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Note

I was not able to attend. the meeting at La Jolla. Since I was invited to

contribute a paper, however, I am offering the present work as a substitute for

my presence, 1t contains an attempt to unify concepts stemming from the mathe-~

matical theory of shock waves with techniques which I have found to work well in

practice.



I. Introduction

During the last decade computational methods in fluid dynamics have
penetrated a variety of fields including airplane design, car design, ship
design, studies of blood flow, o0il recovery, oceanography, meteorology'and
astrophysics. Improvements in high speed electroﬁic computers have made it
feasible to attempt numerical calculations of progressively more complicated

mathematical models of fluid flow.

Despite the intensive efforts of numerous investigators, the objective of

combining
1) High accuracy
2) Resolution of shock waves and contact discontinuities
3) FElimination of spurious oscillations

continues to be an elusive goal. It has long been recognized that upwind dif-
ferencing can eliminate spurious oscillations in the neighborhood of shock waves
at the expense of low accuracy in regions where the flow is smooth. Central
difference schemes, on the other hand, produce good solutions in smooth regions,
but are prone to oscillations in the neighborhood of shock waves. These
oscillations can be suppressed only by the introduction of additional dissipa-~

tive terms.

Stemming from the mathematical theory of scalar conservation laws [1],

Harten has recently proposed the concept of total variation diminishing (TVD)



difference schemes [2]. Harten also devised a second order accurate TVD scheme
which incorporates flux limiters to control the action of an anti-diffusive
term., Van Leer had earlier used flux limiters to produce a second order
accurate scheme which would preserve the monotonicity of an initially monotone
profile [3]. Important contributions to the thedry of upwind schemes have also
been made by Roe [4,5], and Osher [6,7]. Both have devised second order
accurate upwind schemes using flux limiters. Many of the ideas on flux limiters
have recently been unified by Sweby [8].

In parallel with these developments it has been found that steady
aerodynamic flows containing moderately strong shock waves can be quite well
predicted by a central difference scheme augmented by a carefully controlled
blend of first and third order dissipative terms [9-11]. The third order terms
provide background damping of high frequency modes. The first order terms are
needed to control oscillations in the neighborhood of shock waves, and are
turned on by sensing strong pressure gradients in the flow. Since the primary
requirement has been the calculation of steady flows, it has proved convenient
to separate the space and time discretization procedures. A semi-discrete model
for a complex geometric domain is obtained by a subdivision into quadrilateral
cells, and the resulting system of ordinary differential equations is then
solved by a multi-stage time stepping procedure. Convergence to a steady state
can be dramatically accelerated by using multiple grids [12-14], with the result

that a transonic flow past an airfoil can be calculated in 25-50 steps.

My purpose in this paper is to suggest a method of modifying the third order

dissipative terms by the introduction of flux limiters. The first order



dissipative terms can then be eliminated entirely, and in the case of a scalar
conservation law, the scheme is converted into a total variation diminishing
scheme provided that an appropriate value is chosen for the dissipative coef-
ficient. The treatment of a scalar conservation law is discussed in the next
Section. Section 3 reviews the application of these ideas to the treatment of
the Euler equations for inviscid compressible flow, using a finite volume for-
mulation to allow for a complex geometric domain. Section 4 reviews the boundary
conditions, and Section 5 and 6 review the multi-stage time stepping and
multigrid schemes. Finally Section 7 presents some preliminary results for

transonic flows.



