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Summary

This paper presents the modifications to the Euler method which are incorporated to obtain viscous
Navier-Stokes solutions to the ship wave problem. The discussion pertaining to this formulation is
limited to the viscous discretization and turbulence model, additional details concerning the flow solver
may be found in Program 2. Comparisons between the Euler and Navier-Stokes results are made at
the end of this paper.

1 Introduction

There are times when an inviscid calculation is sufficient to yield the data required from a flow simulation
about a ship hull. This is particularly true if only information such as the wave drag experienced by
a translating ship is needed (see discussion in companion paper). However, if information such as flow
separation in the stern region of a ship and its influence on the resulting wave and friction drag is
required, one must resort to viscous calculations [1, 2]. Therefore, the general direction of this portion
of the paper is to build upon the Euler formulation presented in Program 2 and present a fast and
robust method for the computation of viscous flow about ship hulls with associated free surface effects.

2 Mathematical Model

Figure 1 shows the reference frame and ship location used in this work. A right-handed coordinate
system Owxyz, with the origin fixed at midship on the mean free surface is established. The z direction
is positive upwards, y is positive towards the starboard side and z is positive in the aft direction. The
free stream velocity vector is parallel to the z axis and points in the same direction. The ship hull
pierces the uniform flow and is held fixed in place, ie. the ship is not allowed to sink (translate in z
direction) or trim (rotate in & — z plane).
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Figure 1: Reference Frame and Ship Location

2.1 Bulk Flow

For a viscous incompressible fluid moving under the influence of gravity, the continuity equation and
the Reynolds averaged Navier-Stokes equations may be put in the form [3],

Upg+ Uy +w, =0 (1)
Uy + Uty + VUy + WU, = —P, + (Re + 1) (Vu)
vy + uvg + vvy + wv, = Py + (Re7! + 1) (VP0) (2)

wy + uw, + vwy +ww, = -, + (Re_1 + Vt) (Vzw) .

Here, u = u(z,y,2,t), v = v(z,y,2,t) and w = w(x,y, z,t) are the mean total velocity components
in the z, y and z directions. All lengths and velocities are nondimensionalized by the ship length

L and the free stream velocity U, respectively. The pressure ¢ is the static pressure p minus the

hydrostatic component —zFr~2 and may be expressed as ¢ = p + zFr~2, where Fr = 7Ug_f is the

Froude number. The pressure variable 9 is nondimensionalized by pUZ2. The Reynolds number Re is

defined by Re = ggfi where v is the kinematic viscosity of water and is constant. 1, is the dimensionless

turbulent eddy viscosity, computed locally using the Baldwin-Lomax turbulence model. This set of
equations shall be solved subject to the following boundary conditions.

2.2 Boundary Conditions
2.2.1 Free Surface

The free surface boundary conditions used for the Navier-Stokes model are the same as those used in
the Euler model and are repeated here for discussion in this paper:

p = constant

'—=w=ﬂt+u:@z+vﬂy (3)
where z = 3(z,y,1) is the free surface location.

2.2.2 Hull and Farfield

On the hull the condition'is that of no-slip and is stated as

u=v=w=0.

All the farfield and symmetry plane boundary conditions are the same as those outlined in Program 2.



2.3 Turbulence Model

To model turbulence in the flow field the laminar viscosity is replaced by

Ho=py+ e

where the turbulent viscosity yu; is computed using the algebraic model of Baldwin and Lomax [4]. The
Baldwin-Lomax model is an algebraic scheme that makes use of a two-layer, isotropic eddy viscosity
formulation. The model performs well for problems which do not exhibit large regions of separated flow
and appears to be sufficient for the class of problems addressed in the present work. In this model the
turbulent viscosity is evaluated using

pt = (/—Lt)inner Y S Yecrossover
(ll't)auter Y > Ycrossover

where y is the distance measured normal to the body surface and y,possover is the minimum value of y
where both the inner and outer viscosities match. The inner viscosity follows the Prandtl-Van Driest
formula,

(Il't)inner = l2lw|

where
= ky[1—exp(—yt/AT)]
is the turbulent length scale for the inner region, k¥ and A" are model constants, |w| is the vorticity

magnitude and y* = (7, /1w )y is the dimensionless distance to the wall in wall units.
In the outer region of the boundary layer, the turbulent viscosity is given by

(l‘t)outer = KCchwakeFKleb

where K and C, are model constants, the function Fygre is
Fuake = min (ymaszama kaymaz Ugij/Fmam)

and the function Fiiep is

6
Friep = [1 +55 (_____CKleby) ]

ymaz

The quantities Fyyaz and ¥maz are determined by the value and corresponding location, respectively, of

the maximum of the function
F = ylw| [1 — exp(—yT /AT)].

