REMARKS ON THE DEVELOPMENT OF A MULTIBLOCK THREE-DIMENSIONAL

EULER CODE FOR OUT OF CORE AND MULTIPROCESSOR CALCULATIONS

by

Antony Jameson, Stefan Leicher
and Jef Dawson

February 1985

l. Introduction

Our purpose in this paper is to describe some of the problems which were
presented by the development of a three-dimensional Euler code with a
multiblock grid structure in which only a single block at a time is held in
core, and the main data base is out of core. The initial development of the
code was motivated by the need to use a much denser mesh than could be accomo-
dated in the then available supercomputers, which had one or two million words of
memory, in order to provide adequate resolution of complex three—dimensional

flows.

The code was based on the explicit multistage time stepping algorithm which
had already been demonstrated to yield good accuracy with substantially lower
computational costs than previously available algorithms [1,2]. While it was
not emphasized in some of the earlier discussions of this scheme, one of the
principal objectives which motivated its design had in fact been the need to
find an algorithm which would perform effectively with vector, pipeline or
parallel computer architectures. It seemed well worthwhile to accept some limi-
tations on the rate of convergence to a steady state in return for factors of 20
or more in processing speed which might be realized through the use of long vec—
tors in a pipeline machine, or by the introduction of multiple parallel pro-
cessors. Accordingly, we had concentrated on extracting the maximum possible
efficiency from explicit time stepping schemes, which in principle would allow
simultaneous processing of every point in the entire flow field. In the event,
through the introduction of measures such as variable time steps based on the

local stability limit, enthalpy damping [1], residual averaging [2], and

-3

multigrid time stepping [3,4,5], it has proved possible to attain convergence suf-
ficient for engineering predictions in about 50 cycles. Of these only the resi-
dual averaging would impose some limit on vectorization, but this restriction
could be eliminated by substituting a Jacobi iterative scheme for the direct
solution algorithm presently used. It has already been verified that this is

effective in experiments with a scheme using a triangular mesh [6].

The present code is an adaptation of FLO57, a widely distributed code for
three dimensional wing calculations. The initial multiblock scheme was
programmed by Jameson during a visit to Dornier in the summer of 1982. It has
subsequently been developed and refined principally by Leicher at Dornier, who
also modified the scheme to allow the use of a multigrid solution algorithm in
each block, and by Dawson at Cray Research. The original scheme was designed
for disk storage. The consequent requirement of sequential access leads to some
complications in the logical structure of the scheme which can be eliminated in
situations where the data is held in a device allowing immediate access to
arbitrarily located subsets. The solid state storage device of the CRAY X/MP,
for example, allows blocks of data to be selected by a pointer. The same logi-
cal scheme for exchange of information across block boundaries of the grid could
also be used for calculations on a multiprocessor machine with the different

grid blocks assigned to different processors.

The multistage time stepping algorithm is briefly reviewed in the next sec—
tion to provide a framework for a description of the logical structure of the
multiblock scheme in Section 3. We discuss programming problems in Section 4,
and finally we present an example of a calculation using 2.5 million mesh points

in Section 5.

2. Description of the Algorithm

The algorithm is intended for use in steady state calculations of three
dimensional compressible inviscid flows. It simulates the unsteady Euler
equations, with modifications to accelerate convergence to a steady state. A
semi-discrete approximation is first introduced by subdividing the domain into
hexahedral cells. This reduces the equations to a set of ordinary differential
equations, which are integrated by a multistage time stepping procedure. This
separation of the space and time discretization procedures assures that the

steady state is independent of the time stepping scheme.

We denote the pressure, density and three Cartesian velocity components as

P, P, u, v and we For a perfect gas we can express the total energy as

S I S S S
E =170 + 5 (W + v +w) .

The total enthalpy is then defined by

H=E+ p/p.

In integral form, the Euler equations can be written as

S [ffwda + [F - ds =0 (1)
Q 08

for a fixed region § with boundary 9« w represents the conserved quantity and
F is the corresponding flux across the boundary. The x momentum equation, for

example, is obtained by setting

2
w = pu and F = (pu” + p, puv, puw).

