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Abstract

This paper presents a finite volume method for
the solution of the three dimensional, nonlinear
ship wave problem. The method can be used to
obtain both Euler and Navier-Stokes solutions
of the flow field and the a priori unknown free
surface location by coupling the free surface kine-
matic and dynamic equations with the equations
of motion for the bulk flow. The evolution of
the free surface boundary condition is linked to
the evolution of the bulk flow via a novel iter-
ation strategy that allows temporary leakage of
mass through the surface before the solution is
converged. The method of artificial compress-
ibility is used to enforce the incompressibility
constraint for the bulk flow. A multigrid al-
gorithm is used to accelerate convergence to a
steady state. The two-layer eddy viscosity for-
mulation of Baldwin and Lomax is used to model
turbulence. The scheme is validated by com-
paring the numerical results with experimental
results for the Wigley parabolic hull and the Se-
ries 60, Cp = 0.6 hull. Waterline profiles from
bow to stern are in excellent agreement with ex-
periment. The computed wave drag compares
favorably with experiment. Overall, the present
method proves to be accurate and efficient.
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1 Introduction

It is well established that a complex interac-
tion exists between the viscous boundary layer
and wake of a ship hull and the resulting wave
pattern [1, 2]. The existence of two similarity
parameters, the Froude number (Fr) and the
Reynolds number (Re), which do not scale iden-
tically between model and full scale hulls, make
it difficult to predict the viscous effect on the
wave and total drag through model testing. The
ship designer may thus resort to numerical sim-
ulation, and a great deal of effort has been de-
voted toward developing numerical tools capable
of simulating the flow field about a translating
ship. Some of these tools have met with success
in capturing the salient features of the flow field,
including the difficult-to-model stern region of
ship hulls. However, many of the computational
methods developed to date, especially those that
include viscous effects and a moving free sur-
face, tend to be very complicated and expensive.
Thus, the focus of this work is the development
of a fast and robust means to compute either vis-
cous or inviscid flow fields about surface piercing
ship hulls, and to make comparisons with exper-
imental data.

The method of Hino [3] is a widely used ap-
proach for solving incompressible flow problems.
This method takes the divergence of the momen-
tum equation and solves implicit equations at
each time step for the pressure and velocity fields
such that continuity is satisfied. The method is
expensive both because of the need to solve im-
plicit equations by an iterative method and be-
cause of the cost of calculating the divergence of
the momentum equations in a curvilinear coordi-
nate system. Hino uses a finite difference scheme
expressed in body-fitted curvilinear coordinates
to discretize the solution domain on and below



the free surface. The computational grid is not
allowed to move with the free surface so an ap-
proximation must be employed to model the free
surface boundary conditions. A Baldwin-Lomax
turbulence model is used in conjunction with
the wall function to model the viscous bound-
ary layer. The scheme is first-order accurate in
time and requires 10%-plus global iterations to
reach steady state for simple hull shapes.

The method of Miyata et al. (1987) [4] uses
a similar velocity and pressure coupling proce-
dure but now the grid is allowed to move with
the free surface, providing a more exact treat-
ment of the free surface boundary conditions. A
sub-grid-scale turbulence model is employed and
computations performed for Reynolds numbers
up to 10°. As with Hino’s method, the time-
accurate formulation necessitates several thou-
sand time steps to reach steady state solutions.
In a later paper, Miyata et al. (1992) [5] present
a finite volume approach that substantially im-
proves the computed results over those obtained
using the finite difference approach. Simula-
tions using Reynolds numbers up to 108 were
made and more complicated hull shapes exam-
ined. The method still requires many thousands
of time steps to achieve steady state solutions.

The interactive approach of Tahara et al. [6]
uses a field method based on the finite-analytic
method used by Chen et al. [7] for the viscous
region, and a surface singularity method based
on the “SPLASH” panel method of Rosen (8] for
the inviscid outer domain. The method iterates
between the inviscid and viscous regions by ad-
justing the small-domain panel distribution to
allow for the boundary layer displacement thick-
ness determined from the large-domain solution.
The free surface boundary conditions are lin-
earized and applied at the mean water elevation
surface. Results of this approach appear to be
quite promising for the Wigley hull, and a sub-
stantial savings in required computational cost
is realized over the large-domain approaches of
Hino and Miyata.

