X p. Furthermore, since rank(AB”) = rank A, it follows,
as in the proof of Theorem 3.1(c), that X is admissible.

Now we have a solution pair (X,Y) with Y, given by (5.6). Let r = rank B
and &, = BS, where S is m X r and has full rank. Then

Y. 4. =Y.BS = AXS
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and

Y, = 93{1@@1 == ST(BTAX)S
= (VlTS)T(th)(VlTS),

where JW,> 0. Now Y; is » X r and the matrix on the right has rank p,
and hence p < r. But by hypothesis p =, and hence Y|, is nonsingular. It
follows that in (5.2) V, =0 and hence, by (5.3), R =0. Lemma 5.1(b) now
applies to show that there is a solution pair (X,Y) with Y > 0.

Conversely, if AX =YB with X > 0 and Y > 0, then rank A = rank B and
the remaining conditions follow from Theorem 6.1(b). ]

Finally, let us consider how Theorem 4.2 may be used in the determina-
tion of pairs (X > 0, Y > 0). We first claim a simple lemma whose proof is left
to the reader.

Lemma 7.1, Let B be a real n X m matrix. Then Y, is a real symmetric
matrix for which YyB =0 if and only if

Y, = %,D%, (72)

where B, is defined as in Equation (5.1) and D is some real symmetric
matrix of size n-rank B.

Furthermore, all matrices Y, > 0 for which Y,B =0 are determined by
choosing matrices D > 0 in (7.2).

Tueorem 7.2.  Let the rank conditions (7.1) hold. Then for each positive
definite admissible matrix X, the matrix

Y = AX(B'AX)"XAT + Y,

where Y,B = 0, determines a solution pair (X > 0,Y > 0) if and only if Y, has
the form (7.2) with D > 0.

Proof. Given an admissible X >0, it follows from Theorem 4.2 and
Lemma 7.1 that the set of all solution pairs (X,YT=7Y) is described by

Y = AX(BTAX)'XAT + ¥, (7.3)
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where Y, is given by (7.2). If we assume D > 0, then it follows that Y, > 0.
From Theorem 7.1 we know there is at least one solution Y with ¥ > 0, and
hence BTAX = BTYB > 0, and hence (B'AX)" > 0. Thus, for every Y given
by (7.3) with D > 0 we have Y > 0.

We show that, in fact, Y > 0. For any nonzero x € R® let x = Xyt x,,
where 2, =Qx €Im B and x,=(I— Q)x €(Im B)*. Note that Y,x,=0.
Thus, with Y given by (7.3),

'Yz = xTAX(BTAX)TXATx + 22 Y,x,,

and each term on the right must be nonnegative. Furthermore, if x, # 0
then, as x, = H,y for some y # 0,

X3 Yox, = y' B (B,DBL)Boy =y Dy > 0.

Thus, x, # 0 implies x” Yx > 0.
On the other hand, if x, =0, then x = x; = Bz for some z # 0 and, from
(7.3),

xTYx = z7(BTAX ) ( B'AX)'( XATB) z = 27 ( BTAX) z. (7.4)

Now z"BT=x"+0 and rank BT = rank BA implies that z7B”A +0. Let
BTAX = Z*TZ, where Z is real and has full rank. Then 27BTA = z7Z7ZX "1 # 0
and hence Zz # 0. From (7.4) we obtain

xTYx = 2TBTAXz = 27277z > 0.

If follows that Y > 0, as required.
Conversely, let (X >0, Y > 0) be a solution pair and Y have the form
(7.3). For any vector y of size n define

x=[1- B(B™AX) XA" |y, (7.5)

Then calculate x”Yx using the formula (7.3) and the fact that Y,B = 0. It is
easily found that

xTYr =yTY,y.
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Since Y > 0, it follows that y” Y,y > 0 for all y and hence that ¥, > 0. It now
follows from the lemma that D > 0.

If Dz = 0 for some z # 0, then z = &y, for some y, # 0, and yl Y,y, =
Yo By DBy, =0. Then define x, as in (7.5) with y replaced by Yo As
2o =0 implies Bjy, =0, we deduce that x,# 0. Also, as in the preceding
paragraph,

xo Yxo Yo Yoyo =0,

which contradicts Y > 0. Hence D > 0. [ |

8. CONCLUSIONS

The first step of this work has been the formulation of existence theorems
for solutions X of MX = XM”, where M is real and X is required to be
symmetric, positive semidefinite, or positive definite. This is contained in
Theorem 2.1, which also describes the three solution sets.

Given arbitrary nonzero n X m real matrices A and B, conditions for the
existence of symmetric matrices X and Y for which AX = YB have also been
examined. Nine types of solution pairs occur with X and Y either symmetric,
positive semidefinite, or positive definite. For simplicity Table 1 summarizes
only sufficient conditions for the existence of nonzero solution pairs, i.e. with
both X # 0 and Y # 0. More details are found in Theorems 4.3, 6.1, and 7.1,
in particular. In the cases (X >0, Y > 0) and (X > 0, Y > 0) the product B'A
can be replaced wherever it appears by AB”.

General solution forms for the solution pairs in Table 1 are also generated
by our results. The existence of admissible matrices X is characterized in
Theorem 3.1. They are the matrices X constructed as described in Theorem
2.1 (with M = B"A) for which Ker B < Ker AX. Then for each admissible X a
particular solution pair (X,Y) is generated by Theorem 4.1 [or Theorem 4.2
when the condition (4.3) applies]. Since AX =YB is a linear equation in Y,
all solutions for a given X are obtained simply by adding to the particular Y
symmetric matrices ¥ for which ¥B =0 as described in Lemma 7.1. How-
ever, it is not so obvious how to guarantee that Y + ¥>0 when Y30, for
example. Taking ¥ > 0 is sufficient, but not necessary.

We leave for further study the problems of finding “minimal” solutions.
These may be interpreted in different ways. Minimal in the sense of matrix
norms is one possibility, which has already been studied for the equation
AX = B (see [15], for example). Here, the problem of finding solution pairs
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TABLE 1
SUFFICIENT CONDITIONS FOR EXISTENCE OF NONZERO, REAL SOLUTION pags (X,Y)
or AX = BY?
XT=X X=0 X>0
YT=Y Theorem 4.3(a): Theorem 4.3(b): Theorem 4.3(c):
Nil. BTA has a nonzero BTA simple.
real eigenvalue. o(BTA)CR.
r(ABT) = r(A).
Y>0 Theorem 4.3(b): Theorem 6.1(a): Theorem 6.1(b):
ATB has anonzero BTA hasa BTA simple.
real eigenvalue. positive eigenvalue. o (BTA)CR™.
r(ABT) = r(A) = r(BTA).
Y>0 Theorem 4.3(c): Theorem 6.1(b): Theorem 7.1:
ABT simple. ABT simple. BTA simple.
o(ABT)CR. o(ABT)cR™. o(BTA)CR™.
r(BT™A) = r(B). r(B™A) = r(B) r{ABT) =r(A)=r(B)
= r(ABT). = r(BTA).

*Here, r(M) is the rank of M, o(M) is the spectrum of M, R is the real
numbers, and R* is the nonnegative real numbers. The applicable theorems are
indicated. Items below the table’s diagonal have been obtained by symmetry.

(X,Y,) with the property that Y, <Y for all other pairs (X,Y) also suggests
itself.

The authors are grateful to K-w. E. Chu for helpful discussions and
comments.
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