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1. SUMMARY

The Aircraft Euler Method, so—called AIRPLANE code,
has already demonstrated its capabilities in predicting the
flow properties about configurations of highly complex
geometry [1,2}. However, the algebraic systems with
many degrees of freedom, resulting from a discretization
of the physical space, imply very time consuming design
loops even on todays supercomputers.

By this means, the massively parallel implementation of
the Aircraft Euler Method is motivated. An introduction
to the numerical method itself is presented and the guide-
lines for the parallelization strategy are outlined. The
massively parallel realization is carried out with PAR-
MACS [3,4,5] as message passing programming envi-
ronment, which is available on different massive parallel
platforms. Therefore, a broad installation base of this
production code, AIRPLANE~PAR, also considering fu-
ture platforms is already realized.

Different platforms have been considered to obtain per-
formance results of the method. However, they should be
regarded as preliminary since no access to the modern
massive parallel computers such as CONNECTION
CM-5, INTEL Paragon, MEIKO CS-2, NEC Cenju2 or
PARSYTEC GC could be arranged so far.

2. INTRODUCTION

Experience in a large spectrum of applied Computational
Fluid Dynamics (CFD), especially concerning practical
flow simulation problems, shows very clearly the de-
mand for CFD packages which allow to handle confi-
gurations of highly complex geometry in a user—friendly
and economic way. Such tools are crucial for the develop-
ment of future more competitive products in different in-
dustrial fields, ranging from the design of cooling sy-
stems for semi~conductors to aircraft design. However,
the required very fine space discretization result in a sy-

stem of corresponding equations with many degrees of -
freedom. Even on todays supercomputers, fine grid re-
solutions imply very time consuming flow simulation if
Euler— and Navier-Stokes methods are applied, disa-
bling their routine application in aerodynamic design
loops. That situation can certainly be broken down by fu-
ture MIMD computational platforms with their prospect
of TeraFlop performance.

An attractive approach to mesh generation for complex
three dimensional shapes is offered by an unstructured
space discretization using tetrahedra. The combination
of a method for constructing tetrahedral meshes and a fi-
nite element technique for solving the Euler equations
has resulted in a powerful tool in calculating flows over
complete aircraft geometries, the AIRPLANE code [1,2].
Compared to a corresponding structured space discreti-
zation, this method has the drawback of higher computa-
tional costs but the benefit of structured schemes is out-
weighed for multiply connected regions such as the
domain around a multi-element airfoil or complicated
three dimensional surface definitions, where the struc-
ture imposed by rectangular cells becomes very restric-
tive. For dealing with such complex shapes multiblock
methods have been proposed which are based on the use
of several different mesh blocks, each composed of a
structured mesh [6]. The definition of the mesh blocks
and the genetation of a corresponding block topology
description file is supported then by sophistcated interac-
tive tools [7,8,9], but the difficulty and the amount of en-
gineering time for mesh generation about three—dimen-
sional configurations of high complexity can get,
however, considerable. Therefore, it is generally accep-
ted that the unstructured approach, because of its poten-
tial flexibility (Fig. 1) with respect to the generation of
appropriate discretizations, will be the most cost effec-
tive line in future aerodynamic applications.

At the Dornier company, this code is currently used in its
original version for aerodynamic design studies of regio-
nal airliner configurations. Unfortunately, the computa-
tional time for numerical flow simulations with many de-



grees of freedom, even for non—viscous modelling, is
tremendous and not acceptable for routine application
within aerodynamic design optimization loops. If a typi-
cal mesh about a complete aircraft configuration appro-
priate to an Euler simulation consists of about 500,000
mesh points (Fig. 1), the computational time for an un-
structured Euler simulation on a todays Super-Mini com-
puter like CONVEX C220 requires about fifty to sixty
CPU hours. It can easily be estimated that a correspon-
ding Navier-Stokes simulation in the high Reynolds—
number range with an appropriate much finer mesh reso-
lution would be beyond the scope of todays
supercomputers.

