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ABSTRACT

An unstructured grid method developed initially
for the tramsonic inviscid flow is applied to free
surface problems around submerged hydrofoils.
The flow domain around a submerged body is di-
vided into triangular cells, which makes up the
unstructured grid system fitted to a free surface
boundary. The incompressible Euler equations
and the continuity equation with artificial com-
pressibility are discretized by the finite-volume
method in the unstructured grid. Time integra-
tion is made by the Runge-Kutta method. Non-
linear free surface conditions are implemented in
the scheme. Several techniques for convergence
acceleration are used, including the local time
steeping, the residual smoothing and the unstruc-
tured multigrid. The outline of numerical pro-
cedure is presented together with the results of
applications. Comparisons of the results with ex-
perimental data prove accuracy and efficiency of
the present method.

NOMENCLATURE

CFL Courant number
dissipation term
Froude number

flux in z-direction
gravitational constant
flux in y-direction
wave height
interpolation operator
in multigrid scheme
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chord length of hydrofoil

P pre-conditioning matrix

P, {orcing function in multigrid
scheme

p pressure without hydrostatic
component ,

p pressure

:'H residual transfer operator in

multigrid scheme

Q convective term

R residual

s submergence of hydrofoil

T,:‘“ solution transfer operator
in multigrid scheme

t time

u velocity in z-direction

v velocity in y-direction

w solution vector

z horizontal Cartesian coordinate

Yy vertical Cartesian coordinate

O parameters in Runge-Kutta scheme

B* artificial compressibilty parameter

Bgr parameter of Runge-Kutta scheme

4(z) damping term of wave height
equation

Ygr parameter of Runge-Kutta scheme

€ parameter of residual smoothing

A wave speed

INTRODUCTION

Free surface flows have significant importance in
ship hydrodynamics. Wave resistance is the ma-
jor part of the resistance that determines the
propulsive performance of ships. Also, waves gen-
erated by a ship interact with the boundary layer
along a ship hull and affect stern flows which are
important for a propeller design. Motions of ships



propulsive performance of ships. Also, waves gen-
erated by a ship interact with the boundary layer
along a ship hull and affect stern flows which are
important for a propeller design. Motions of ships
or floating marine structures in ocean waves are
of practical importance. Impact loads due to the
large ocean waves sometimes damage ships or ma-
rine structures. A number of methods have been
developed to solve these free surface problems.
However, the nonlinearity of the problems makes
it difficult to predict the properties of free surface
flows accurately and efficiently.

Rapid development of computer hardwares
and softwares in recent years enables the large-
scale computation. Thus, Computational Fluid
Dynamics (CFD) becomes another way to ana-
lyze flow properties. CFD activities in ship hy-
drodynamics have been mainly for the prediction
of viscous flows around a ship stern[1,2] in which
free surface is treated as a symmetric boundary.
Free surface flows have been treated by a kind of
a panel method assuming inviscid flows[3]. How-
ever, because there are interactions between vis-
cous flows and free surface waves, it is desirable
to solve viscous flow problems under free surface
effects. Attempts to this direction are Hino[4],
Miyata et al.[5], Tahara et al.[6] and so on.

When one solves nonlinear free surface
flows around a ship with a boundary-fitted grid,
which is common in the recent CFD method, a
grid must be generated at each time step, be-
cause free surface is dynamic in time. The grid
generation is not an easy task even without a free
surface movement when the body geometry be-
comes complex. Free surface deformations which
are large particularly near the body gives addi-
tional complexity to the grid generation.

CFD in aerodynamics is much older than
its counterpart in ship hydrodynamics. Various
new technologies have been invented in the CFD
for aerodynamics. Among them, Jameson et al.[7]
developed unstructured grid method for transonic
flow computations which uses the triangular grid
rather than rectilinear grid in the structured grid
case. Later, this method is applied to incom-
pressible flow problems by introducing the arti-
ficial compressibility[8]. This unstructured grid
method has capability to cope with the geometri-
cal complexity and therefore suitable for free sur-
{ace flow problems.