2. TVD Scheme for a Scalar Conservation Law

Consider the scalar conservation law
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It is well known that the total variation

cannot Iincrease.

equation (2.1) is expressed in the form

dui Q-1

— = ) c (i) (u, - u, )

dt i- j-g-1
q==Q q q q

The discrete total variation is

It can be shown [15] that this will not increase if and only if

e (i-1) > e (i=2)... > e Q(i—Q) >0

and
-c O(i) > - cl(i+1)... > —CQ_l(i+Q—l) >0
Now consider the scheme
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where hi+1/2 is an approximation to the flux across the boundary between

(2.1)

Suppose now that a multi-point semi-discrete approximation to

(2.2)

(2.3a)

(2.3b)

(2.4)



the (i+1)St and ith cells. Denoting f(uj) by f;, define the numerical flux as

hi+1/2 =% (fi+1 + fi) + di+1/2 (2.5)
where di+l/2 is a dissipative flux. Suppose that this is a constructed
as

div1/2 = Ci43/2 7 2814172t 1172 (2.6)
where

®ie1/2 = %ar1/2Y5er T 0 | (2.7)
and ai+l/2 is a positive coefficient. According to equations (2.6) and (2.7)

the dissipative flux is a quantity of third order. Now define

f. - f,
i+l i .
'———’_—:—'_ lf ui+l :;: ui
_) tier T M
8i+1/2
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duf u = u; + Uil vy
and
A, = u, - u,
i+1/2 i+l i
Then equation (2.4) becomes
A ifi = - L A - L a A
I 7 %i+1/2 “i+1/2” 7 %i-1/2 Ci-1/2

- A
%172 Bivr/2 T 3%-172 Bic1/2 T %-3/2 Bio3s2

A
%4372 Bivzsp T3

This does not satisfy condition (2.3) because the coefficients of Aj+3/2 and

Ai—3/2 have the wrong sign. 1In order to correct this we can modify the dissipa-



tive terms by the introduction of flux limiters. Denote the ratio of successive

increments by

®i-1/2
r, =-gi—-—- (2.8)
i+1/2
and define the function
0, r <0
$(r) = r, 0 <r<«g1l (2.9)
i, r>1
Also let
1
Y(r) = ¢(;> (2.10)

Since ¢ satisfies the symmetry condition

r ¢C%) ¢(r)

it follows that

r P(r) = ¢(r) <1

Denoting 4¢(r_ ) by ¢i and w(ri) by wi the dissipative flux is now redefined as
i

d 2 (2.11)

i+1/2 = %41 Ci43/2 T %Cie1/2 T Y1 Cic1/2

According to equation (2.8)
_ %i41/2

e, = = e, =r, . e
i+3/2 Tl i-3/2 i-1 “i-1/2

Therefore equation (2.4) now yields



i_ 1 _ 1
A gm= = 3 8,079 M1/ T 2i-172 Bi-1/2
¢,
i+1
+ (2 - + ¢.) a, A,
T i i+1/2 "i+1/2

Since =@ b ) o0 B0

0<é(r) <1 , 0¢% ¢(§) <1

and
0< Wr) €1 , 0<rYP(r) <1
it follows that conditions (2.3) are satisfied if

1 1 '
%41/2 07 ’ai+l/2l » %5979 77 ,ai—l/zl

In a region where the solution is smooth

1 + 0(Ax)

L]
i

with the result that

[}

1 + 0(Ax)

i

$ 1 + 0(ax) , wi

i
and the modification of equation (2.6) is of second order.

A convenient alternative expression for the dissipative flux is obtained by

introducing Roe's min mod function [8]. This can be defined as

B(p,q) = (s(p) + s(q)) min (|p]|,]|q])



where

%— if p>0
s(p) =} _,
‘z—ifp<0

Then the dissipative flux (2.11) becomes

div1/2 = Bleiigyns u1/2) ~ 2850170t Blegiy 00 ©5y)0)

One could also use a flux limiting function ¢(r) satisfying a less stringent
condition

¢(r)

r

<K

0 < ¢(r) <K, 0%

where K < 2. Then one needs

1
>
%+1/2 T 200 lai+l/2,
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3. Finite volume scheme for the Euler Equations

Let p, p, u, v, E, H and c denote the pressure, density, Cartesian velocity

components, total energy, total enthalpy and speed of sound. For a perfect gas

P 1 p
E=rypys *7 (W2 +v2), H=E+2 (3.1)
and
2 _Yp
c r'e
where Y is the ratio of specific heats. Consider a domain S with boundary

9S. The Euler equations for two-dimensional compressible flow can be written

in integral form as

:—t- ffwds + f (fdy ~ gdx) =0 (3.2)
S 39S

where x and y are Cartesian coordinates, t is the time coordinate, and

w=[op 7 s f = Ppu ] s g = F pv ]
pu pu? + p pvu (3.3)
pv puv pv2 + p
PE puH pvH
These equations are to be solved for a steady state %% = 0.