Different approaches to parallel processing are available
on todays hardware. One central question is: should each
processing element execute its own program, or should
they all receive the same instruction of a central source
[10). These two possibilities are called SIMD (single in-
struction, multiple data) and MIMD (multiple instruc-
tion, multiple data), respectively. The MIMD design is
seen as a more general design, capable of performing
well on a broader range of applications. Although much
scepticism exists about the prospects for general decom-
posing compilers for distributed memory machines, there
may be high—level program development environments
that greatly support the user in specific fields [11,12,13].
Recently, the synchronization of message passing com-
puters is realized by language extensions in form of
"message passing constructs” to an ordinary FORTRAN
77 code [3,4,5). Also a message passing standard is co-
ming up in the near future [14] and it can be expected and
is already promised [15] that today’s existing tools will
provide a transformation to the emerging standard.

The massively parallel implementation of the AIR-
PLANE code has been realized by applying the PAR-
MACS library [3,4,5]. This is a convenient approach
since, as an EC—standard parallelization tool, PARMACS
is available on different parallel platforms ranging from
supercomputers such as CRAY to different loosely cou-
pled workstation clusters, and therefore a broad installa-
tion base of the method is realized. The parallel version
of the AIRPLANE code, AIRPLANE-PAR, consists of
several modules: the mesh generation module, the do-
main splitting module, the preprocessing module, and
the flow solver module. Thereby the flow solver module
is the most time consuming, and it is the only module that
has been parallelized so far. Also sophisticated graphic
facilities are essential, in order to control the generated
mesh, visualize the decomposed mesh and analyze the
calculated solution. Therefore, different graphic tools
and interfaces to professional graphic software are inclu-
ded in the whole package.

3. GOVERNING EQUATIONS

Within the continuum limit and when viscous effects can
be neglected, the motion of a compressible fluid is gover-
ned by the Euler equations. This set of equations can be
achieved from the principles of classical mechanics and

thermodynamics in an integral form by applying the con-
servation law of mass, momentum and energy to a control
volume § with the control surface 952 [16]. The system
to solve can be written, neglecting the body forces and the
stress forces, as:

%JUdSH §Fd(aQ)=0 )

] Fr)
where the conservative quantities are condensed in the
vector U = [p, gv, 0¢] = [e, ou, @v, 0w, 0¢] and the in-
tegration with respect to the control sutface is summari-
zed by a general flux vector

e{vn)
gv(vn) + pn

eh{vn)

with h = € + p/p and with n denoting the unit normal
vector to the control surface. In order to close the system,
it is necessary to establish a relationship between the ther-
modynamic variables. Assuming a thermodynamically
and calorically perfect gas the pressure is related to the
conservative variables by the equation of state
ee = 2o (vv) + 1gp

This set of equations, which is valid only in the inviscid
portion of the flow field, is an approach to the more gene-
ral Navier—Stokes equations. Because of less computa-
tional effort, however, it is strongly recommended when
the fiow is not dominated by viscous effects but moderate
and complicated shock structures appear that require the
conservation properties.

F =

4. NUMERICAL METHOD

4.1. Unstructured Discretization Scheme

The computational space is discretized by finite volumes
or finite elements. The definition of a control volume is
established then by a union of meeting elements and the
apertaining control surface is specified by a sum over the
external faces of the polyhedron formed from the union
of meeting tetrahedron elements (Fig.2). Therewith, the
system of partial equations is transformed into a set of or-
dinary differential equations with respect to time, the so—
called semidiscrete form:

%(Ui ng) + Z(Fk Caku) =0

More details of the method, i.e. how the conservation of
all quantities is ensured and how boundaries are treated,
are described in the basic paper [1].

Moreover, in the same publication [1] the correspon-
dance of the present procedure with a Galerkin method
is illustrated. Assuming piecewise linear functions in the
flux integral, it is demonstrated that the approximation of
the surface integration can be written in a finite volume
fashion. Though for the evaluation of the time detivative
a weighted average of neighbours has to be evaluated cor-



responding to a lumped mass Galerkin approach. In a
more recent examination of this relationship [17] it is also
concluded that the spatial discretization produced by the
Galerkin finite element scheme with linear elements has
a finite volume equivalence on some special control vo-
lumes. It is also outlined [17] that the time integrals pro-
duce different complete mass matrices, where the vo-
lume matrix provides better temporal stability and the
finite element matrix is more accurate.

4.2, Dissipation

The semidiscrete form represents so far a nondissipative
approximation to the Euler equations. In an Euler solu-
tion scheme, however, dissipative terms are needed, first
to eliminate the occurence of undamped or lightly dam-
ped modes and second to prevent oscillations near shock
waves.