In this paper, an unstructured grid
method is applied to free surface problems. The
problems concerned are flows around a submerged
hydrofoils. This is chosen partly because the

problem is much simpler compared with flows
around a surface-piercing body and partly be-
cause the original method is for transonic aero-
foils and can be naturally extended to hydrofoil
problems.

The governing equations are incompress-
ible Euler equations. Though the final goal of the
study is the viscous flow computations, the Euler
equations are selected as the governing equation
for its simplicity. Artificial compressibility is in-
troduced in the continuity equation. This makes
the system of equations hyperbolic and the well-
developed efficient techniques to solve hyperbolic
equations can be used.

NUMERICAL PROCEDURES

Governing Equations

Governing equations are two-dimensional incom-
pressible Euler equations and are expressed in the
form non-dimensionalized by the chord length of
a hydrofoil L, the uniform flow velocity U and the
fluid density p as {ollows:
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where (z,y) are Cartesian coordinates (y is up-
ward positive) and (u, v) are the velocity compo-
nents in (z,y) directions, respectively. p is the
static pressure and ¢ is time. F is Froude number
defined using the gravitational constant g as

F:\/%_L 4)

Since there is no term associated with the
time derivative of pressure in the governing equa-
tions {1)-(3), difficulties come out when one solves
these equations in the time-marching manner.
Usually pressure field is computed by the Poisson
equation which is derived from the divergence of
the momentum equations (2)-(3) and the conti-
nuity equation (1) in such a way that the velocity
field satisfies the continuity condition at each time
step [9].

When only the steady state solution is re-
quired, the alternative approach called the artifi-
cial compressibility method can be used. In this




method first proposed by Chorin [10], the con-
tinuity equation is modified by introducing the
pseudo-compressibility as follows:

dp 0, 0u  Ov,
at+ﬂ(a_5+5§)‘° (5)
where 32 is the artificial compressibility parame-
ter. When the solution becomes steady, the equa-
tion (5) recovers the original form (3). Since the
system of equations (5), (2) and (3) is hyperbolic,
efficient numerical solution methods for the hy-
perbolic equations can be applied.

The parameter 82 is determined by using
the local velocity magnitude as

B2 =17y % min(u2 + 2, ﬂ;‘;in) (6)

where 73 is a global constant and the parameter
B2, is used to prevent 2 from approaching zero
near the stagnation point. r, = 5 and B2, =0.3
are typical values in the present study.

Eqgs.(5), (2) and (3) can be rewritten in the
vector form as

ow of dg

— +P(=+-)=0 7
ot + (8x+3y) (7)
where
p u v
w = U ’f: u2+P y g = uv
v uY v2+p

(8)
and pis the pressure without the hydrostatic com-
ponent, l.e.,

N Yy
P=p+ 33 (9)
P is a matrix defined as

6% 0 0 '
P=|0 10 (10)
0 0 1

Boundary conditions needed for free sur-
face flow problems are a body surface condition,
a free surface condition and a far field condition.
The first one is the free-slip condition in case of
the inviscid flow, that is,

ung +vn, =0 (11)

where (n;,ny) are the unit vector outward normal
to the body surface.

The second one, the free surface condition
consists of two conditions. One is the dynamic
condition that states the continuity of stresses on

the air-liquid interface. For the inviscid case this
is expressed as

pP=po on y=h (12)

or, equivalently,

p=po+7,h; on y=h (13)
where pg is atmospheric pressure (assumed to be
constant) and y = h(z;t) is the free surface lo-
cation. The other free surface condition is called
the kinematic condition that means the fluid par-
ticles on the free surface keep remaining on it.
This is written as

8 h

5% +u Z—z- —v=0 (14)
The free surface shape can be updated by Eq.(14)
in the time-marching manner.

The far field conditions are as follows. At
far upstream, flow is uniform and free surface is
undisturbed. On the other hand, the waves gener-
ated by a hydrofoil propagate to far down stream.
Water depth is assumed infinite.