In this work, a field method is adopted for
the entire flow domain like Hino and Miyata.
However, the incompressibility constraint is en-
forced through the method of ertificial compress-
ibility, rather than the velocity-pressure coupling
method. The method of .artificial compressibil-
ity was originally proposed by Chorin [9] in 1967
to solve viscous flows. Since then, Rizzi and
Eriksson [10] have applied it to rotational in-
viscid flow, Dreyer [11] has applied it to low

speed two dimensional airfoils and Kodama [12]
has applied it to ship hull forms with a sym-
metric free surface. In addition, Turkel [13]
has investigated more sophisticated precondi-
tioners than those originally proposed by Chorin.
The basic idea behind artificial compressibility
is to introduce a pseudotemporal equation for
the pressure through the continuity equation.
Use of this pressure equation, rather than the
velocity-pressure coupling procedure described
in references [3] - [7], renders the new set of
equations well conditioned for numerical com-
putation along the same lines as those used to
calculate compressible flow about complete air-
craft [14, 15]. When combined with multigrid
acceleration procedures [16, 17, 18] it proves to
be particularly effective. Converged solutions of
incompressible flows over three dimensional iso-
lated wings are obtained in 25-50 cycles.

The general objective of this work is to build
on these ideas to develop a more efficient method
to predict free surface wave phenomena, for both
inviscid and viscous flows. The viscous solu-
tion method introduced in this work is an exten-
sion of the inviscid method presented in refer-
ence [19, 20]. The nonlinear free surface bound-
ary condition is satisfied by an iterative proce-
dure in which the grid is moved with the free sur-
face. Comparisons of numerical predictions with
experimental data, for the Wigley hull and Series
60, Cp = 0.6 ship hull, show encouraging results
for both waterline profiles and wave drag. Fur-
thermore, it appears that this approach yields
a substantial savings in the computational re-
sources required for the simulations.

2 Mathematical Model

Figure 1 shows the reference frame and ship lo-
cation used in this work. A right-handed co-
ordinate system Ozyz, with the origin fixed at
midship on the mean free surface is established.
The z direction is positive upwards, y is positive
towards the starboard side and z is positive in
the aft direction. The free stream velocity vector
is parallel to the z axis and points in the same
direction. The ship hull pierces the uniform flow
and is held fixed in place, ie. the ship is not al-
lowed to sink (translate in z direction) or trim
(rotate in z — z plane).



Figure 1: Reference Frame and Ship Location

2.1 Bulk Flow

For a viscous incompressible fluid moving under
the influence of gravity, the continuity equation
and the Reynolds averaged Navier-Stokes equa-
tions may be put in the form (3],

Up + Uy +w, =0 (1)

Uy + Uy + vUy + WU, =

~pe + (Re™ + 1) (V)

Vg + UV + VU + WU, =
—y + (Re"1 + Vt) (Vzv) (2)

Wy + uw, + vwy + ww, =
~, + (Re"1 + Vt) (Vzw) .

Here, v = u(z,y,2,t), v = v(z,y,2,t) and
w = w(z,y,2t) are the mean total velocity
components in the z, y and z directions. All
lengths and velocities are nondimensionalized by
the ship length L and the free stream velocity U,
respectively. The pressure 1 is the static pres-
sure p minus the hydrostatic component —zFr~2
and may be expressed as ¥ = p+ zFr~2, where
Fr = —\7(«};: is the Froude number. The pres-

sure variable 1 is nondimensionalized by pU?2.
The Reynolds number Re is defined by Re = —U;—L
where v is the kinematic viscosity of water and is
constant. v; is the dimensionless turbulent eddy
viscosity, computed locally using the Baldwin-
Lomax turbulence model. This set of equations
shall be solved subject to the following boundary
conditions.

2.2 Boundary Conditions
2.2.1 Free Surface

When the effects of surface tension and viscos-
ity are neglected, the boundary condition on the
free surface consists of two equations. The first,
the dynamic condition, states that the pressure
acting on the free surface is constant. The sec-
ond, the kinematic condition, states that the free
surface is a material surface: once a fluid particle
is on the free surface, it forever remains on the
surface. The dynamic and kinematic boundary
conditions may be expressed as

p = constant

_=w=ﬂt+uﬂz+’vﬂy (3)

where z = B(z,y,t) is the free surface location.
Equation 3 only permits solutions where J is sin-
gle valued. Consequently, it does not allow for
the breaking of bow waves which can often be ob-
served with cruiser type hulls. Breaking waves
are difficult to treat numerically and are not con-
sidered in this work.

2.2.2 Hull and Farfield

The remaining boundaries consist of the ship
hull, the boundaries which comprise the symme-
try portions of the meridian plane and the far
field of the computational domain. On the ship
hull, the condition is that of no-slip and is stated
simply by

v =v=w = 0.