The quantity Uy is the difference between maximum and minimum velocity magnitudes in the profile
and is expressed as

Usis = (u? + 0 + w2, — (u? +0* + )/
Cxkiep and Cyp are additional model constants. Numerical values for the model constants used in the

computations are listed here:
AT =26, k =0.4, K = 0.0168,

and
Cep = 1.6, Cyr = 1.0, Ciiep = 0.3.

3 Numerical Solution

The numerical solution follows essentially that outlined in the Euler method. The only major difference
is the inclusion of the viscous fluxes, whose discretization is discussed later in this section. The viscous
counterpart of the numerical solution is given here.



3.1 Bulk Flow Solution

The governing set of incompressible flow equations may be written in vector form as
wer + (f~fv)s + (g —8v)y + (h—hy),; =0 4)

where the vector of dependent variables w and inviscid flux vectors f, g and h are identical to those
listed in Program 2. The viscous flux vectors fy, gy and hy are given by

fv = [0, Texy Tzy, Tzz]T
T

gv = [0; Tym, Tyya Tvl]
T

hy = [0, Tzzy Tzyy 7'::z]

where the viscous stress components are defined as

Tez = (Re !4+ 1) (2uz — 2/3(us + vy +w;))
Ty = (Re™' +1,)(2vy — 2/3(uz + vy +w,))
Tz = (Re™' +v) (2w, — 2/3(uz + vy + w,))
Tey = (Re ' +v)(uy +vs)

Ty: = (Re !+ v)(v, +wy)

Tse = (Re™ +u)(ws +u,).

The same discussion regarding the artificial compressibility in Program 2 applies here. However it
should be noted that a cutoff value of I' will be activated in the viscous boundary layer near the hull
to prevent I' from becoming zero or nearly so.

Following the general procedures for FVM, the governing equations may be integrated over an
arbitrary volume A. Application of the divergence theorem on the convective and viscous flux term
integrals yields

7]
ot*

/ wdA + / (fdS, + gdS, + hdS.) — / (fvdS; + gvdS, + hydS,) =0
A A oA

where S, S, and S, are the projected areas in the z, y and z directions, respectively. The computational
domain is divided into hexahedral cells. Application of FVM to each of the computational cells results
in the following system of ordinary differential equations,

d
E”—‘ (Aijkw) + Cijk — Vijk =0.
The volume A;ji is given by the summation of the eight cells surrounding node i,j,k. The convective
flux Ci;x(w) is defined as

Cijk(w) = Z (fS:n + gSy + hSz)k (5)
k=1

and the viscous flux V;;(w) is defined as

Vigr(w) = > (fv Sz + gvSy +hvS.), (6)
k=1

where the summation is over the n faces surrounding A;jx.

The discretization for the viscous fluxes follows the guidelines originally proposed in [5, 6] for the
simulation of two dimensional viscous flows. The components of the stress tensor are computed at the
cell centers with the aid of Gauss’ formula. The viscous fluxes are then computed by making use of an
auxiliary cell bounded by the faces lying on the planes containing the centers of the cells surrounding



a given vertex and the mid-lines of the cell faces. For example, the u, term in 7., may be computed
from
6
uzA = / ugdA = [ uddA;~ ) uiSs,
A BA =1

where k = 1,6 are the six faces surrounding a particular cell, u, is an average of the velocities from
the nodes that define the k** face and S, are the projected areas in the z direction corresponding to
each face. Once the components of the complete stress tensor are computed at the centroids of the cells
then the same method of evaluation may be used to compute the viscous fluxes at the vertex through
use of equation 6. For this purpose the control volume is now constructed by assembling % fractions of
each of the eight cells surrounding a particular vertex. The equivalent two dimensional control volume
is sketched in the figure below. This discretization procedure is designed to minimize the error induced

“’.

7,

N

by a kink in the grid. It has proved to be accurate and efficient in applications to the solution of three
dimensional compressible viscous flows [7, 8].

The discretized set of equations are solved in exactly the same way as outlined in Program 2. An
explicit time integration is used to solve the Navier-Stokes discretization with artificial dissipation added
to prevent decoupling. The multigrid method is used to accelerate convergence.

