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SUMMARY

Transonic and supersonic laminar flows around a NACAQOQLZ airfoil are
computed for different values of the Reynolds number and angle of attack by
means of a three-stage explicit finite wvolume method. Convergence is
enhanced by use of multigrid and local time stepping. However the latter is
not employed when the flew presents a transient character as is the case of
the transonic test case at Reynolds number equal to 10000. Computations
have been performed on (256x64) grid. For some cases both ( 236x64) and
{128x32) meshes are empleyd and the need of high grid resclution in the
presence of disparate characteristic length scales is shown. The method is
found to be very accurate and robust by comparison of the computed results
with experimental data and other numerical results,

INTRODUCTLON

The present paper deals with the development of an accurate and robust
explicit finite volume method for the solution of wviscous transonic flows
around airfoils.

Several implicit or semi-implicit algorithms for the solution of the
compressible Navier Stokes equations [1]-[3] have been presented within the
last decade. In the recent years there has been a growing interest in
explicit methods on account of the rapid progress in high speed computers,
as well as in the development of efficient Euler solvers [4]-[5]. Several
explicit Navier Stokes solvers have appeared [6]-[8]. The present paper is
a companion paper of Ref. [8]. In the latter the method has been tested for
a varilety of transonic flow situations, either laminar or turbulent, and
for very large Reynolds numbers. In the present work the method has been
tested and validated for a variety of Reynolds numbers, ranging from 73 to
10000, for wvalues of the Mach number in the range M =.8-2, and for
different values of the angle of attack (ua).

The governing equations are discretized by a finite wveclume technique.
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Time integration is performed by using a three-stage Runge Kutta algorithm,
together wirh multigrid to accelerate the evolution of the solution. The
computational efficiency of the wmethod is increased by an implicit
smoothing of the residuals together with local time stepping. The latter is
not employed in the high Reynolds number c¢ase that shows a transient
character.

in Ref. [8] it is shown that a cell centered formulation (i.e.
variables defined at cell centers) is best suited for Neumann type boundary
conditions, while a corner peint Fformulation (i.e. variables defined at
grid nodes) is more adequate with Dirichlet-type b.c.. The test cases here
computed require that the temperature be specified at the wall, and
consequently a corner point formulation is used.

The computations have been performed on a scalar computer. Hewever the
algorithm is fully vectorizable and should be able to exploit the
characteristics of parallel machines.

In the next sections the governing equations are presented and the
numerical algorithm is discussed. Finally the results of laminar flows over
a NACAQOLZ airfoil are presented and some concluding remarks given.

GOVERNING EQUATIONS

A dimensionless conservation form of the Navier Stckes equations is
used with the following definition of the non—dimensional variables
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Dropping the * for the sake of brevity, the integral form of the equations
is
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where W, £(g) and P(Q) are respectively the vector unknown, the non dissi-
pative and the viscous flux componepts in x(y), and they are given by:
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The pressure p is obtained from the equation of state:
2 2
p=ve = (v-1) [E-(u"+v )/2].

The Chapman-Rubesin approximation is employed to evaluate the viscosity
coefficient,

NUMERTCAL SOLUTION

The computational domain is divided into arbitrary quadrilateral cells.
The system of governing equations 1s reduced to a system of ordinary
differential equations {(ODE) by using the method of lines to decouple the
spatial and temporal terms. Use of mean value theorem and mid-point rule
(to evaluate the volume and surface integrals) yield the following ODE:

d
—— (WV) = ~C +D V+AD (2)
dt W W

where V, C , D and AD are respectively the sum of the volumes of the four
cells surroungang node ij, the net inviscid, dissipative and adaptive
dissipation centributions.

A corner point formulation is employed to accurately satisfy the
boundary conditions of Dirichiet-type required by the test cases. The net
inviscid contribution at each node ij is obtained as the sum of the net
contributions over the four surrounding cells so as to increase the
computational efficiency and to guarantee conservation. The following
expression is obtained:
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C =z ( :E[,[(f“;gny)‘ﬁ]k) (3)

ek .
where ¢ is the index of the (four) cells surrounding node ij, and k is the
tace index of cell c. ¢

The numerical flux (E,é) at cell face k 1is computed as the average of
the corresponding values at the two adjacgnt cells. Such a procedure is
computationally efficient and it yields second order accuracy on a smooth
grid.

Gauss theorem is used first to evaluate the numerical diffusion flux
components (F,H) at cell centers and then to compute their divergence at
node ij. For example, the net contribution for the x-momentum component is
[8]:
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where = and x¢ (yc) are respectively the discretized stress temnsar, and
x(y) coordinate of the center of cell c.

The adaptive dissipation (AD ), as designed in Ref. [9], is still added
to the scheme to inhibit even/odd mesh points deccupling, and to prevent
non linear jnstabilities. However the amount of artificial dissipation
added is L0~ times smaller than the physical one.

ODE is integrated in time by using a three-stage Runge Kutta scheme
that guarantees damping of high frequency modes. The physical and adaptive
dissipative contributions are evaluated at the first stage in terms of the
solution at time level n, and are not reevaluated at each stage.

The solution is advanced in time as follows

Q) n
w = w
ROON w(()}“c,tk % [C(wk—l)_DEJO)V ‘ADEVO)]
n+l (3)
W = w
where ¢ =& = §; @ 1.