The dependent variables w are assumed to be known at the center (i,j,k) of each

mesh cell. A semi-discretization leads to the equation

d
vl + QM) = 0 (2)

ijk wijk)
Here Qijk represents the net flux out of the cell which is balanced by the rate of

change of w in the cell whose volume is V. The flux is given by

Uik = I F-s

cell sides
where F is the flux at the center of a cell face and S denotes the cell face
area. The value of F at the cell face is taken as the average of F at the cell

centers on either side of the cell face.

In order to suppress the tendency for odd and even point decoupling and to
capture shockwaves without any overshoots, it is necessary to add a dissipative
term to equation (2). This leads to the semi-discrete equation

d_
dt

The term Djjx is constructed so that it is of third order in smooth regioms of

v =0 (3)

+ -—
19k i) T Yk D,k
flow. For the density equation Dijk(p) has the form

D = d

- +
ijk i+1/2,5,k di—l/Z,j,k d

i,5+1/2,k = %4,45-1/2,k

+ d - d
i:j)k+1/2 i:jsk_l/z

where v
q - A*l/2,3,k (2) A p
i+1/2,3,k At* i+1/2,3,k "x "i,j,k

(4) 3

T Ofi+1/2,5,k Ox Pi-1,4,k

and Ay is the forward difference operator defined by

A = -
xPijk T Pi+1,5,k T Pi,5,k°
Also At* is the time step corresponding to a nominal Courant number of unity,

resulting in a normalization proportional to the maximum signal speed.

(2)

T .
he coefficient €i+l/2,j,k

is made proportional to the normalized second
difference of the pressure

- +
Pi+l,i,k~ “Pijk pi—l,j,kl
+
Pitl, i,k *Pijk pi—l,j,kl

Vijk =

in adjacent cells. This quantity is of second order except in regions containing a
steep pressure gradient. The fourth differences provide background dissipation
throughout the domain. In the neighborhood of a shockwave, Vijk is order one

and the second differences become the dominant dissipative terms. The dissipa-
tive terms for the other equations are constructed from similar formulas with

the exception of the energy equation, where the differences are of pH rather than
pE. The purpose of this is to allow a steady state solution for which H remains

constant.

The cell volume Vijk is independent of time so we can write (3) as

dw
— + R = (
dt ()
where
R(w) = Q... = D..)
Vijk ijk ijk

The time integration is carried out by using a multistage scheme in conjunction
. R n n+l

with a multigrid strategy. 1If we let w and w represent the values of w at

the beginning and end of the nth time step, then a k stage scheme for updating

the fine grid values can be written as

(€9)) n
W

= W

(q) (0)

vl = - e At RGTLT) Lok

n+1 (k)
w =w

(q,r)

In the (gq+l)st stage R is evaluated as

R(DT) - ﬁ(qijkw(q)) -,)
where s = min(q,r) with 0 < r < k.

The coefficients {aq [q=1,40., k} can be chosen to generate schemes with
desirable stability properties. The parameter r determines the number of stages
in which the dissipative terms are re-evaluated. Thus with r equal to zero, the
dissipation is evaluated once and then frozen after the first stage; with r set
equal to 1l the dissipation is evaluated twice. By freezing the dissipation
prior to the final stage (typically r = 0 or 1) it is possible to tailor the

multistage scheme to provide good damping of the amplification factor at high

frequencies, and thus generate a scheme well suited to a multigrid strategy.

3. Logical Structure of the Multiblock Scheme

The program is designed to use a multiblock grid structure of the type
illustrated in Figure 1. Here the grid blocks are arranged in a triply indexed
array with block indices IB, JB, KB, while the grid points inside each block are
represented by internal indices I, J, K. The data exchange problem could be
simplified by a subdivision into planes, but the present subdivision is designed
to allow maximum flexibility in the grid generation procedure. It appears
likely that grid generation for a complex configuration can be simplified by a
subdivision into subdomains which could be different blocks of the multiblock
grid. Separate grid generation procedures can than be used within each block.
The topological constraints imposed by the multiplicative structure is a very
slight limitation. An L shaped region, for example, can be treated by filling
out the array with empty sub-blocks. This procedure has been used by Fritz at

Dornier in the generation of grids for the treatment of flows past cars.

JB

NN

AN

IB

Figure 1

Multiblock grid with block indices IB, JB, KB.