In order to derive a semi-discrete model which can be used to treat complex
geometric domains, the computational domain is divided into quadrilateral cells
labelled by the subscripts 1, j, as illustrated in Figure 1. Assuming that the
dependent variables are known at the center of each cell, a system of ordinary
differential equations is obtained by applying equation (3.2) separately to each

cell, These have the form
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8’2‘ (Si,j Wi,j) +Qi,5=0 (3.4)
where Si,j is the cell area, and Qi,j is the net flux out of the cell. This can
be evaluated as

4

I (ay, f, - Ax
k=1 & K

K« &) (3.5)
where fy and gy denote values of the flux vectors f and g on the kth edge,

Axy and Ayy are the increments of x and y along the edge with appropriate signs,
and the sum is over the four sides of the cell. The flux vectors are evaluated
by taking the average of the values in the cells on either side of each edge.

For example

1
= — + .
fr=9 By 5+ £5 5) (3.6)
where f; s denotes f(wi’j). This scheme reduces to a central difference scheme
on a Cartesian grid, and is second order accurate if the mesh is sufficiently

smooth. Tt also has the property that uniform flow is an exact solution of the

difference equations.

The scheme as it stands is not resistant to high frequency oscillations bet-
ween odd and even mesh points. Dissipative terms must be added to suppress
spurious oscillations of this type, and to prevent the appearance of unsightly
wiggles in the neighborhood of shock waves. With the addition of dissipative

terms D, i the semi-~discrete equations (3.2) take the form
b

) + Qi’j - Di’j =0 (3.7)

The dissipative terms can be introduced by augmenting the convective flux

d
ac 51,5 ¥i,3

defined by equations (3.5-3.6) with a dissipative flux across each edge.



-]2-

The convective flux across edge 2 in Figure 1 is

A Ax
£ + £ - +
Elk i+1,3 i,j) 2*(gi+1,j gi,j)
Following Roe [4], one can introduce a matrix
C =
i+1/2,3 C(Wi+1,j’ “&,j)
with the property that
C - = - - -
i+1/2,j<wi+1,j wi,j) Ay(fi+1,j fi,j) Ax(gi+l,j gi,j)

Thus C corresponds to the Jacobian matrix

of 3
by 5= - bx gé

Also C,

14172, 3 can be expressed as

-1
=T A
Civija,; - TAT

where T is a matrix containing the eigenvectors of C as its columns, and A is a
diagonal matrix containing the eigenvalues of C. The dissipative flux can now be

constructed according to equation (2.11) by substituting each component of

_1(

T - w, .) in turn for u, ., - uy in equation (2.7). The flux

W, . .
i+1,] i,] i+l
limiters are similarly defined in terms of ratios of these components between

neighboring edges, while the dissipative coefficient Gj+]/2 should be propor-

tional to the magnitude of the corresponding eigenvalue.

An alternative approach is to bypass the characteristic decomposition and
add dissipative terms directly constructed from the dependent variables. The

dissipative flux for the density equation, for example, is comnstructed as
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1+1/2,5 7 141,35 Ci43/2 T 2Caa1/2 * V15 Ci1/2, 5 (3.8)

where

®141/2,5 = %i+1/2,5P141,5 7 P14 (3.9)

and ai+1/2 ] is a positive coefficient., The flux limiters are formed by taking
?

P17 g by W) (3.10)
where
®i~1/2,3
Ty s-g-———-Ll (3.11)
3. i+l/2,j

and ¢ and ¢ are defined by equations (2.9) and (2.10).