On the symmetry plane (that portion of the (x,z)
plane excluding the ship hull) derivatives in the
y direction as well as the v component of velocity
are set to zero. The upstream plane has u = U
and ¢ = 0 (p = —zFr~2) with the v and w ve-
locity components set to zero. Similar conditions
hold on the bottom plane which is assumed to
represent infinitely deep water where no distur-
bances are felt. One-sided differences are used
to update the flow variables on the starboard
plane. A radiation condition should be imposed
on the outflow domain to allow the wave distur-
bance to pass out of the computational domain.
Although fairly sophisticated formulations may
be devised to represent the radiation condition,
simple extrapolations proved to be sufficient in
this work.



2.3 Turbulence Model

To model turbulence in the flow field the laminar
viscosity is replaced by

o=t

where the turbulent viscosity p: is computed
using the algebraic model of Baldwin and Lo-
max [22]. The Baldwin-Lomax model is an al-
gebraic scheme that makes use of a two-layer,
isotropic eddy viscosity formulation. In this
model the turbulent viscosity is evaluated using

e = (”’t)inner () ..<_ Yerossover
(“t)outer Y > Yerossover

where y is the distance measured normal to the
body surface and Ycrossover is the minimum value
of y where both the inner and outer viscosities
match. The inner viscosity follows the Prandtl-
Van Driest formula,

(l‘t)inner = l2lUJ|
where
I=ky[l- ea:p(—y+/A+)]

is the turbulent length scale for the inner region,
k and At are model constants, |w| is the vorticity
magnitude and y* = (7w/pw)y is the dimension-
less distance to the wall in wall units.

In the outer region of the boundary layer, the
turbulent viscosity is given by

(Nt)outer = chpFwakeFKleb

where K and C., are model constants, the func-
tion Fyake i8

Fyake = min (ymamFmaz; kaymangif/quz)
and the function Fiiep is

6
Friep = [1 +5.5 (g{—l—fb—y-) ]

-1
Ymax

The quantities Fiaz and Ymes are determined
by the value and corresponding location, respec-
tively, of the maximum of the function

F = ylw| [1 — eap(—y*/A1)] .

The quantity Ugiy is the difference between max-
imum and minimum velocity magnitudes in the
profile and is expressed as

1/2
min

Uiy = (u® + 0% + w2 — (0 + 0% + v?)

Ciies and Cyy are additional model constants.
Numerical values for the model constants used
in the computations are listed here:

At =26, k =0.4, K = 0.0168,
and

Cep = 1.6, Cyi, = 1.0, Cxep = 0.3.

3 Numerical Solution

The formulation of the numerical solution proce-
dure is based on a finite volume method (FVM)
for the bulk flow variables (u,v,w and ¥), cou-
pled to a finite difference method for the free sur-
face evolution variables (3 and ). Alternative
cell-centered and cell-vertex formulations may be
used in finite volume schemes [16]. A cell-vertex
formulation was preferred in this work because
values of the flow variables are needed on the
boundary to implement the free surface bound-
ary condition. The bulk flow is solved subject
to Dirichlet conditions for the free surface pres-
sure, followed by a free surface update via the
bulk flow solution (ie. constant values for the ve-
locities in equation 3). Each formulation is ex-
plicit and uses local time stepping. Both multi-
grid and residual averaging techniques are used
in the bulk flow to accelerate convergence.

3.1 Bulk Flow Solution

Following Chorin [9] and more recently Yang et
al. [23], the governing set of incompressible flow
equations may be written in vector form as

wie+(f—fv)z+(g —gv)y+(h —hy). =0 (4)

where the vector of dependent variables w and
inviscid flux vectors f, g and h are given by

= [ u, v, w]"
= [[%u, v + ¢, uv, uw]T

= [[?v, vu, v* + 9, v'w]T
T

o o $

= [I‘2w, wu, w, w? + Y]

The viscous flux vectors fy, gv and hy are given
by

fv = [0; Tzzs Tays Tmz]T
T

gv = [0, Tyas Tyy, Tyl
T

hy = [O, Tzzs T2y, Tzz]



where the viscous stress components are defined

Tee = (Re™!4+v)(2us — 2/3(uz + vy + w2))
Ty = (Re™' +v)(2vy —2/3(uz +vy + w;))
Toe = (Re !4+ 1) (2w, — 2/3(us + vy +w;))
Tey = (Re™!+ve)(uy +vs)

Tyz = (Re™! + 1) (v, + wy)

Tza - (Re_l + Vt)(w@' + ’ll.z).

T is called the “artificial compressibility” param-
eter due to the analogy that may be drawn be-
tween the above equations and the equations of
motion for a compressible fluid whose equation
of state is given by [9]

¥ =T?p.