-0

The data exchange problem can be understood by reférring to Figure 2, which
illustrates a typical block. The grid indices inside the block range from I = 2
to IL, J = 2 to JL, K =2 to KL. 'Cells external to the block are defined by
index values I =1, 12, J =1, J2 and K = 1, K2. If the block boundary is a
boundary of the whole flow field (either the surface of the configuration, or
the outer boundary in the far field) then the values of the flow variables in
the boundary cells must be determined by the boundary conditions. If the block
boundary is an interface to a neighboring block, on the other hand, then the
values in the boundary cells must be obtained from cells just inside the boun-

dary of the next block.

1
]
'
1
1

-

F
|
1 {
——d e
________%->C-
n —

|)
1 1
1 1
| E

Figure 2

Data structure for a grid block in two dimensions.

Interior points range over I = 2,IL, J = 2,JL

-10-

In order to avoid the need to keep the neighboring blocks in core, which
would require the storage of 7 blocks in the case of a fully interior block, we
introduce buffers at all block boundaries. The following data structure serves
this purpose. In the main database, which may be stored on a disk or a solid
state storage device, we define a file MO to contain the values of the flow
variables in all the blocks, and buffer files MIl, MI2, MJ1, MJ2, and MKl, MK2
to store the values at the boundaries of the blocks in the I, J and K direc-
tions. The flow variables inside a block are represented by the array
W(1,J,K,N), where the index N ranges from 1 to 5 to represent the dependent
variables (the density, three momentum components and the energy). To ini-
tialize W in a block for a stage of the multistage time stepping scheme we read
W(I,J,K,N) for I =2, 1L, J = 2,JL, K= 2,KL and N = 1,5 from MO. We read

w(l,J,K,N) for J

i

2,JL, K= 2,KL, and N = 1,5 from MIl, and so on.

After updating the flow field inside the block the data is returned to the
main database. In the case of disk storage, however, one would wish to read the
data for the next block from the same files, and one cannot interleave read and
write statements without returning to the beginning of the file. Moreover, the
time stepping algorithm calls for the calculation of the correction in each cell
from values in neighboring cells which have not yet been updated.
Correspondingly each block should be treated using boundary values from neigh-
boring blocks which have not yet been updated. Therefore the updated values are
returned to a duplicate set of files NO, NIl, NI2, NJ1, NJ2 and NKi, NK2. The
values just inside the left boundary provide the data for the right boundary of
the block to the left. Thus we write W(2,J,K,N) for J = 2,JL, K = 2,KL, N = 1,5

into the file NI2. Correspondingly we write W(IL,J,K,N) for J = 2,JL, K = 2,KL,

-11-

N = 1,5 into the file NIl, and the buffers on the other boundaries are treated
in the same way. Finally after all the blocks have been updated we interchange
the names of the files, so that on the next stage the files which have just been

written as N files are read as M files.

With random access to the storage device duplicate files would not be needed
for the interior data in each block, but duplicate buffer files would still be
needed at the block boundaries to preserve the data flow of the algorithm. With
disk storage, however, the need to read the files in the same order in which
they have been written leads to an additional complication. Boundary values at
the outer boundary of the entire grid have to be determined from data coming
from the same block. This means, for example, that a block along the bottom
boundary must provide data for its own bottom boundary which would normally be
placed in NJ1, and also the data for the block immediately above it. Referring
to Figure 3, we can see that if the blocks were updated in the order indicated
in Figure 3(a), which is also the order in which the MJ1 file would be read,
then the NJ1 file would be written in the order indicated in Figure 3(b). In
the existing code this incompatibility is eliminated by using separate buffer
files MIO, MI3, MJO, MI3 and MKO, MK3 instead of the files MI1l, MI2, MJl, MJ2
and MKl, MK2 to contain values at all outer boundaries. The result of updating
the interior buffer files as they are processed is then to place the data in the

proper order for these files to be read.

-12-

S 10 I 12

5 6 7 8

| 2 3 4
(a)

Order in which blocks might be updated.

9 10 I 12

2 4 6 8

| 3 5 7
(b)

Corresponding order in which buffer
file MJ! would be updated.