The dissipative fluxes for the momentum and energy equations are constructed
in the same way as those for the mass equatioﬁ, substituting pu, pv or pH in
equation (3.9). The purpose of using differences of pH rather than pE in the
dissipative terms for the energy equation is to produce difference equations which
admit a steady solution with constant total enthalpy. Witﬁ this choice the
energy equation reduces to the mass equation multiplied by a constant value of

the total enthalpy when the time derivatives vanish.

The scheme corresponds to replacing the diagonal matrix A in the previous
scheme by the identity matrix multiplied by the spectral radius of C. Thus if
the dissipative coefficient oi+1/2 is set equal to one-half the spectral radius
of C one can expect the scheme to suppress spurious oscillations. The spectral

radius can be estimated as the value of
R = |Ayu = Axv|+ ¢ V/Ax2 + Ayz

on the edge separating cells i+l,j and i, j.
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In practice this leads to an excessively dissipative scheme. This can be

remedied by using an adaptive coefficient ®i+1/2,j. For this purpose a sensor

is introduced. A suitable choice is based on the second difference of the

pressure
Piv1, 7 %Pi,3 Y Py 4
Vi,j © (3.12)
’ Pi+1,j + 2Pi,j * Pi-1,j
Then define
vi+1/2,j = max (vi+2,j’ vi+l,j’ Vi,j’ vi—l,j) (3.13)
and
1 -
= — + .
arg,y = R G Ktk Vir1/2,9) (3.14)

where the constant ko determines a threshold, and the constant k1 is chosen
to make sure that there is enough dissipation to suppress oscillations in the

neighborhood of shock waves.
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4, Boundary Conditions

At a solid boundary the only contribution to the flux balance (3.4) comes from

the pressure. The normal pressure gradient gg at the wall can be estimated from
the condition that gz-(pqn) = 0, where qu is the normal velocity component.

The pressure at the wall is then estimated by extrapolation from the

pressure at the adjacent cell centers, using the known value of gg .

The rate of convergence to a steady state will be impaired if outgoing waves
are reflected back into the flow from the outer boundaries. The treatment of
the far field boundary condition is based on the introduction of Riemann
invariants for a one dimensional flow normal to the boundary. Let subscripts =
and e denote free stream values and values extrapolated from the interior cells
adjacent to the boundary, and let q, and c¢ be the velocity component normal to

the boundary and the spéed of sound. Assuming that the flow is subsonic at

infinity, we introduce fixed and extrapolated Riemann invariants

_ 2Ce
Re = 9ne — ¥=T

and 2¢
e

Re = ne + =1

corresponding to incoming and outgoing waves. These may be added and subtracted
to give

1
dn = 7 (Re + R)

and
oyl
c = (Re = R)
where q, and c¢ are the actual normal velocity component and speed of sound to be

specified in the far field. t an outflow boundary, the tangential velocity
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component and entropy are extrapolated from the interior, while at an inflow
boundary they are specified as having free stream values. These four quantities
provide a complete definition of the flow in the far field. If the flow is
supersonic in the far field, all the flow quantities are specified at an inflow

boundary, and they are all extrapolated from the interior at an outflow boundary.
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5. Multi-stage Time stepping Schemes

Since the cell area Si,j is independent of time, equation (3.7) can be writ-

ten as

dw

—+ = .

it R(w) 0 (5.1)
where R(w) is the residual

1
Riy = Q, . - 0D, . 5.2
T Q5 7 Di,5) (5.2)

Here Q(w) is the convective operator defined by equations (3.5-3.6) and D(w) is

the dissipative operator, defined, for example, by equations (3.8-3.9)

Equation (5.1) is now to be integrated to reach a steady state as rapidly as
possible. Multi-stage time stepping schemes prove to be effective for this pur—
pose, and they can also readily be adapted to drive a multigrid procedure. The
TVD property which is obtained by the construction of Section 2 for a semi-
discrete scheme can also be established for an explicit time stepping schene,
provided that a restriction is imposed on the time step [15]. 1In the present
application, however, spurious oscillations could be tolerated in the transient

phase as long as they vanish in the steady state.