Thus, p is an artificial density and T' may be
referred to as an artificial sound speed. When
the temporal derivatives tend to zero, the set
of equations satisfy precisely the incompressible
equations 2, with the consequence that the cor-
rect pressure may be established using the ar-
tificial compressibility formulation. The artifi-
cial compressibility parameter may be viewed as
a device to create a well posed system of hy-
perbolic equations that are to be integrated to
steady state along lines similar to the well estab-
lished compressible flow FVM formulation [18].
In addition, the artificial compressibility param-
eter may be viewed as a relaxation parameter
for the pressure iteration. Note that temporal
derivatives are now denoted by t* to indicate
pseudo time; the artificial compressibility, as for-
mulated in the present work, destroys time ac-
curacy.

To demonstrate the effect of I' on the above set
of equations and to establish the hyperbolicity
of the set, the convective part of equation 4 may
be written in quasi-linear form to determine the
eigenvalues [10]. The eigenvalues are found to be

M=U X=U A3=U-+a, M =U -—a,

where
U = ww, + vwy + ww;

and

a? = U2 + T%(w2 + w2 + wl).
The wave number components w,, wy and w, are
defined on —00 < wg,wy,w; < +0o0 . Since the
eigenvalues are clearly real for any value of w.,

wy and w,, the system of equations 4 is hyper-
bolic.

The choice of T is crucial in determining con-
vergence and stability properties of the numeri-
cal scheme. Typically, the convergence rate of
the scheme is dictated by the slowest system
waves and the stability of the scheme by the
fastest. In the limit of large I' the difference in
wave speeds can be large. Although this situa-
tion would presumably lead to a more accurate
solution through the “penalty effect” in the pres-
sure equation, very small time steps would be re-
quired to ensure stability. Conversely, for small
T, the difference in the maximum and minimum
wave speeds may be significantly reduced, but
at the expense of accuracy. Thus a compromise
between the two extremes is required. Following
the work of Dreyer [11], the choice for I is taken
to be

I? = y(u® 4+ v? + w?),
where « is a constant of order unity. In regions
of high velocity and low pressure where suction
occurs, I' is large to improve accuracy, and in re-
gions of lower velocity, I" is correspondingly re-
duced.

The choice of T' also influences the outflow
boundary condition, or radiation condition. If
it can be demonstrated that all system eigenval-
ues are both real and positive, then downstream
or outflow boundary points may be extrapolated
from the interior upstream flow. Even though
an examination of the eigenvalues reveals that
this can never be the case, the condition can
be approached by a judicious choice of I'. If
T is large, extrapolation fails because the flow
has both downstream and upstream dependence.
As T is reduced, the upstream dependence be-
comes more pronounced and the downstream is
reduced. Eventually, the upstream dependence
is sufficiently dominant to allow extrapolation.
Hence, all outflow variables are updated using
zero gradient extrapolation.

Following the general procedures for FVM, the
governing equations may be integrated over an
arbitrary volume A. Application of the diver-
gence theorem on the convective and viscous flux
term integrals yields

a

/ (£dS, + gdS, + hdS,) —
8A

oA (fvdS,, + gvdSy + hvdsz) =0 (5)

where Sz, Sy and S, are the projected areas
in the z, ¥y and z directions, respectively. The




computational domain is divided into hexahedral
cells. Application of FVM to each of the compu-
tational cells results in the following system of
ordinary differential equations,

d
dt*
The volume Ajj is given by the summation of

the eight cells surrounding node i,j,k. The con-
vective flux C;;i(w) is defined as

(A,-_,-kw) + Cijk - V,‘jk =0.

C,-jk(w) = i (sz + gS,, + hS,)k (6)
k=1

and the viscous flux Vj;jx(w) is defined as

Vik(w) = > (fvSz +gvSy +hvS:),  (7)
k=1

where the summation is over the n faces sur-
rounding Ajjz.

The projected areas may be computed by tak-
ing the cross product of the two vectors joining
opposite corners of each cell face in the physical
coordinate system. They correspond to the grid
metrics J&;, J&y, JE., etc. appearing in a trans-
formation to a curvilinear coordinate system § =
&(2,9,2), n =n(z,y,z) and ¢ = {(2,y,z) where
J is the Jacobian of the transformation. The
flow variables required in the flux evaluation may
be averaged on each cell face through the four
nodal values associated with each face. Evalua-
tion of the flux terms in equations 6 and 7 may be
performed directly, without direct differentiation
and without the need to handle grid singularities
in a special fashion.