Figure 3

-13-

A final complication is caused by the topology of the C mesh which is used
in the code. Referring to Figure 4, it can be seen that this leads to the need
to exchange data across the cut between blocks which are not contiguosly num—
bered. This requires the introduction of an additional set of buffer files for

blocks separated by the cut.

Figure 4

Interfaces introduced between non-contiguous
blocks by C-mesh topologv.

The implementation described here does not allow for the introduction of
dissipative terms using fourth differences across boundaries, and in the
existing code these higher order dissipative terms are simply switched off at
the block boundaries. No difficulties have been encountered, but one could
include fourth differences across boundaries without too much difficulty by

using buffers containing 2 planes of data points instead of only a single plane.

~14—

The same logical structure for data exchange between blocks carries over to
the situation in which the grid is divided into blocks Which are simultaneously
updated by separate processors. If the number of blocks equals the number of
processors then the interior values might be retained in the separate memories
of the different processors. If there are more blocks than processors one might
still wish to transfer the interior values back and forth between local memories
and a second level central memory. In any case the data exchange between blocks
updated by different processors can be neatly accomplished by duplicate M and N
boundary buffers in the same way as in the present code. It would then only be
necessary to flag the completion of the updating process in all blocks before
exchanging the names of the M and N files, and proceeding to the next sweep

through the blocks.

-15~

4. Remarks on Programming

In carrying out the various data transfers it is important to avoid nested
read or write statements. For example the transfer of data from the file MIl at
left hand block boundary might be accomplished by

READ (MI1)(((w(i1,J,K,N),J=2,JL), K = 2,KL),N = 1,5)
This results in separate input/output operations for each array element. To

avoid this we can define a buffer array BUFI(J,K,N) dimensioned to J2,K2,5.

Now one can write
READ (MI1) BUF1
followed by

DO 10 N

]
—
-
w

DO 10 K = 2, KL

[l
N

DO 10 J

Ww(1,J,K,N) = BUFI(J,K,N)

10 CONTINUE

The block dimensions may vary from one case to the next. To avoid wasteful
transfers of meaningless data it is best to use variable dimensions for the
array BUFI. This can be accomplished by placing the transfer statements inside
separate subroutines. The efficiency of the data transfers is also improved by
using the BUFFER IN and BUFFER OUT statements to allow asynchronous transfers

which can be overlapped with the calculations.

With these measures the data transfer operations incur only a small penalty

in processor time, even with disk storage. The use of a disk leads, however, to

—16~

a long residence time because of the time spent in data transfer during which
the processor may be switched to the execution of other programs. Also, depending
on the accounting system, there may be a substantial charge for the disk

input/output operations themselves.

The volume of file transfer operations can be drastically reduced by
modifying the algorithm so that all the stages of one time step are performed in
each block before passing to the next block. Whereas the loop over the block
indices IB, JB, KB would previously be inside the loop for the time stepping
stages, it is now brought outside. The resulting restriction of the data flow
between the blocks could have an adverse effect on the stability of the scheme.
It has proved to work quite well in practice, however, incurring only a slight
reduction in the rate of convergence to a steady state. One can go further and
perform one complete multigrid cycle in each block before passing to the next
block. This has been found to be quite effective in calculations performed by
Leicher at Dornier. Experiments by Jong Yu at Boeing also indicate that in this
situation, where any pretence of time accurate simulation has been abandoned, it
pays to use the latest available values for the boundary data of all the blocks,
so that an interior block would be treated with new values on some boundaries
and old values on others, as in a Gauss—-Seidel scheme. If the frequency of data
exchanges between blocks is limited, it may also pay to use more complicated

interface conditions taking account of the directions of wave propagation.