Spatial Discretization
Finite-Volume Method

In a finite-volume formulation a solution domain
is divided into small cells. The present method
employs unstructured grid in which every cell is
triangular. One of the superiorities of unstruc-
tured grids over structured omes is its flexibility
to deal with complex geometry. Therefore, un-
structured grids are particularly suitable to free
surface flow problems in which the deformation of
free surface boundary causes further geometrical
complexity in addition to that of body configura-
tion.

The flow variables (u,v) and p are defined
at the vertices of each triangle. The control vol-
ume for a given node 7 is taken as the union of all
the triangles which share that node as a vertex as
shown in Fig.1. The integration of the governing
equation (7) over this control volume yields

8 _ af dg
Yy //&;u drdy = /LP(3x+3y)d$dy

- §_P(ay-gaz) ()
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where (2 means the control volume and 851 is its
boundary. Since the grid is aligned to the free
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Figure 1: Control volume around the node 1

surface boundary which moves in time, the grid is
time-dependent and the effects of grid movement
must be taken into account for the time-accurate
computation. However, since the present method
employs the steady state formulation and the
transient solution does not have physical mean-
ing, one can make approximation to drop all the
terms associated with the grid movement. Thus,
f and g in Eq.(15) have the same form as in
Eq.(8). In the discrete form, Eq.(15) becomes

d bl
EZ(S{ w;) + EP(kayk - g Azy) =0 (16)
k=1

where S; is the area of the control volume around
the node 7 which is computed by the summation
of the area of each triangle in the control volume.
The summation in Eq.(16) is taken over all the
edges surrounding the control volume and . is
the number of the edges. Also, (Ayg, —Azy) gives
the unscaled outward normal vector of the k-th
edge. f, and g, are the flux vectors evaluated
by taking average of the values at both ends of
the edge. This discretization corresponds to the
central difference scheme in the structured grid
case. The time integration scheme for Eq.(16) is
described in the subsequent section.

Artificial Dissipation

Since the evaluation of Eq.(16) described above
is the scheme equivalent to the central difference
scheme for the Euler equations, this scheme is not

stable due to the decoupling of neighboring node
unless one adds the artificial dissipation terms to
the equations. To keep the second order accuracy
of the scheme, the fourth-order dissipation models
are used in the scheme, while the second-order
dissipation terms used in the compressible flow
code [11] to prevent oscillation near shocks are
not used.

By adding the artificial dissipation terms,
Eq.(16) is rewritten as

d
E(siwi)'*'Qi(w)—Di(w): 0 (17)

where

Qiw) = 3 P(fbu - gi8z)  (18)

k=1

and D;(w) is the dissipation terms. The dissi-
pation terms are evaluated as follows. First, the
unndivided Laplacian in the computational space
is approximated as,

)
Rn

Viw; = Z(w,' —w;) (19)

j=t

The dissipation terms are constructed by using
this VZw as
Ry
D(w); =Y eXij(Viw; — Vi) (20)

j=1

where ¢ is a global constant which controls the
amount of dissipation and A;; is a scale factor.
The summation is taken over all the nodes on the
boundary of the control volume around the node
3 and n,is the number of the nodes.

From the analogy to upwind differencing,
the scale factor Ai; is determined as follows. First,
the maximum wave speed is determined by the
spectral radii of the flux Jacobian matrices as

) = p(AAy — BAz) (21)
where
[0 (%2 0]
4=pPY _ |1 % o],
ow 0
- v u-
[0 0 B2
B:ng = 0 v u (22)
Yool 0 2v ]

This yields

A=|(u Ay ~ v Az)]
+v/(u Ay — v Az)?2 + B2(A2? + Ay?) (23)




Thus, a scale factor A;j which is A associated with
the edge consists of the nodes 7 and j is defined

Aij = max(lgil, lg;]) + /max(ci, ¢5) (24)

where
& = u; Ayi; — v Az (25)

ci = ¢ + B2, [AzE + Ay (26)

and (Az;j, Ayij) is the vector from the node i
to the node j. ¢; and c; can be evaluated by
replacing u;, v; and 2 in the above equations by
uj, v; and ,312, respectively.