The efficiency o% the method is increased by advancing the solution at
each computational cell at its own At, so that any disturbance propagates
out of the field at a rate proportional to the number of points in the
outward direction. Use of such local time stepping fails when the seclution
presents a transient character, as in case 6 of Table 1 corresponding to
M = .85, Re = 10000, a« = 0°. The vortices that form at the trailing edge
are responsible for the unsteady behaviour, and the sclution is advanced in
time with a time step corresponding to the most critical stability
restriction. Implicit smcothing of the residuals is also used to increase
the region of stability, yielding a higher CFL limit [2].

The multigrid strategy devised by Jamescn for the solution of the Euler
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equations, and extended to the Navier Stokes equations by these authors
(8], has also been used in the present work. Auxiliary meshes are
intreduced by doubling the mesh spacing. The cearser grid variables are
initialized so as to conserve mass, momentum and energy. The multistage
scheme is reformulated with the results that the solution on a coarse grid
is driven by the residuals collected on the next finer grid [8], [9]. The
process 1is repeated on successively coarser grids. After reaching the
coarsest grid, the correcticns are passed back to the next finer grid by
bilinear interpolation.

Boundary conditions

At the wall the following boundary conditions are imposed:

where p is computed from mass conservation.

The"far field boundary is located 18 chords away from the airfoil, and
conditicns, based on the introduction of Riemann invariants for a one
dimensional flow normal to the boundary, are emploved.

Mesh description

The mesh used in the computations is a body fitted C-mesh obtained by
using a hyperbolic grid generator, kindly provided by L. Wigten of the
Boeing Co. The computational domain is discretized in 256x64 cells on the
finer mesh, however for some test cases computations have also been
performed on a coarser grid (128x32). The first point in the boundary layer
is located at .002 chords away from the wall, and 5/8 of the total number
of points in the streamwise direction are fitted on the airfoil.

RESULTS AND DISCUSSION

Transonic and supersonic laminar flows arcund NACAOOL2 airfoils have
been computed for different values of the Reynolds number and angle of
attack. All the calculations have been carried ocut on a IBM 308l scalar
machine; the CPU time for a typical run on a 256x64 grid (see Fig. 1) with
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three levels of multigrid (and 500 multigrid cycles) is 149 minutes.

For most of the cases convergence is quite satisfactory. The steady
state is reached within_}?@—éﬂp (multigrid) cycles and the RMS of density
residual reduces to G(10 -10 ).

When assessing the validity of a computational tool, in the absence of
analytical results, it is extremely important to compare the computed
results with available experimental data and/or computed results. Figs. 2-3
show a comparison of the computed density with the experimental omne of Ref.
[10], corresponding to cases 1 and 3 of Table 1. One observes that overall
the agreement is rather satisfactory. In both cases there are some
disagreements at the trailing edge. However the results shown correspond to
rather large values of the RMS of density residuals. Note that in the
supersonic case the location and thickness of the detached bow shock is
very well predicted.

The robustness of the method and its accuracy 1is also shown by the
comparison of the results for the other cases with these obtained by the
others. The computed tesults show the capability of the method to
accurately predict transonic and supersonic flows at different Reynolds
numbers ranging from very Llow to high values ( Figs. 4-23), Some
discrepancies in the level of the predicted skin friction coefficient are
observed, most likely on account of the Chapman-Rubesin approximation
employed to evaluate the viscosity cecefficient.

Case 6 of Table 1 is the most interesting and critical test case. At
M = .85, Re=10000 and ¢ = 0° an unsteady behavicur of the flow is observed
and vortices are shed from the trailing edge as shown in Figs. 26-27. On
account of the transient character, local time stepping is not employed and
a time step corresponding to the most critical stability restriction is
used. A non symmetric field is obtained {c =.1386, ¢ _=.0723) and no
convergence 1is achieved. Figs. 28-31 show the results for the same case
cbtained on an intermediate grid (128x32). When computing on such a grid no
vortices form. Moreover a pseudo-convergence is reached, and a symmetric
solution is obtained (c_=.0, c_=.046) with a value of the RMS of density
residual equal to -2.59.

The two completely different results, obtained when using two different
mesh refinements, indicate that higher temporal and spatial accuracies are
required in the presence of disparate length and time scales. Under these
circumstancies the local time stepping technique cannct be used and highly
refined grids must be employed or else adaptive mesh enrichment should be
used {11]1-[13] to accurately detect small scale structures.
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Table 1 - Integral Values of Computed Test Cases

Case Gr%dﬁ_w M_ Re o e <y log(de/dt)
Points
1 256x64 .8 73 iQe 6657 L2522 -2.34
2 256x64 .8 500 10° L4797 L1597 -3.50
3 256x64 | 2,0 106 10° L3716 L1851 -1.74
4 256x64 .85 500 0° .0 L0964 -3.75
3 256x64 .83 2000 Q° .Q .068 -3.62
6.1]128x32 .85 10600 Qe .0 046 ~-2.59
6,2] 256x64 L1386 0723  -0.10
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Fig. 1 Computational Grid
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19 - Density Contours (DR=.05)

Fig. 17 - Mach Contours (DM = .05)

Fig.

W CASE 4 (256x64)
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Fig. 16 - Pressure Contours {DP = .05)

Fig. 18 - Pressure Coefficient vs x
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CASE 5 (256x64)
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CASE 6 {256x64)
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CASE 6 (128x32)

(60 =90)

sinocjucy A3isued - 1g "84

% SA juaTaTliec) ainssald - Of 9rd

138