Multi-stage schemes for the numerical solution of ordinary differential
equations are usually designed to give a high order of accuracy. Since the pre-
sent objective is simply to obtain a steady state as rapidly as possible, the
order of accuracy is not important. This allows the use of schemes selected
purely for their properties of stability and damping. For this purpose it pays
to distinguish the hyperbolic and parabolic parts stemming respectively from the
convective and dissipative terms, and to treat them differently. This leads to

a new class of hybrid multi-stage schemes.,
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Dropping the subscripts i,j the general m stage hybfid scheme to advance a

time step At can be written as

w(0) = W

W(l) = w(O) - ay At R(O)

wim=-1) = w(0) - ap-1 At r{m~2) (5.3)
wlm) = W(O) - At R(m=1)

Wﬁ+1 = w(m

+ .
where w' and w' 1 are the values at the beginning and end of the time step, and
the residual in the qt+lst stage is evaluated as

(q)

R - (8,0 = v, ()] (5.4)

n|—

Il ~10

r=0

subject to the consistency constraint that

q q

Y Bor ) Yor = ! (5.5)
r=0 r=0

A useful insight into the behavior of these schemes can be gained by
considering the model problem

Up + uy + HAX3 ugyey = 0 (5.6)

In the absence of the third order dissipative term this equation describes the
propagation of a disturbance without distortion at unit speed. With centered

differences the residual has the form
AtR, = = (u,,, = u, )
i

+ Au(ujep = 4ujy) + 6uj = bujo) + uj-2)

where A = At/Ax is the Courant number. If we consider a Fourier mode u = elpX
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the discretization in space yields

da -
A — =
t It zu

where z is the Fourier symbol of the residual. Setting & = pAx, this is

z = = Aisinf - 4Ap(1l - cos £)2 (5.7)

In the complex plane z describes an oval path as & ranges from -7 to m. A

single step of the multistage scheme yields

A + N
u’ L. g(z)ull

where g(z) is the amplification factor. The stability region of the scheme is

given by those values of z for which g(z) < 1.

A simple procedure 1s to recalculate the residual at each stage using the

most recently updated value of w. Then (5.4) becomes

R = 1 {owl®) - pb)} (5.8)
Schemes of this subclass have been analyzed in a book by van der Houwen [16],
and more recently in papers by Sonneveld and van Leer [17], and Roe and Pike [18].
They are second order accurate in time for both linear and nonlinear problems if
Op-1 = 1/2. An efficient 4 stage scheme, which is also fourth order accurate

for linear problems, has the coefficients
a; = 1/4  , a9 =1/3 , a3 = 1/2
The amplificationbfactor of this scheme is given by the polynomial

22 Z3 Z4
g(z) = 1+ 2+ o + e + o0
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The stability region of this scheme is shown in Figure 2(a), which displays con-
tour lines for |g| = 1, .9, .8,.... The Figure also shows the locus of z as the
wave number is varied between O and 27 for a Courant number A = 2.8, and a
dissipation coefficient u = 1/32. The corresponding variation of |gl with £ is

shown in Figure 2(b). The intercept of the stability region with the imaginary
axis is 2/2; the corresponding bound on the time step is At < 2V/2 Ax.

The maximum stability interval along the imaginary axis attainable by an m
stage scheme is m—1. This has been proved for the case when m is odd by van der
Houwen, who also gave formulas for the coefficients g [16]. The case of m even
has recently been solved by Sonneveld and van lLeer [17]. For example, the 4

stage scheme with coefficients
ap = 1/3 , Gy = 4/15 s, a3 = 5/9

has a stability region extending to 3 along the imaginary axis, at the expense

of a slight reduction along the, real axis.