3.1.1 Artificial Dissipation

This scheme reduces to a second order accurate,
nondissipative central difference approximation
to the bulk flow equations on sufficiently smooth
grids. A central difference scheme permits odd-
even decoupling at adjacent nodes which may
lead to oscillatory solutions. To prevent this
“unphysical” phenomena from occurring, a dissi-
pation term is added to the system of equations
such that the system now becomes
d
‘d—t:(AijkW)'f'
[Ciji (W) = Vijie(w) = Dije(w)] = 0. (8)
For the present problemi a third order back-
ground dissipation term is added. The dissipa-
tive term is constructed in such a manner that

the conservation form of the system of equations
is preserved. The dissipation has the form

Dijk (W) = De + D,, -+ D( (9)

where
Deju = d€i+1,j,k - dfi,,’,k
and
dg; s = 08F (Wisr,5k — Wijk).  (10)

Similar expressions may be written for the 5 and
¢ directions with 67, 62 and 67 representing sec-
ond difference central operators.

In equation 10, the dissipation coefficient o is
a scaling factor proportional to the local wave
speed, and renders equation 9 third order in
truncation terms so as not to detract from the
second order accuracy of the flux discretization.
The actual form for the coefficient is based on
the spectral radius of the system and is given in
the £ direction as

o = e(J|a] + T(S2 + §2 + 52)!/%)
where 4 is the contravariant velocity component
i = uly + v€y + wé..

Similar dissipation coefficients are used for the
and ¢ components in equation 9. The € term is
used to manually adjust the amount of dissipa-
tion.

3.1.2 Viscous Discretization

The discretization for the viscous fluxes follows
the guidelines originally proposed in [24, 25] for
the simulation of two dimensional viscous flows,
The components of the stress temnsor are com-
puted at the cell centers with the aid of Gauss’
formula. The viscous fluxes are then computed
by making use of an auxiliary cell bounded by
the faces lying on the planes containing the cen-
ters of the cells surrounding a given vertex and
the mid-lines of the cell faces. For example, the
w4z term in 7., may be computed from

6
U\ = / ugdA =/ udOA, =~ Uk Sz
A 8A Z koo

k=1

where k = 1,6 are the six faces surrounding a
particular cell, u is an average of the velocities
from the nodes that define the k** face and Sz,
are the projected areas in the z direction corre-
sponding to each face. Once the components of
the complete stress tensor are computed at the



centroids of the cells then the same method of
evaluation may be used to compute the viscous
fluxes at the vertex through use of equation 7.
For this purpose the control volume is now con-
structed by assembling % fractions of each of
the eight cells surrounding a particular vertex.
The equivalent two dimensional control volume
is sketched in the figure below. This discretiza-

7

tion procedure is designed to minimize the error
induced by a kink in the grid. It has proved to be
accurate and efficient in applications to the so-
lution of three dimensional compressible viscous
flows {26, 27].

3.1.3 Time Integration

Equation 8 is integrated in time by an explicit
multistage scheme. For each bulk flow time step,
the grid, and thus A;ji, is independent of time.
Hence equation 8 can be written as

dW,'jk

where the residual is defined as
Rijr(w) = Cije(w) — Vije(W) — Dije(w),

and the cell volume A;j, absorbed into the resid-
ual for clarity. If one analyzes a linear model
problem corresponding to {11) by substituting a
Fourier mode & = €%, the resulting Fourier
symbol has an imaginary part proportional to
the wave speed, and a negative real part propor-
tional to the diffusion. Thus the time stepping
scheme should have a stability region which con-
tains a substantial interval of the negative real
axis, as well as an interval along the imaginary
axis. To achieve this it pays to treat the convec-
tive and dissipative terms$ in a distinct fashion.
Thus the residual is split as

Rijr(w) = Cije(W) + Dijr(w)

where Cije(w) is the convective part and
Dij(w) = — (Viji + Dijk) the dissipative part.
Denote the time level nAt by a superscript n,
and drop the subscript for clarity. Then the mul-
tistage time stepping scheme is formulated as

w(n+1,0) = w"®
wrtd) = - g At (O 4 D)
wttl = w(n+1,m)

where the superscript k denotes the k-th stage,
am = 1, and

c® = c(w"), DO =D(w"
ck = C(w("“’k))
p® = gD (w(n+1,k)) + (1 - Bx)D* D

The coefficients aj are chosen to maximize the
stability interval along the imaginary axis, and
the coefficients By are chosen to increase the sta-
bility interval along the negative real axis.

A five-stage scheme with three evaluations of
dissipation has been found to be particularly ef-
fective. Its coeflicients are

oy = 1/4 ﬂl =1
Qg = 1/6 ﬂz =0
o3 =3/8 Pz =0.56
4 =1/2 B4=0
as =1 Bs = 0.44

The actual time step At is limited by the
Courant number (CFL), which states that the
fastest waves in the system may not be allowed
to propagate farther than the smallest grid spac-
ing over the course of a time step. In this work,
local time stepping is used such that regions of
large grid spacing are permitted to have rela-
tively larger time steps than regions of small grid
spacing. Of course the system wave speeds vary
locally and must be taken into account as well.
The final local time step is thus computed as,

Aty = CFDAs
Aijk

where A;j is the sum of the spectral radii of both
the convective and viscous flux Jacobian matri-
ces in the z, y and z directions. In regions of
small grid spacing and/or regions of high charac-
teristic wave speeds, the time step will be smaller
than elsewhere.