Boundary Conditions

Body Boundary Condition

Free-slip condition on the body (11) is imple-
mented in the {ollowing way. To determine two
velocity components (u, v) on the boundary, two
conditions are required. One condition is appar-
ently the free slip condition (11). The other con-
dition is that the tangential velocity does not have
gradient in the normal direction, that is,

9q:
— =0 27

o (27)
where n is the normal direction and ¢, is the tan-
gential velocity defined by using the unit outward
vector on the body (n.,n,) as

g =Uny — vng (28)

For the node which lies on the body boundary, the
tangential velocity is extrapolated {from the inside
in such a way that Eq. (27) is satisfied. First,
for each node on the body boundary, the edge
from which velocity is extrapolated is searched.
Searching procedure is 1) search the triangle that
consists of the boundary node under considera-
tion and two internal nodes, 2) the edge formed
by the two internal nodes is registered as a candi-
date edge, 3) from the candidates select the edge
in such a way that the angle between the vec-
tor from the boundary node to the mid-point of
the edge and the outward normal vector of the
boundary node is minimum. Thus, the velocity
can be extrapolated from the direction approxi-
mately normal to the body surface. Suppose that
the boundary node is denoted as O and that the
end points of the corresponding edge are A and
B as shown in Fig. 2, the extrapolation formula
is

(g1)o = (1 = #)(q)a + #(g:)s (29)
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Figure 2: Velocity extrapolation of the boundary
node

Boundary

Figure 3: Control volume for the boundary node

where

=

K=

=5 (30)

where P is the intersection point between AB and
the vector normal to the boundary (see Fig. 2).
From Eqgs.(29) and (11), the velocity component
on the body is computed as

©={(q)ony, v =—(qt)o Nz (31)

The pressure on the body is computed by
the modified continuity equation (5). The control
volume is taken as shown in Fig. 3. Mass fluxes
across the boundary edges are set zero because
of the free-slip condition. The discretization is
carried out in the usual way except that the node
is on the perimeter of the control volume.
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Figure 4: Velocity extrapolation on the free sur-
face

Free Surface Condition

Since the the grid is aligned to the free surface
boundary, the free surface dynamic condition (13)
is satisfied by simply setting pressure value on the
free surface to pg + h/F2.

The velocity on the free surface is extrap-
olated from inside in such a way that the velocity
gradient in the normal direction is zero. Though
this can be approximated in the same way as
for the body boundary, the simpler extrapolation
scheme is preferable because re-calculation of ex-
trapolation coeflicient x at each time-step due to
the grid movement is time-consuming. (Note that
the grid points close to the body boundary do not
move in time as described in the subsequent sec-
tion.) Suppose that the free surface node O is
the common node for the boundary edge PO and
OR and these edges are the part of the triangles
APOA and AOBR, respectively as depicted in
Fig.4 (Note that node O, A and B do not neces-
sarily form a triangle), then velocity at node O is
computed by

(32)

1 1
Up = -2—(uA +ugp), vo = -2-(1;4 +vg)

In the above approximation, the mid-point of AB
is assumed to be in the normal direction from the
node O.

The kinematic condition (14) is used to
update the free surface shape. The spatial dis-
cretization is based on the third-order upwind
finite-differencing scheme and the equation for

the node ¢ becomes
dh; 2hit1 + 3k — Bhic1 + hi—2
dt Y2241 + 37 — 621 + Tioo

-y =0

(33)
where the node numbering is sequential from up-
stream to downstream and (u;, v;) is the velocity
at the node 1 whose coordinate is given by (=, h;).

Far Field Conditions

At inflow, flow is uniform, that is,

v=1v=0,p=0,h=0 (34)

are given.