The simplest form of dissipation is to add a term genera-
ted from the difference between the value at a given node
and its nearest neighbours [1]. These differences are ex-
pressed by the edges joining at a given mesh point (Fig.3),
where the contribution &f) (U,—U,) at node 0 is balanced
by a corresponding contribution £{) (U—U,) atnode k,
maintaining the conservative properties of the scheme.
The coefficients (% may incorporate metric information
depending on local cell volumes and face areas, and they
can also be adapted to gradients of the solution. This dis-
sipation scheme is no better then first order accurate un-
less the coefficients are proportional to the mesh spacing.
A more accurate scheme is obtained by accumulating
terms definedby E, = (Ui—U,) at every mesh point and
recycling this edge differencing procedure with
¢ (E,~E,), resulting in a higher order dissipation term.
An effective scheme is produced by blending accumula-
ted differences with £{) and €%, and adapting e{y) to the
local pressute gradient. Formulas of this type have been
found to have good shock capturing properties, and the
required sums can be efficiently assembled by loops over
the edges.

Already in [1] it has been mentioned that the addition of
properly controlled differences along edges in connec-
tion with a flux splitting can be used to assure a positivity
condition for a system of partial equations, which will
prevent growth in the maximum norm and inhibit oscilla-
tions in the solution. Because of its excellent shock reso-
lution properties such a dissipation scheme, similar to
that of Arminjon and Dervieux {18], is under investiga-
tion [19]. Since the three dimensional extension is not
fully tested in the shared memory version of the code, this
scheme is not considered in the present parallel massi-
vely parallel implementation.

4.3. Integration to a Steady State

The discretization procedure leads to a set of coupled or-
dinary diefferential equations, which can be written in the
form

au,
dt

where R,(U) is the vector of the residuals, consisting of
the flow balances togethet with the added dissipative
terms. These equations are integrated in an iterative pro-
cedure until a steady state is reached. In the AIRPLANE
code, a multistage Runge-Kutta time stepping scheme
[20,21] is used which has proved effective on rectilinear
meshes.

+R|(U)=o ’

Also the different convergence acceleration techniques,
such as enthalpy damping and the use of variable time
steps close to the stability limits at each mesh point are
implemented [22]. The scheme is accelerated further by
the introduction of an residual averaging enlarging the
stability margins. For the solution of the system of equa-
tions resulting from the implicit weighted averaging of
nearest neighbours, which is similar to an implicit dissi-
pation term, it is sufficient to perform two steps of a Ja-
cobi iteration. As another interesting path to enlarge the
stability region of the scheme further, an elaboration of
this initial approach can be considered by using flux ma-
trices instead of some parameter to weight the implicit re-
siduals.

4.4. Vectorization and Microtasking

Within the iterative time-stepping flow solution proce-
dure of the discretized system of equations, most opera-
tions are expressed by accumulated local sums. These lo-
cal sums represent the flux balance through a control
volume of a specific cell vertex. Considering a loop over
all faces or edges, the evaluation of these summations
would produce recurrencies and data dependencies disa-
bling any vectorization. Fortunately, these effects can be
avoided by a convenient data reordering in the sense of
performing the accumuliation for a regarded point in dif-
ferent loops. Following this guideline, the data references
are sorted into independent groups in a so—called colou-
ring scheme, where the local operations are gathered
from different groups. For providing a good vector per-
formance the length of these groups is defined typically
by 512 data elements or by 1024 data elements, depen-
ding on the target vector architecture.

For a computer with a shared memory design and with
only a few concurrent processing elements (up to eight
processors) a parallelization concept on the basis of these
groups is expected to be an appropriate approach.
Though the groups themselves are independent with re-
spect to vectorization and parallelization but not with re-
spect to data request. Therefore, such a microtasking can
cause synchronization problems since the same storage
may be requested by different groups at the same time.

Another point to consider is the data access. Since in an
unstrucutured method the data is stored randomly, it is in
general arbitrarily distributed in the shared memory. If,
in the case of a cache machine, the operations in one
group would require data on different pages, the overall
performance would significantly be slowed down. For



that reason, a thoughtful prepartitioning of the data into
pieces less than page size is also advised. This is carried
out by some recursive coordinate bisection which is outli-
ned later on.

4.5. Parallelization Strategy

For the mapping of unstructured computational methods
to a MIMD architecture or to a loosely coupled platform
(WS cluster) an appropriate partitioning of the unstructu-
red grid is needed.