3.1.4 Residual Averaging

The allowable Courant number may be increased
by smoothing the residuals at each stage us-
ing the following product form in three dimen-
sions [18]

(1—€63)(1 — €nb62)(1 —€¢6)R=R

where €, €, and ¢; are smoothing coeflicients
and the 6%,,“ are central difference operators in
computational coordinates. Each residual R;ji
is thus replaced by an average of itself and the
neighboring residuals.

3.1.5 Multigrid Scheme

Very rapid convergence to a steady state is
achieved with the aid of a multigrid procedure.
The idea behind the multigrid strategy is to
accelerate evolution of the system of equations
on the fine grid by introducing auxiliary cal-
culations on a series of coarser grids. The
coarser grid calculations introduce larger scales
and larger time steps with the result that low-
frequency error components may be efficiently
and rapidly damped out. Auxiliary grids are
introduced by doubling the grid spacing, and
values of the flow variables are transferred to a
coarser grid by the rule
w33 = Tan W,

where the subscripts denote values of the grid
spacing parameter (ie. h is the finest grid, 2h,
4h, ... are successively coarser grids) and Ton,n
is a transfer operator from a fine grid to a coarse
grid. The transfer operator picks flow variable
data at alternate points to define coarser grid
data as well as the coarser grid itself. A forcing
term is then defined as

Pon = Z Ru(wa) — Ran(wi}),

where R is the residual of the difference scheme.
To update the solution on the coarse grid, the
multistage scheme is reformulated as

(1)

W wi) - a At (R) + Par)

Wi = W e P

where R(9) is the residual of the ¢'* stage. In the
first stage, the addition of Py, cancels th(w(o))
and replaces it by 3 Ra(ws), with the result

that the evolution on the coarse grid is driven

by the residual on the fine grid. The result wg',':)
now provides the initial data for the next grid
wf&) and so on. Once the last grid has has
been reached, the accumulated correction must
be passed back through successively finer grids.
Assuming a three grid scheme, let W‘J:) repre-
sent the final value of wss. Then the correction

for the next finer grid will be
wi) = Wi + Inan(wih) — wii),

where I, 4 is an interpolation operator from the
coarse grid to the next finer grid. The final result
on the fine grid is obtained in the same manner:
W) =)+ Tuan (o) w2
The process may be performed on any number of
successively coarser grids. The only restriction
in the present work being use of a structured
grid whereby elements of the coarsest grid do
not overlap the ship hull. A 4-level “W-cycle” is
used in the present work for each time step on
the fine grid [18].

3.1.6 Grid Refinement

The multigrid acceleration procedure is embed-
ded in a grid refinement procedure to further
reduce the computer time required to achieve
steady state solutions on finely resolved grids. In
the grid refinement procedure the flow equations
are solved on coarse grids in the early stages of
the simulation. The coarse grids permit large
time steps, and the flow field and the wave pat-
tern evolve quite rapidly. When the wave pat-
tern approaches a steady state, the grid is re-
fined by doubling the number of grid points in
all directions and the flow variables and free sur-
face location are interpolated onto the new grid.
Computations then continue using the finer grid
with smaller time steps. The multigrid proce-
dure is applied at all stages of the grid refinement
to accelerate the calculations on each grid in the
sequence, producing a composite “full multigrid”
scheme which is extremely eflicient.

3.2 Free Surface Solution

Both a kinematic and dynamic boundary condi-
tion must be imposed at the free surface. For
the fully nonlinear condition, the free surface
must move with the flow (ie. up or down cor-
responding to the wave height and location) and



the boundary conditions applied on the distorted
free surface. Equation 3 can be cast in a form
more amenable to numerical computations by in-
troducing a curvilinear coordinate system that
transforms the curved free surface 8(z,y) into
computational coordinates 8(€,7n). This results
in the following transformed kinematic condition