At outflow, since waves generated by a hy-
drofoil propagate to infinite downstream, flow is
not uniform. To prevent the reflection of waves to
the solution domain, the outflow conditions must
be carefully implemented. The open boundary
conditions for free surface problems are treated by
the various methods [12). Among them, the pro-
cedure used here is the artificial damping method,
in which waves going through the outflow bound-
ary is dissipated by adding artificial damping
terms in the flow equation.

The free surface kinematic condition is
modified as

oh oh

5 tug, —vta(@)=0 (35)

where v is the artificial damping terms defined as

2

() = { A(E=2V ko) Hoa<osa,
otherwise

(36)

where A is a constant that controls the amount of

damping and z, is the z-coodinate of the outflow

boundary. z4 is defined as

Tq =z, — 27F? (37)

That is, the damping zone is set one wavelength
computed by the linear theory from the outflow
boundary. The quadratic form of the damping
term in Eq.(36) gives the gradual increase of dis-
sipation, which prevents the reflection of waves at
the edge of the damping zone.

Velocity and pressure on the outflow
boundary is computed by the control volume of
Fig.3, which is equivalentto rhe one-sided differ-
encing.

At the bottom boundary, pressure p is as-
sumed to zero, which corresponds to the hydro-
static value and velocity is computed from the
momentum equations with the one-sided differ-
encing using the control volume of Fig.3.



Time Stepping

As the time integration scheme, the explicit
multi-stage Runge-Kutta scheme originally devel-
oped for compressible flows [11] is used here.

As stated earlier, the grid is time-
dependent in the present case, therefore, the con-
trol volume is also time-dependent. However,
when only steady state solutions are of interest,
one can simplify the solution procedure by drop-
ping the terms associated with the grid move-
ment. Suppose that one has the grid and the so-
lution at time step (n), the procedure to proceed
one time step is as follows. The flow equations
(17) are solved assuming that the grid does not
move in time, that is, S; ,Az and Ay appeared in
Eq.(17) are evaluated using the grid at time step
(n) and are kept constant in time. Thus, Eq.(17)
can be rewritten as

dw;

1
@) - D=0 ()

This equation gives an approximated solution at
time step (n + 1). Then, the free surface kine-
matic condition (14) is solved in the same manner
as the low equations and the wave height at time
step (n+1) is obtained. Next, the grid points are
redistributed in such a way that the grid is con-
formed to the newly computed free surface con-
figuration. During this redistribution process, the
number of grid points and the edge connectivity
are not changed so as to avoid the re-triangulation
at each time step. The flow variables at time step
(n+1) are set equal to the values computed under
the approximation that the grid is fixed. The geo-
metric quantities S;, Az and Ay are recomputed
by using the new coordinates and the computa-
tion proceeds to the next time-step.

Since the grid points do not move in time
when a solution becomes steady, this approxi-
mated procedure must give the same steady state
solutions as the time-accurate scheme does.

Time integration scheme for the flow equa-
tion (38) and the wave height equation (14) is
the Runge-Kutta method which is a class of one-
step multi-stage explicit schemes. The general
m-stage solution procedure for Eq.(38) from the
time step (p) to (p+ 1) can be written as follows:

w©® = w? (39)
‘ wl = w® - al%R(O)(w) (40)
At

w® = w® _ ag?R(l)(w) (41)

w™) = w©® _ Om %R(m_l)(‘w) (42)
wPH = ™) (43)

where R¥(w) is the residual evaluated at g-th
stage and is defined by the weighted average of
the residuals computed by the flow variables of
previous stages, i.e.,

RP(w) =) {8, Q(w”) = 7, D(w ™)} (44)

r=0

Om, Pgr and 74 define the particular scheme.
The values of these coefficients for the 4-stage
scheme used in this study are as follows.

ay =1/3, 0g =4/15, a3 =5/9, g =1 (45)

,qu={1 ifg=r ‘ (46)

0 otherwise

Yoo =1
Y10 = 0.5, 11 = 0.5
Y20 = 0.5, 721 = 0.5, 722 =0
730 = 0.5, 731 =05, Y32=0, 733 =0
(47)
Thus, the dissipation terms are evaluated twice
in one time-step.