5. Example of a Multiblock Calculation with 2.5 Million Grid Points

The multiblock Fuler code FLO57 is now in routine use at Dornier for predic-
tion of flow about wings and wing body combinations. It was adapted this summer
by Leicher and Dawson for use on the Cray X/MP with a solid state storage device
(SSD) with a capacity of 128 million words. The results of a test calculation
of the vortical flow past a delta wing are presented in Figure 5. A C-mesh was
used, with 352 cells in the chordwise I direction, 64 cells in the normal J
direction and 112 cells in the spanwise K direction giving a total of 2,523,136
volumes. The grid was subdivided in the J and K directions to produce 16 blocks
each with 352x16x28 volumes. The configuration is the well known Dillner wing,
at a Mach number of 7, and an angle of attack of 15 degrees. The figure shows
pressure contours over the planform, and plots of the pressure coefficient
across the span at two longitudinal stations, at 407 and 80% of the root chord.
Preliminary calculations were performed using coarser meshes with 88x16x28 and
176x32x56 volumes, and the results on each mesh were used to provide initial
values for the next mesh. A five stage time stepping scheme was used in which
the dissipative terms were evaluated twice during each time step. This is the
scheme which has proved most successful in multigrid calculations [4,5]. In
this case residual averaging was used, allowing time steps corresponding to a
Courant number of 6.5, but multigrid was not used. The complete calculation of
150 steps on the 88x16x28 mesh, followed by 150 steps on the 176x32x56 mesh, and
500 steps on the 352x64x112 mesh, took 7.9 hours of CPU time using a single pro-
cessor of the Cray X/MP, and 8.3 hours of wall clock time. Thus the overhead

incurred by the use of the SSD was about five percent.

The five stage algorithm requires 1422 floating point operations per mesh

cell, including 368 for two evaluations of the dissipation, and 375 for the

-18-~

residual averaging. The estimation of the permissable time step before each
cycle requires another 74 operations, including 3 square roots, giving a total
of 1496 operations per cell., With 2,523,136 cells the number of operations to
advance one time step is thus about 3.77x109, not counting the additional opera-
tions needed to enforce the surface and farfield boundary conditions. Allowing
for the preliminary calculations on the coarse and medium meshes in addition to
500 steps on the fine mesh, the total number of operations required for the
treatment of the interior cells amounts to an aggregate for the three meshes of
about l.96x1012. Thus the CPU time of 7.9 hours represents a sustained computing
rate in the neighborhood of 70 megaflops. This performance is a consequence of
the vectorization of every inner loop in the implementation of the entire

algorithm.

-19-

6. Conclusion

These experiments clearly indicate the feasibility of using supercomputers
of the current generation for the prediction of transonic flow past a complete
aircraft by solution of the Euler equations for inviscid flow. Using a multi-
block patched grid, it should be possible to resolve the main geometric features
with a grid containing about a million cells, and with the present algorithm
such a calculation would require a CPU time of the order of several hours. The
main remaining difficulty lies in grid generation, and attrition of the accuracy
and rate of convergence induced by grid irregularities and singularities.
Research is needed on the development of discretization schemes which do not
require grid regularity, and methods of obtaining rapid convergence to a steady
state with a multi-block structure. Looking further ahead, the inclusion of
viscous affects will be the next step. This could also be accomplished with
computers of the current power by the introduction of turbulence models. The
development of sufficiently reliable and accurate models is likely to be the
pacing item of such a development. For a more detailed prediction based on
large eddy simulation we must look forward to the appearance of machines such as
the Cray 3 and ETA Systems GFl0 in the vanguard of a new generation of

computers.

~20-

References

l.

Jameson, A., Schmidt, W., and Turkel, E., "Numerical Solution of the Euler
Equations by Finite Volume Methods Using Runge-Kutta Time Stepping
Schemes"”, AIAA Paper 81-1259, 1981.

Jameson, A., Baker, T.J., "Solution of the Euler Equations for Complex
Configurations"”, Proc. AIAA 6th Computational Fluid Dynamics Conference,
Danvers, 1983, pp. 293-302.

Jameson, A., "Solution of the Euler Equations by a Multigrid Method"”,
Applied Mathematics and Computations”, 13, 1983, pp. 327-356.

Jameson, A., and Baker, T.J., "Multigrid Solution of the Euler Equations
for Aircraft Configurations™, AIAA Paper 84-0093, 1984,

Baker, T.J., Jameson, A., Schmidt, W., "A Family of Fast and Robust Euler
Codes™, Proc. of CFD User's Workshop, University of Tennessee Space
Institute, Tullahoma, 1984.

Jameson, A., and Mavripilis, D., "Finite Volume Solution of the
Two-Dimensional Euler Equations on a Regular Triangular Mesh", AIAA Paper
85-0435, 1985,

INJIH490D FANSSTAd

JIIINAON HOVIN