Ber + 0B + 08y = w, (12)

where @ and 7 are contravariant velocity compo-
nents given by

D = ung + vny.
The free surface kinematic equation may now be
expressed as
dB;.
d,z:] +Qii(B) =0
where Q;;(8) consists of the collection of veloc-
ity and spacial gradient terms which result from
the discretization of equation 12. Note that this
is not the result of a volume integration and thus
the volume (or actually area) term does not ap-
pear in the residual as in the FVM formulation.
Throughout the interior of the (z,y) plane, all
derivatives are computed using the second order
centered difference stencil in computational co-
ordinates £ and 7. On the boundaries a second
order centered stencil is used along the bound-
ary tangent and a first order one sided difference
stencil is used in the boundary normal direction.
As was necessary in the FVM formulation for
the bulk flow, background dissipation must be
added to prevent decoupling of the solution. The
method used to compute the dissipative terms
borrows from a two dimensional FVM formula-
tion and appears as follows:

D;; = D¢ + D,

where
De;; = dgiy,; — des;
and
de. ; = @b (Bit1,5 — Bij)-
The expression for « may be written as

a = €(|@ita,;| + @) T

where J is the sum of the cell Jacobians and € is
used to manually adjust the amount of dissipa-
tion. Hence the system of equations for the free
surface is expressed as

dp;;
dt*

+ R;;(B)=0

where
R;; = Qi; — Dy;.

The same scheme used to integrate equation 11
is also used here. Once the free surface update
is accomplished the pressure is adjusted on the
free surface such that

’l,b(n+1) — ﬂ(n+1)F1‘_2.

The free surface and the bulk flow solutions are
coupled by first computing the bulk flow at each
time step, and then using the bulk flow veloci-
ties to calculate the movement of the free sur-
face. After the free surface is updated, its new
values are used as a boundary condition for the
pressure on the bulk flow for the next time step.
The entire iterative process, in which both the
bulk flow and the free surface are updated at
each time step, is repeated until some measure
of convergence is attained; usually steady state
wave profile and wave resistance coefficient.
Since the free surface is a material surface, the
flow must be tangent to it in the final steady
state. During the iterations, however, the flow
is allowed to leak through the surface as the so-
lution evolves towards the steady state. This
leakage, in effect, drives the evolution equation.
Suppose that at some stage, the vertical velocity
component w is positive (cf. equation 3 or 12).
Provided that the other terms are small, this
will force ™! to be greater than ". When
the time step is complete, ¥ is adjusted such
that ™! > ™. Since the free surface has
moved farther away from the original undis-
turbed upstream elevation and the pressure cor-
respondingly increased, the velocity component

w (or better still q - n where n = % and

F = z — B(z,y)) will then be reduced. This
results in a smaller AS for the next time step.
The same is true for negative vertical velocity,
in which case there is mass leakage into the sys-
tem rather than out. Only when steady state
has been reached is the mass flux through the
surface zero and tangency enforced. In fact, the
residual flux leakage could be used in addition
to drag components and pressure residuals as a
measure of convergence to the steady state.
This method of updating the free surface
works well for the Euler equations since tan-
gency along the hull can be easily enforced. How-
ever, for the Navier-Stokes equations the no-slip
boundary condition is inconsistent with the free
surface boundary condition at the hull/waterline
intersection. To circumvent this difficulty the



computed elevation for the second row of grid
points away from the hull is extrapolated to the
hull. Since the minimum spacing normal to the
hull is small, the error due to this should be cor-
respondingly small, comparable with other dis-
cretization errors. The treatment of this inter-
section for the Navier-Stokes calculations, should
be the subject of future research to find the most
accurate possible procedure.

4 Results

4.1 Computational Conditions

Figures 2 and 3 show portions of the fine grids
used for the Navier-Stokes calculations. The
number of grid points is 193, 65 and 49 in the x, y
and z-directions respectively, and the H—~H type
grid is used. Grid points are clustered near the
bow and stern with a minimum spacing of 0.005
dimensionless units based on the hull length.
The grid extends % ship length upstream from
the bow, 1% ship lengths downstream from the
stern, 1% ship lengths to starboard, and 1 ship
length down below the undisturbed free surface.
The minimum spacing in the y-direction, nor-
mal to the hull surface, is 0.0001 for the Navier-
Stokes computations and 0.0025 for the Euler
computations. The resolution on the hull sur-
face is 97 by 17 for the Wigley hull and 97 by
25 for the Series 60. Only the number of grid
points in the y-direction is changed for the Euler
calculations; rather than 65 the number is 49.

The following subsections present the compu-
tational results for the Wigley hull and the Series
60, Cp, = 0.6 hull.