3.2 TFree Surface Solution

The free surface update procedure follows essentially the same lines as those presented in Program
2. However, for the Navier-Stokes equations the no-slip boundary condition is inconsistent with the
free surface boundary condition at the hull/waterline intersection. To circumvent this difficulty the
computed elevation for the second row of grid points away from the hull is extrapolated to the hull. Since
the minimum spacing normal to the hull is small, the error due to this should be correspondingly small,
comparable with other discretization errors. The treatment of this intersection for the Navier-Stokes
calculations, should be the subject of future research to find the most accurate possible procedure.

4 Results

4.1 Computational Conditions

Figure 2 shows a portion of the fine grid resulting from the Navier-Stokes calculation. The number of
grid points is 193, 65 and 49 in the x, y and z-directions respectively, and the H — H type grid is used.
The resolution on the hull surface is 97 by 25. The grid extends 1 ship length upstream from the bow,
2% ship lengths downstream from the stern, 2 ship lengths to starboard, and 1 ship length down below
the undisturbed free surface. Grid points are clustered near the bow and stern with a minimum spacing
of 0.005 dimensionless units based on the hull length. The minimum spacing in the y-direction, normal
to the hull surface, is 0.00002 for the Navier-Stokes computations. The number of grid points in the
y-direction is increased to 65 to provide resolution of the boundary layer. This resulted in y* values



for the first cell normal to the hull to reside in the range .75 < y* < 1.5 and 1.5 < y* < 3.0 for the
Re = 2.0F + 6 and Re = 4.0E + 6 cases, respectively.

4.2 Series 60, C, = 0.6 Hull

Simulations were run for three Froude numbers: 0.160, 0.220 and 0.316. These are the same cases
which were run for Program 2 and the overhead wave profiles are compared in figures 3, 4 and 5. The
degree of similarity between the computed Euler and Navier-Stokes simulations is rather striking. Only
in the stern region and aft is there major differences in the wave patterns. This is most likely due to
displacement effects and flow separation in the Navier-Stokes results.

Figure 6 presents the computed wave elevation profiles along the hull, the residuary drag, the friction
drag and the total drag. ‘! The experimental data for the wave profiles was measured from the data
presented in [9] for Froude numbers equal to 0.160 and 0.316 and data obtained from SRI in Japan for
Froude number equal 0.220.

The computational times for the simulations are approximately 30 and 45 hours for the Euler and
Navier-Stokes calculations, respectively, using a single processor Convex 220 computer with 64-bit
arithmetic. The Euler simulations consist of 500 steps on a 25 X 7 X 7 grid, 500 steps on a 49 x 13 x 13
grid, 500 steps on a 97 x 25 x 25 grid and 500 steps on a 193 x 49 x 49 grid. The Navier-Stokes simulations
consist of 500 steps on a 25 x 9 x 7 grid, 500 steps on a 49 x 17 x 13 grid, 500 steps on a 97 x 33 x 25
grid and 500 steps on a 193 x 65 x 49 grid. It is important to point out that approximately ten percent
of the total CPU time for the simulation has been used by step 1500 (refer to figure 6). The remaining
ninety percent of the CPU time is used to compute the fine grid solution and a good indication of the
final result is obtained well before 500 steps on the fine grid have been reached. For the given resolution
these CPU times appear to represent about a ten-fold decrease in the CPU times reported in the earlier
literature, which have usually been presented for coarser grids. The CPU time required for the free
surface update and regriding procedures is approximately seven percent that required for the bulk flow
calculations.

5 Conclusions

The objective of the this work was to present an efficient method to compute Euler and Navier-Stokes
solutions for the nonlinear ship wave problem. It appears from the results presented that good predic-
tions of the wave pattern and associated drag can be achieved using the Euler flow model without the
added complexity required for the viscous solution. This is encouraging since the Euler simulations can
be performed using less computer time and a fraction of the computer memory than the Navier-Stokes
simulations require. However, for problems which demand that the interaction between the viscous
boundary layer and wave making be coupled, the formulation presented herein can be used to efficiently
compute the solution.
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Figure 2: Final Distorted Fine Grid for Series 60, Cb = 0.6, Fr = 0.316
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Figure 3: Comparison of Computed Overhead Wave Profiles, Fr = 0.160
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Figure 4: Comparison of Computed Overhead Wave Profiles, Fr = 0.220

Figure 5: Comparison of Computed Overhead Wave Profiles, Fr = 0.316
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Figure 6: Hull Wave Profiles and Drag History
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