The free surface kinematic condition (14)
is solved in the same manner except that there
are no dissipation terms due to the use of upwind
differencing.

Grid Generation and Grid Move-
ment

The generation of unstructured triangular grid
around a body can be achieved by various ways.
Among them, the Delaunay triangulation method
[14] and the advancing front method [13] are com-
monly used in the CFD field. The former is
the procedure to establish unique triangulation of
given grid points covering solution domain, while
the latter is the method to generate points and
connect them simultaneously.

The unstructured grid around the sub-
merged hydrofoil used here is generated by the
Delaunay triangulation. The set of points are
generated by the combination of the conformal
mapping around the region close to a foil and
the algebraic method in the other region. The
conformal mapping is an established way to gen-
erate O-grid around a foil of an arbitrary shape.
The algebraic method is required since the outer



boundary is rectangular and since the grid spac-
ing control is needed for the better resolution of
the free suface region. The points are clustered in
the region above and behind the body and near
the free surface where the free surface deforma-
tion is expected to be large.

The grid movement is carried out in the
following way. The initial grid is generated by
assuming the flat free surface. On this stage y-
coordinate of the uppermost point generated by
the conformal mapping is searched and stored as
Yu. Yu is the uppermost extent of the ’inner grid’
that is generated in the region close to the body
and only the grid point above y, are allowed to
move following free surface movement. Assume
that the wave height at time step n is given by
h™(z), then the grid movement of the node i is
defined as

o}t = o} (48)
hn+1 ) -y
v+ : S - .
e | o e -
T iy >y
Y7 otherwise
(49)

where h(z;) is the wave height at z = z; and
is computed by the linear interpolation because
z; does not necessarily coincide with the =z-
coordinate of the free surface nodes. Thus, all
the points above y, move vertically due to the
free surface movement. The moving distance is
linearly distributed between A"*! and y,. By this
procedure the grid points near the body do not
move and the complicated re-distribution proce-
dure for points near the body is avoided.

Convergence Acceleration

Techniques

Three techniques are used to accelerate the con-
vergence of solutions to the steady state in the
present scheme. A local time stepping is the
method in which the solution at each point pro-
ceeds in time with the time step defined locally
from the local stability limit, while a residual
smoothing is used to increase the bound of the
stability limit of the time stepping scheme itseld.
A multigrid method is an efficient way to accel-
erate the convergence, where the time stepping is
carried out by using successively coarser grids as
well as the original finest grid.

Local Time Step

For explicit schemes the maximum permissible
time step is limited by the Courant-Friedrichs-

Lewy (CFL) condition. In one dimensional case,
this is written as

At< CFLAZ (50)
C

where CFL is the maximum Courant number
permitted by the scheme, Az is the grid size, and
¢ is the maximum wave speed. When one uses the
globally constant time step, At must be smaller
than the minimum value of CFLAz/c.

In practice, the grid spacing is not uniform
due to the clustering of points. Therefore the
time step is determined based on the minimum
grid spacing. This yields the small time step and
causes slow convergence.

If only steady state solutions are of inter-
est, one can use the locally varying time step at
the expense of time-accuracy. The local time step
At; is taken as its maximum permissible value,
i.e.,

At = CFLA% (51)
Ci !
In case of unstructured grid employed
here, the above equation is modified as
Si
At; =CFL— (52)
A
where S; is the area of the control volume around
the node 1.

Residual Smoothing

As stated earlier, explicit schemes have the CFL
limit of stability. Residual smoothing procedure
described below is the way to increase the stabil-
ity bound of a time stepping scheme. Thus, larger
time step can be taken and the fast convergence
is achieved. In the method, the residual at the
node ¢, R;(w) is replaced by implicitly averaged
value ﬁ(w), where

R, = R, + ¢V’R; (53)
where € is a constant and the operator V? is the
undivided Laplacian in the computational space
defined in Eq.(19). The resulting linear equation

(1-eV)R; = R; (54)

is solved iteratively by the Jacobi method. This
gives the implicit property to the scheme and the
CFL limit can be larger than the unsmoothed
case. One dimensional analysis shows that one
can take arbitrary large time step as far as ¢ is
taken correspondingly large [11]. In this study ¢
is taken 0.5.