The computational requirements of a multi-stage scheme can be substantially
reduced by freezing the dissipative part of the residual at the wvalue D(W(O)) in

all stages of the scheme, so that in the (q+1)St stage

r(D) - _é_ {Q(W(q))_ D(&O))} (5.9)
The amplification factor can no longer be represented as a polynomial, but it can
easily be calculated recursively. If the time stepping scheme is to be used in
a multi-grid procedure it is important that it should be effective at damping

high frequency modes. One can fairly easily devise 3 and 4 stage schemes in the
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class defined by (5.9) which meet this requirement. An effective 3 stage scheme

is given by the coefficients
al = .6, a2 = .6 .
Its stability region is shown in Figure 3.

Additional flexibility is provided by a class of schemes in which the dissi-
pative terms are evaluated twice. This may be used to make a further improve-
ment in the high frequency damﬁing properties, or else to extend the stability
region along thé real axis to allow more margin for the dissipation introduced

by a TD scheme. In this class of schemes

:(0) é {Q(W(O)) - D(W(O))}

and (5.10)

1
In the case of pure dissipation (Qw = 0), the amplification factor reduces

g=1+2z+ o8 72
Thus if B is chosen such that ajB = 1/4, the stability region will contain a

double zero at z = -2 on the real axis. A maximum stability interval of 8 can

be attained along the real axis by choosing B such that ajf = 1/8. Figure 4

shows the stability region of a 5 stage scheme in this class with the coef-

ficients
ay = 1/4, ay = 1/6, a3 = 3/8, a=1/2, B =1 (5.11)

This scheme combines van der Houwen's optimal coefficients with two evaluations
of the dissipative terms to attain a stability interval of 4 along both the Iima-

ginary and the real axes.
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As it stands the maximum permissable time step is restricted by the stabi-
lity limit on the Courant number. This restriction can be relaxed by replacing
the residual at each point by a weighted average of the neighboring residuals.

In a one dimensional case one might replace the residual R; by the average

Ri = gRj-1 + (1-2¢) Ri + €Rj4

at each stage of the scheme, This smooths the residuals and also increases
the support of the scheme, thus relaxing the restriction on the time step

imposed by the Courant Friedrichs Lewy condition. If € > 1/4, however,

there are Fourier modes such that §i = (0 when Ri ¥ 0, To avoid this

restriction it is better to perform the averaging implicitly by setting
-eR,_, + (1 + 2¢) R, - R, , =R (5.12)

i-1 i+l i

For an infinite interval this equation has the explicit solution

D St q |
Ri = '1—+‘£_' q,—_z-..co r Ri+q (5.13)
where
T
€ = 7 , T <1 (5.14)
(1-r)

Thus the effect of the implicit smoothing is to collect information from resi-
duals at all points in the field, with an influence coefficient which decays by

factor r at each additional mesh interval from the point of interest.

Consider the model problem (5.6). According to equation (5.12) the Fourier

symbol (5.7) will be replaced by
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.. 2
_ ) 1 sin g + 4u(l-cosg)
z T+ 26(1-cost)

In the absence of dissipation one now finds that stability can be maintained for
any Courant number A, provided that the smoothing parameter satisfies the con-

dition

1 A
€ >'Z; {;*'2 _1}

where A* is the stability limit of the unsmoothed schemne.

In the two dimensional case the implicit residual averaging is applied in
product form
2 2, =
(1 -8 ") (l-e6")R=R
X X vy
2 2 . ; . .
where éx and Gy are second difference operators in the x and y directions, and

ax and € are the corresponding smoothing parameters. In practice the best

rate of convergence is usually obtained by using a value of A about three times

A*, and the smallest possible amount of smoothing to maintain stability.
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6. Multigrid Scheme

While the available theorems in the theory of multigrid methods generally
assume ellipticity, it seems that it ought to be possible to accelerate the evo-
lution of a hyperbolic system to a steady state by using large time steps on
coarse grids, so that disturbances will be more rapidly expelled through the
outer boundary. The interpolation of corrections back to the fine grid will
introduce errors, however, which cannot be rapidly expelled from the fine grid,
and ought to be locally dampedvif a fast rate of convergence is to be attained;
Thus it remains important that the driving scheme should have the property of

rapidly damping out high frequency modes.