An efficient partition will have to fulfill two primary
conditions. With reference to the load balance of a given
set of p processing elements (PE), one would like to parti-
tion the computational mesh into p subdomains of about
equal size. A second issue is the minimization of the com-
munication amount between PEs, which is a function of
both the length of the boundary of the subdomains, as
well as of the number of neighbouring subdomains. With
regard to an explicit algorithm, the load balancing is pro-
bably more important, whereas in connection with an im-
plicit algorithm with corresponding higher communica-
tion requirements the situation might be different.

An investigation of three algorithms for the partitioning
problem has been carried out by Simon [23]. All three al-
gorithms considered are recursive, incorporating the
division by some strategy into two subdomains and then
applying the same strategy to the subdomains. After car-
ryinE out k of these recursive steps a partitioning into
p=2% subdomains is obtained. The regarded divide and
conquer algorithms differ only by the partition—strategy
of a single domain into two subdomains.

* recursive coordinate bisection (RCB)
* recursive graph bisection (RGB)
s recursive spectral bisection (RSB)

The RSB method is a very recent development and it is
reported that with respect to communication overhead it
has significant advantages over the two other algorithms.

In the current massively parallel implementation of the
AIRPLANE code, the RCB algorithm has been conside-
red as the most straightforward technique. This very in-
tuitive approach seems also to be convenient for our pro-
blem definition at hand consisting in general of a three
dimensional geometry with a convex hull as the compu-
tational domain, By the additional introduction of a trans-
formation to spherical coordinates with respect to the
centroid of the computational grid, an optimum imple-
mentation of the RCB method is achieved for AIR-
PLANE applications. Though a comparison to the more
sophisticated RSB method would be worthwile,

4.6. Communication and Synchronization

The above mentioned domain decomposition technique
can be cartied out, in principle, in two different ways lea-
ding to different techniques for the continuation of the
numerical scheme across the internal boundaries.

If an adjoining boundary is used as depicted in Fig.4, the
terms built with nearest neighbours as well as the higher
order discretization terms have to be assembled with a
collocation technique. Thereby the values are collected
at points on the domain boundaries in a two stage proce-
dure. In a first step the contribution to the sum on all sides
of a multiple defined point is accumulated and in a second
step with a gather—scatter scheme

gather;

do loop over all boundary pairs
value(ib2)=value(ibl)+value(ib2)

enddo

scatter:

do loop over all boundary pairs
value(ibl)=value(ib2)

enddo
where (ib1,ib2) defines one pair in the
assemblage of connected boundary points

all coniributions are first accumulated into one point and
then scattered back to all points of the assemblage by
using an appropriate ordered pointer set (Fig.4). In the
shared memory a unique numbering of all points is esta-
blished and the synchronization is performed directly by
the above described loop. In order to enable vectorization
and parallelization respectively, the pointers have to be
grouped such that data recurrencies for the gathering loop
are avoided. For a distributed memory piatform the syn-
chronization takes place via message passing, where the
processing elements communicate by sending and recei-
ving messages. Here the point index numbers are not ne-
cessarily unique and also the domain number has to be
stored together with the index of the boundary point. The
communication then reads: value of ib1 is send to id2 and
accumulated to the value of ib2 for the gather step, and
vatue of ib2 is send to id1 and stored in the register of ibl
for the scatter loop.

The second choice is to connect the subdomains by over-
lapping cells (Fig.5) resulting in additional so—called
halo points. Thereby, the domain boundary consisting of
such halo points, has to receive its data from the corres-
ponding inner points of the given neighbouring subdo-
main. The synchronization then has the following sche-
matic description:

do loop over all halo pairs
value(ih1)=value(ih2)

enddo
where (ih1,ih2) defines one pair in the
assemblage of connected halo points

The vectorization of such a loop in a shared memory is
staightforward since no data recurrency occurs. The cor-
responding distributed memory version in the case of
halo point communication reads: send value of ih2 to id1,
and store it in the register of ih1. If the registers, refering
to halo points, are up to date, all nearest neighbour opera-
tions can be performed without communication. These
are related to the accumulation of the Euler fluxes, and
to the second order filter terms, which degrades the solu-
tion to first order at shock waves. The higher order dissi-



pative terms are determined in a two stage procedure as
outlined in chapter 4.2. After calculating the sum of nea-
rest neighbour differences, however, the results have to
be updated at the holo adresses first, and in a second step
the higher order dissipation can be performed up to the
nearest boundary-neighbour point for each subdomain.
Since the evaluation of enthalpy damping terms needs no
neighbour point, a special treatment for synchronization
has not to be considered. Although the residual averaging
is a pointwise operation as well, an exchange in between
the two stage Jacobi iteration is necessary to fulfill the
primary condition for the massively parallel implementa-
tion, namely that all features of the original unstructured
scheme are maintained assuring exactly the same conver-
gence properties.