Unstructured Multigrid

Multigrid method is known as the efficient way to
get fast convergence. The concept of the multi-
grid time stepping applied to the solution of hy-
perbolic equations by Jameson [11] is to compute
corrections to the solution on a fine grid by the
-time-stepping on a coarser grid.

The general procedure of the multigrid
method is as follows. Equations to be solved is

written as y
w

and the subscript & refers as the grid index.
First, the solution wj is obtained in the
fine grid (k) by solving
dwk
— = Ry (w 56
7 k(W) (56)
by the Runge-Kutta scheme described above.
Then, the solution is transferred from the fine
grid (k) to the next coarser grid (k + 1) by
w® =T w, (57)
where T,f'“ is a transfer operator. The solution in
the coarse grid is updated by solving the equation

dwg4

7R —Rip1(wes1) — Prya (58)

with the Runge-Kutta scheme and wy,, is ob-
tained. P41 in the above equation is the forcing
function in the coarse grid (k + 1) defined as

Py = QX Ry (wi) — Ren(wl))  (59)

where Q,’i“ is another transfer operator. The
first term of the right-hand-side of Eq.([?]) is
the residual transferred from the finer grid and
the second term is the residual evaluated by the
transferred solution. This second term cancels
the residuals in the coarse grid only and the driv-
ing force comes from only the residual transfered
from the finer grid.

w:H - wio_,)_l gives the correction of the
solution at the grid (k+1). This procedure is re-
peated on successively coarser grid. Finally, after
the computation of the correction at the coarsest
gird, the correction is transferred back from the
coarse grid (k + 1) to the fine grid (k) by

wi = wi + III:+1("’:+1 - “’Sl)-x (60)
where Il):+1 is an interpolation operator. The
maltigrid cycle employed here is V-cycle in which

Az

A3 Al

I I

Figure 5: Transfer of solution

the equations are solved only when the solution
moves from the fine grid to the coarse one and the
interpolation is used in the transfer of correction
from the coarse grid to the fine one.

In case of the structured grids, the gen-
eration of successively coarser grids can be done
simply by deleting the alternate points along each
grid line. This also makes it easy to define the
operators described above. In the unstructured
grids, however, neither the grid generation nor
the definition of the operators is straightforward.

In the present study, the multigrid strat-
egy of Mavriplis [14] is employed. That is, to
keep flexibility of unstructured grids as much as
possible, the series of coarser grids are generated
independently. The grid generation procedure is
repeated fo each grid with changing the grid den-
sity parameters.

The operators for the transfers are defined
as follows. Tf'” is the operator with which the
solution w transfers from the fine grid to the
coarse one. This is defined as

wr = (Ayw; + Aswsy + Azws)
= Ay + Ag + As

where I is the node in the coarse grid under con-
cideraton and 1, 2 and 3 are the nodes forming the
triangle in the fine grid which contain the node
1. A; is the area of the triangle consists of I, 2
and 3 as shown in Fig.5. Ay and Aj are defined
similarly. .
QZH is the transfer operator of the resid-
vals. The residual at the node I in the coarse grid

(61)
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Figure 6: Transfer of residuals

is computed by

- BIR,
Ry = ;(; B; + Brr + an) (62)

The first summation is over the triangles of coarse
grid that share the node I as a common vertex.
The second summation is taken over all the nodes
in the fine grid that lie inside the triangles deter-
mined in the first summation. By is the area of
the triangle consists of the nodes p, II and ITI
as shown in Fig.6. Bj; and Bjj; are defined
similarly. Thus, the residuals in the coarse grid
are linearly distributed to the nodes in the fine
grid. Note that this procedure is conservative,
that means the grand sum of the residuals in the
coarse grid is equal to the grand sum of the resid-
uals in the fine grid. This feature is important,
because the the driving force in the coarse grid
comes only from the fine grid residuals due to the
forcing function (59).