Ni [19] and Denton [20] have succeeded in accelerating convergence to a
steady state by distributing the residuals from the fine grid to a series of
coarser grids and calculating bulk corrections for the aggregated cells on the
coarse grids. Both these schemes introduce first order dissipative terms. The
flexibility in the formulation of the hybrid multi-stage time stepping schemes
allows them to be matched with higher order dissipative terms to provide effec-
tive damping of the high frequency modes. This makes it possible to devise
rapidly convergent multigrid schemesvwithout any need to compromise the accuracy

through the introduction of excessive levels of dissipation.

In order to adapt the multi-stage scheme for a multigrid algorithm , auxi-
liary meshes are introduced by doubling the mesh spacing. Values of the flow
variables are transferred to a coarser grid by the rule

(0)

Wyl = () 8, %.)/S,y (6.1)
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where the subscripts denote values of the mesh spacing parameter, S is the cell
area, and the sum is over the 4 cells on the fine grid composing each cell on
the coarse grid. This rule conserves mass, momentum and energy. A forcing func-—

tion is then defined as

0)
Pop = Y Rh(wh) - th(th ) (6.2)

where R is the residual of the difference scheme. 1In order to update the solu-

tion on a coarse grid, the multistage scheme (4.3) is reformulated as

(n  _ (O o0

W = Wy " alAL(th + PZh)

cee (6.3)
Wit =y - ot (R + Byp)

where R(d) is the residual at the q+18t stage. 1In the first stage of the scheme,
the addition of P9y cancels R2h(w2h(0)) and replaces it by 2 Rh(wp), with the
result that the evolution on the coarse grid is driven by the residuals on the
fine grid. This process is repeated on successively coarser grids. Finally the
correction calculated on each grid is passed back to the next finer grid by
bilinear interpolation.

gince the evolution on a coarse grid is driven by residuals collected from
the next finer grid, the final solution on the fine grid is independent of the
choice of boundary conditions on the coarse grids. The surface boundary con-
dition is treated in the same way on every grid, by using the normal pressure
gradient to extrapolate the surface pressure from the pressure in the cells
adjacent to the wall. The far field conditions can either be transferred from

the fine grid, or recalculated by the procedure described in Section 6.
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It turns out than an effective multigrid stratégy is to use a simple saw
tooth cycle (as illustrated in Figure 5, in which a transfer is made from each
grid to the next coarser grid after a single time step. After reaching the
coarsest grid the corrections are then successively interpolated back from each
grid to the next finer grid without any intermediate Euler calculations. On
each grid the time step is varied locally to yield a fixed Courant number, and
the same Courant number is generally used on all grids, so that progressively
larger time steps are used after each transfer to a coarser grid. In comparison
with a single time step of the Euler scheme on the fine grid, the total com-

putational effort in one multigrid cycle is

1 1 4
Lttt oo <.3.

plus the additional work of calculating the forcing functions P, and inter-
polating the corrections. The effective time step of a complete cycle using n

grids is roughly

(1 + 2+ 4ove + 27 Har = 2%1)at

where At is the time step on the fine grid.
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7. Results

This section presents some preliminary results which have been obtained with
a computer program incorporating the ideas presented in the previous sections.
The dissipative terms were directly calculated from the dependent variables
according to equations (3.8 - 3.14), without a decomposition into characteristic
fields. The multigrid scheme was driven by the 5 stage time stepping scheme
defined by equations (5.10 - 5.11), together with residual averaging. A
variable time step correspondiﬁg to a fixed local Courant number of about 7.5
was used on all grids. An additional measure which was used to improve con-
vergence was the introduction of forcing terms proportional to the difference
between the local value of the total enthalpy and its free stream value [9].
The terms added to the mass and momentum equations are ap(H—Hw), apu(H-H_) and
apv(H-H_), while that added to the energy equation is ap(B-H_). The constant o

is chosen empirically.