Concerning the computational efficiency, the advantage
of the first choice is that the synchronization would be de-
fined by less communication points. On the other hand all
type of spatial operations, including the residual avera-
ging, must be constructed by the assembling technique,
which results in more operation counts on a shared me-
mory and in an increased message passing in a distributed
memory envitonment. The additional send- and receive
requirements are expected to be more critical and there-
fote the second choice is advised for massively paraliel
platforms. Though the first choice may be interesting for
other kind of algorithms. Indeed, it is more straightfor-
ward to formulate a domain decomposition via overlap-
ping elements especially in three dimensions. (Fig.5,
Fig.7). The splitting itself is included in the preprocessor
step, which provides the data structure for the flow solver,
including the values of faces, edges and metric, and the
coloured groups and the information on data which has
to be transmitted between boundaries.

4.7. Distributed Memory Solver

According to the condition that the implementation
should result in a software which is runnable on different
MIMD and SIMD architectures, the programming model
has to be machine independent. As a portable standard
message—passing interface the PARMACS library [3,4,5]
is chosen. Also, it is promised by the distributor [14] that
a transformation to the emerging message passing stan-
dard [15] will be provided.

PARMACS follows the host/node concept, i.e. the pro-
gramme has to be split into a host module and into a node
module. For the mapping of the application onto the spe-
cific hardware, special functions are provided where the
host copies the node load-module to a defined number of
processing elements (PE) and starts the node processes.
The process identification numbers, which are strongly
machine dependent, are evaluated automatically. On
hostless environments, one PE may serve as the host pro-
cessor or one PE may have loaded the host process addi-
tionally. In the current version of the AIRPLANE-PAR
code, the host programme is also responsible for 10 and
for passing the data to the node, which may result in a
bottleneck. Although it is not implied by PARMACS to
pass the data through the host process, no convenient so-

lution has been found so far for a scalable parallel 10.
Furthermore additional useful features, such as global
sum and broadcast, will be included in future PARMACS
versions which is under permanent development at GMD
(Geselischaft fiir Mathematik und Datenverarbeitung).

The synchronization of the time integration is performed
by message-passing via synchron send and receive state-
ments, meaning that the process stops until the message
is received by the recipient. The corresponding iteration
loop must be introduced in the host programme as well
as in the node programme. The host controls the iteration
and calculates for each iteration step the global conver-
gence control parameters. A schematic description of this
loop is outlined with the help of the following pseudo—
code:

Host Iteration Loop:
begin do

~ increment the iteration count number
neyc=ncyc+ 1
- send the iteration number to the node processes
do iproc=1,nproc
— recipient of the message = procid(iproc)
- procid(iproc) evaiuated via PARMACS
— specify a label(iproc) for the message
SENDR(procid,ncyc,msglen,label)
enddo
— calculation of new solution vector on nodes
— gather of local control parameters from nodes
— calculate global convergence parameters
~ output of convergence control parameters
if (ncyc.ge.nend) enddo
Node Iteration Loop:
begin do
— determine the label(MYPROC) of the
message to receive
—receive the iteration numbet
RECVR( ncyc,msglen,length,sender,type,
MATCH_ID_AND_TYP(HOSTID,label) )
— calculation
—synchronize

— calculation

if (ncyc.ge.nend) enddo

MYPROC and HOSTID are the process identification

numbers of an own process and a corresponding host

process respectively.