4.2 Wigley Hull

Figures 4 through 9 display computed and ex-
perimental results for the Wigley hull at Froude
numbers 0.250 and 0.289. Both the Euler and
the Navier-Stokes results for the waterline profile
along the hull show good agreement with the ex-
perimental data [28]. Discrepancies are noted in
the stern region where the Navier-Stokes model
produces a slight flattening of the wave profile
but correctly captures the aft-most waterline el-
evation, whereas the Euler model shows no ten-
dency to flatten the wave profile but incorrectly
predicts the aft-most waterline elevation. The
computed wave drag (cf. fig. 5), obtained by
integrating the longitudinal component of pres-
sure on the wetted hull surface, shows favorable
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agreement with the experimentally determined
value, Cy(ezp) = 0.821. The experimental wave
drag is inferred by subtracting an estimate of
the friction drag from the total drag or by wave
analysis. Note that the computed wave drag is
evaluated after each multigrid cycle and hence
the evolution of the drag is plotted vs. the steady
state drag (marked by the x’s) determined exper-
imentally. The capital letters C, M and F refer
to coarse, medium and fine grids respectively in
the grid refinement procedure. The comparisons
between computed overhead profiles show agree-
ment between the two methods, except in the
stern region and aft where viscous effects cause
separation of the flow and a reduction in the am-
plitudes of the downstream waves (cf. fig. 6).

Essentially the same behavior is noted for the
Fr = 0.289 case in the next set of figures. The
waterline profile is predicted almost exactly for
the Navier-Stokes simulation whereas the Euler
case predicts a lower waterline level at the stern
region. The computed values of the wave drag
are in good agreement with the experimentally
determined value Cy exp = 1.18.

Figures 11 and 10 are included to show the
computed velocity profile at the hull/waterline
intersection. The prediction of separation is
clearly evident in the stern region of the hull.

4.3 Series 60, C, = 0.6 Hull

In contrast to the Wigley hull, which is an ide-
alized shape, the Series 60 hull is a practical ge-
ometry for an actual ship hull. The only major
difference in the method of computing the flow
about this hull and the Wigley model is the ef-
fort required to maintain the proper hull shape
as the grid is distorted by the moving free sur-
face. To accomplish this, a grid is produced for
the entire hull, both above and below the undis-
turbed free surface. Spline coeflicients are then
determined for the entire grid and stored. A new
grid is then produced with the uppermost plane
of points residing in the plane of the undisturbed
waterline at z = 0. With the stored spline data
the grid is now easily updated as the free sur-
face evolves by redistributing points at intervals
of equally spaced arc length. It was found that
this method prevents the grid lines from crossing
at the close tolerances required for the viscous
computations.

The waterline contours shown in figure 12 are
in reasonably good agreement for both the Euler
and Navier-Stokes simulations. Except for the



bow region, it appears that the Euler method
does an equally good job, if not better, than the
Navier-Stokes method. There is some discrep-
ancy amidship in the Navier-Stokes computation
which is possibly due to the method used to up-
date points on the hull/waterline intersection set
of points. However, as in the Wigley cases, the
drag calculation is in good agreement with ex-
periment (Cy ezp = 2.6) [29] and the overhead
profiles show good agreement with each other.

5 Conclusions

The objective of the present work was to de-
velop an efficient method to compute Euler and
Navier-Stokes solutions for the nonlinear ship
wave problem. The results for the Wigley hull
and Series 60 hull suggest that the objective has
been reached and the resulting computer code
has been validated, at least for the range of test
cases examined. The wave elevations predicted
by the numerical simulations are in excellent
agreement with the experimental measurements.
In addition, the computed wave drag is in good
agreement with the wave drag inferred from the
experiments.

The Euler method, which requires signifi-
cantly less computational resources than the
Navier-Stokes method, produces results that ap-
pear to be within a reasonable degree of accu-
racy for engineering design work. As the present
method is refined and improved, and applied
to other geometries (such as submarines, sail-
ing yachts and more practical stern flows), it is
planned to continue the comparison between the
two methods in order to establish the conditions
under which the Euler method can be expected
to give accurate results.

The computational times for the simulations
are approximately 10 and 12 hours for the Eu-
ler calculations on the Wigley and Series 60
hulls, respectively, and approximately 18 hours
for the Navier-Stokes calculations for both hulls.
The Euler simulations consist of 100 steps on a
49 x 13 x 13 grid, 200 steps on a 97 X 25 X 25
grid and 200 steps on a 193 x 49 x 49 grid. The
Navier-Stokes simulations consist of 100 steps on
a 49 x 17 x 13 grid, 200 steps on a 97 X 33 X 25
grid and 200 steps on a 193 X 65 x 49 grid. These
times were recorded in calculations using a sin-
gle processor Convex 3400 computer with 64-bit
arithmetic. For the given resolution they ap-
pear to represent about a ten-fold decrease in
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the CPU times reported in the earlier literature,
which have usually been presented for coarser
grids. The CPU time required for the free sur-
face update and regriding procedures is approx-
imately seven percent that required for the bulk
flow calculations.
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