The first example is the transonic flow past an NACA 64A410 airfoil at Mach
.720 and an angle of attack a = 00, Figure 6(a) shows the inner part of the
grid, which contained 160 cells in the circumferential direction and 32 cells in
the direction normal to the profile. Figure 6(b) displays the final pressure
distribution in terms of the pressure coefficient

2
cp = (p - Pw)/l/Z Po Qoo
There is a moderately strong shock wave at about 60% of the chord on the upper
surface. This result was obtained with 25 multigrid cycles on an 40 x 8 mesh,

followed by 25 cycles on an 80 x 16 mesh, and finally 25 cycles on the 160 x 32
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mesh. 2 grid levels were used in the multigrid scheme on the 40 x 8 mesh, 3
grid leves on the 80 x 16 mesh, and 4 grid levels on the 160 x 32 mesh. Figure
6(c) shows the convergence history on the 160 x 32 mesh. Two measures are
displayed. One curve shows the decay of the logarithm of the error (measured by
the root mean square root of change of the density). The other curve shows the
build up of the number of grid points in the supersonic zone, which is a useful
measure of global convergence. It can be seen that this number is already

fixed.

The second example is the flow past the well known NACA 0012 airfoil at Mach
.800 and o = 1.25°, The result is shown in Figure 7. The flow exhibits a much
stronger shock wave on the upper surface, and a very weak shock wave on the
lower surface. These are hoth captured with a numerical shock structure con-

taining three interior cells, with a barely visible tail.
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8. Conclusion

The numerical results suggest that a central difference scheme augmented by
flux limited dissipative terms can lead to an effective non~oscillatory shock
capturing method. Schemes constructed in this manner do not require a charac-
teristic decomposition to assure their stability. It should be possible,
however, to sharpen the resolution of shock waves and contact discontinuities by
using a characteristic decomposition to allow more precise tailoring of the
dissipative terms. Further nuﬁerical experiments will be required to determine
the trade-~off between the improved resolution and the increased computational

complexity.
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Figure 1

Finite Volume Scheme



Figure 2(a)

Stability region of standard 4 stage scheme
Contour lines [g| = 1., .9, .8, ...
and locus of z(g) for XA = 2.8, u = 1/32
Coefficients a; = 1/4, ap = 1/3, a3 = 1/2
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Figure 2(b)

Amplification factor }gl of standard 4 stage scheme
for A= 2.8, u=1/32
Coefficients o = 1/4, as = 1/3, ag = 1/2



Figure 3(a)

Stability region of 3 stage scheme with single
evaluation of dissipation
Contour lines fgf = 1., 9, .8, ...
and locus of z(£) for A = 1.5, p = .04
Coefficients A = .6, ap = .6
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Figure 3(b)

Amplification factor |g| of 3 stage scheme with
single evaluation of dissipation
for A = 1.5, u= .04

Coefficients aj = .6, a2 = .6



Figure 4(a)

Stability region of 5 stage scheme with two
evaluations of dissipation
Contour lines lg| = .9, .8, 7, «..
and locus of z(E) for A = 3. , u = .04
Coefficients aj = 1/4, ap = 1/6, a3z =

3/8, az = 1/2, B =1
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Figure 4(b)
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Amplification factor |g| of 5 stage scheme with

with two evaluations of dissipation
for x =3 , u= .04
Coefficients o] = 1/4, ag = 1/6, a3z = 3/8, a4 =

1/2, 8 =1
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Figure 6(a)

Inner part of grid for NACA 64A410
160 x 32 cells
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Figure 6(b)

Pressure distribution for NACA 64A410
Mach .720 a 0o
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Convergence history for NACA 64A410
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Figure 7(a)

Inner part of grid for NACA 0012
160 x 32 cells
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