Input to the function is the required length of the

message ‘msglen’. On return, the function gives

the message together with its length, sender and

type [5]
The synchronization of the different node processes is
carried out by sending data from the nearest boundary—
neighbour point of the internal domain boundaries to the
corresponding boundary point. Inside the node coding,
the values are exchanged in two successive loops, where
the nearest neighbour data which is sent by the first loop
matches to the halo data which is received by the second



loop. In order to avoid a deadlock caused by mmpossible
synchronization this communication must be performed
by asynchronous send and receive statements, meaning
that the programme continues execution just after succes-
ful sending or receiving the message. According to that,
each message must possess a unique identification num-
ber. A schematic outlining of this communication part
within the node programme—coding clarifies the required
asynchronity:

ing of Nearest Boundary—Neighbour Points:
—neidom & total number of neighbour domains
do nei=1,neidom
— determination of ’procid(nei)’
~ put message into a "buffer” field
- determine message length ‘msglen’
— specify a ’label(MYPROC)’ as a function of
own procid for message identification
SEND(procid,buffer,msglen,label)
enddo

do nei=1,neidom
— determination of "procid(nei)’
- determine the ’label(procid(nei))’ of the
message to receive
— determine message length *msglen’
RECV(buffer,msglen,length,sendertype,
MATCH_ID_AND_TYP(procid,label) )
enddo

the buffer field is defined by 4096 bytes providing
a good ratio between startup time and message
lengths to be transmitted

These synchronization loops are introduced at several
places in the node programme, since the internal bounda-
ries have to be updated not only at the end but also inside
of a multistage step, assuring a proper evaluation of the
higher order dissipation terms and a proper Jacobi itera-
tion with respect to the global domain,

5. RESULTS

5.1. Test of Implementation

The development of error free software, especially for
massively parallel computational platforms, is a major
task which needs to be adressed with great care. For de-
bugging reasons, a shared memory version of the parallel
software is maintained, including all features of the mas-
sively parallel data structure but performing the commu-
nication by an ordinary data exchange instead of message
passing.

Additionally, a very simple computational mesh about a
cylinder has been defined consisting of a discretization of
the surrounding cylindrical hull on the basis of cylinder
coordinates. This test configuration can easily be scaled
from very few mesh points to a considerable number of
mesh points, and following such a strategy has proven to
be sensible and helpful during debugging of the commu-
nication structure. An example for such a mesh is given

in Fig.7, including a decomposition into four domains
and depicting the overlapped cells by solid surfaces. In
this figure, the compactness of the domains is exhibited
as well, indicating the convenience of our present decom-
position approach.

More complex examples for testing the paralie] software
have been considered by using the Onera-M6 wing and
the S3a full aircraft configuration. A surface mesh of the
S3a splitted into eight domains is presented in Fig.6. By
the way, compared to the original version all test runs
have demonstrated exactly the same results and conver-
gence properties.

5.2, Performance Analyzing

For a better understanding of the behaviour of a parallel
implementation, analyzing tools are essential for diffe-
rent reasons: for verification, for diagnostics if the pro-
gramme fails to behave as expected, for measuring or
estimating loads and latencies of different components
and for tuning an application to the hardware. Such a
functionality is provided by PA-Tools which is distribu-
ted together with PARMACS [5]. It generates some trace
file during programme execution, assuring minimum
overhead, which can be postprocessed by visual intetfa-
ces based on XWindow. Three aspects are covered by a
choice of corresponding tools: the dynamic behaviour by
*DynamicMap’, the overall time schedule by *TimeMap’
and the performance statistics by *StatisticMap’.

The application of PA-TOOLS to our parallel application
code was very useful with respect to code improvement.
In the TimeMap representation of a run on two PEs some
interrupts in programme execution were detected, which
looked to be obscure because of no communication pat-
terns at that points. This strange behaviour could only be
associated with some barrier synchronization introduced
during the code development for debugging reasons. By
searching for useless barriers these execution interrupts
have been eliminated and as a side effect some improve-
ment of the code performance has been obtained by this
analysis.

A TimeMap example for a run on 8 PEs is presented in
Fig.8 showing a part of the iteration step with asynchro-
nous communication. Reading the TimeMap figure, one
should note that a cut (horizontal line) is introduced, in
order to shorten the interval of constant colour.

5.3. Bench Suite

The whole considered bench suite for testing the perfor-
mance on different platforms consists of a set of computa-
tional meshes ranging from 4,352 mesh points up to
93,632 mesh points. These meshes are splitted each into
2 7 domains with n ranging from 1<< n <4 (2 to 16 do-
mains). The resulting data is stored in unformatted IEEE
representation for disk space reasons. Special 10 routines
are provided in the application program taking into ac-
count the different implementations (word/byte count,
little/high endian) of the standard. Hardware tests have



been cattied out on the in-House DEC workstation (WS)
cluster at Dornier, on an IBM RS/6000 S30H WS cluster
connected via token ring and alternately via fibre (Fig.9)
and on an iPSC/860. The WS clusters have been tested
with up to 8 processing elements; on the iPSC, 16 PEs
were available.

These preliminary results are presented in (Fig.11 to
Fig.13) in the context of speedup, efficiency and some
estimation of MFlops calibrated to a CONVEX C220
where the AIRPLANE code performs with about 15
MFlops. The figures demonstrate that for a standard WS
network environment the limits for speedup and effi-
ciency are reached very soon. Though some test runs with
two fibre connected workstations at the IBM cluster indi-
cate that this behaviout probably is related more to the
communication bandwidth than to the communication
startup time. Unfortunately, this fibre network consists of
a point to point connection, where each PE has to gene-
rate protocols for passing communication data streams
and therefore the throughput degrades heavily for more
than two PEs. By regarding the above mentioned Time-
Map (Fig.8) of the communication, intreduced at several
places within the iteration loop, this behaveour becomes
obvious. Although the iPSC hypercube consists of a well
suited interconnect—topology for up to 16 PEs (Fig.10),
the bandwidth and startup time technology of this hard-
ware is outdated and no more than a shift from 8 to 16 PEs
of the WS—cluster results is achieved.

By this means, as a primary result, these performance
tests indicate that an efficient interconnection network
is most crucial for parallel computing. The communica-
tion speed will be more important for modern parallel sy-
stems, which are based on advanced local parallel tech-
nologies such as latest RISC processors and VECTOR
facilities. For that reason, a well balanced massively pa-
rallel computer envisaging the TeraFlop power must pro-
vide high computational efficiency on the PE together
with a very sophisticated interconnection hardware. This
statement, however, refers to more or less communica-
tion intense algorithms well~known in CFD and may be
totally different for other kind of scientific application.

6. CONCLUSION

A portable massively parallel version of the Aircraft Eu-
ler Method has been introduced. The implementation has
been carried out on the basis of the PARMACS library as
a portable message passing interface. Since this library is
supported on different parallel platforms ranging from
supercomputers such as CRAY to loosely coupled work-
station cluster, a broad installation base of the production
code, AIRPLANE-PAR, has been realized.

As the flow solver module is the most time consuming
part of the programme system, it is the only one that has
been parallelized so far. Unfortunately, a big bulk of data
is produced by the preprocessor if the computational
meshes are prepared for a multitude of different number

of processing elements. According to that, one of the next
development steps will include the realization of a mas-
sive paralle] partitioning formulation, enabling the re-
combination of the preprocessor module with the flow
solver module. On the basis of the current implementa-
tion, providing access to the rising concurrent computa-
tional systems with TeraFlop power, more sophisticated
physical models like Reynolds averaged Navier—Stokes
with appropriate turbulence models can be attacked effi-
ciently. Future variants of this code will support such vi-
scous modelling together with suitable grid adaption and
refinement procedures, resulting in a very competitive
CFD application package.

Performance results of the method have been carried out
considering different massively parallel computational
platforms, which demonstrate the portability of the cur-
rent implementation. The results indicate that an efficient
communication network is most crucial for parallel com-
puting, especially with respect to scalability. Regarding
these results as preliminary, much prospect of very high
preformance is expected for the modern parallel machi-
nes, which are based on advanced local parallel technolo-
gies such as RISC processors and VECTOR facilities,
and on highly sophisticated interconnection hardware.
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Fig. 3: Construction of dissipation from differen-
ces along edges in two dimensions
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Fig. 4: unstructured domain decomposed via adjoining boundaries, including an appropriate orde-
red pointer set for gather—scatter communication
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Fig. 5: unstructured domain decomposed via overlapping boundaries, including an example for a
pointer field connecting the corresponding points
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Fig. 6: unstructured mesh about a complete aircraft configuration ( 170 498 grid points ) splitted
into eight domains, depicting the overlaps by gaps



Fig. 7: unstructured mesh about a cylinder ( 24 567 grid points ) splitted into four domains, inclu-

ding overlapped cells depicted by green surfaces
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Fig. 8: TimeMap example for a run on nine PEs showing a part of the iteration step with asynchro-

nous communication
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