Finally, I,f'” is for the interpolation of the
corrections in the coarse grid to the fine grid.
From Eq.(60) the correction dw is defined by

dw = wt — w©® ' (63)
The transfer of the correction from the coarse grid
to the fine grid is done as follows.

daps — Bidw; + Brrdwrg + Byrrdwygg (64)
' Br + Brr + By

Big 1 B

i l I

Figure 7: Transfer of correction

where the node 1 is the node of the fine grid and
it lies inside the triangle of the nodes I, IT and III
in the coarse grid as shown in Fig.7. By is the
area of the triangle of 1, Il and III. By; and By;;
are defined similarly

Since the grid is dynamic in time for the
present case, the above operators must be re-
computed at each time step using new coordi-
nates of the grid. The most time-consuming part
of this re-computation is the search of the trian-
gle in which the certain point lies. The procedure
taken here is based on the tree-search algorithm
similar to the one used by Mavriplis[14]. First,
every triangle has a list of three neighbour trian-
gles. This list does not change by the grid move-
ment because the point connectivity is fixed. At
the beginning, the search of the triangle is carried
out by the simple search consists of the loop over
all the triangles.

The search of triangles after the grid move-
ment are achieved by the following procedure.
The search starts with the triangle in which the
point under consideration lies before the grid
movement. If the point still lies in this trian-
gle, the search ends. If not, the three triangles
which are the neighbours of the first triangle are
searched next. The search region is extended suc-
cessively to the neigbours of the neigbours until
the desired triangle is found. Since the moving
distance of grid points are not large, this search
converges usually in a few extensions. The com-
putational time required is much less than that



of the loop over all the triangles.

RESULTS

The numerical procedure described above is ap-
plied to free surface flow simulations around a
submerged hydrofoil. A hydrofoil section used
here is NACA0012 and the angle of attack is set
5 degrees. The depth of submergence s measured
at the mid-chord and nondimensionalized by the
chord length varies from 1.034 to 0.911. Froude
number F' = 0.5672 and water depth is assumed
to be infinite. These conditions correspond with
the experiments by Duncan [15] except that the
experiments were carried out in the tank of a fi-
nite water depth (varies from 1.90 to 1.77, nondi-
mensionalized by a chord length).

For all the computation, the initial com-
putational domain is taken as

~7<7<6325 —7T<y<0 (65)

unless otherwise noted. z = 0 is the 1/4 chord aft
from the leading edge of the hydrofoil and y = 0
is the undisturbed water level.

Three levels of multigrids used for the com-
putation with the submergence s = 1.034 are
shown in Fig.8. The finest grid consists of 6,587
nodes and 12,854 triangles. Among them, 64
nodes are distributed on the body. The medinm
grid has 1,642 nodes and 3,130 triangles while
the coarsest one has 409 nodes and 745 trian-
gles. Since these grids are for the converged solu-
tion, the free surface configurations correspond to
the developed wave field, though the initial grids
are generated under the undisturbed free surface.
Maginified view of the finest grid is depicted in
Fig.9.

The computed pressure distributions with
the multi- and single- grid cases are shown in
Figs.10 and 11. Both are the results at 400 time
cycles with the Courant number CFL being 5.0.

The single grid case shows the undevel-
oped wave field in which the waves generated by
the hydofoil do not yet reach the outflow bound-
ary, while in the multigrid case the converged so-
lution with developed wave field (except for the
region close to the outflow boundary where nu-
merical damping is added) is obtained. This is
due to the fact that time advancement in one
multigrid cycle in the three-level mutigrid is ap-
proximately At + 2At + 4A{ = TAt, where At is
the time step in the finest grid, because the lo-
cal time stepping is taken proportional to the cell
area. On the other hand, time advancement in
the single-grid case in one cycle is just At.

For the practical computations shown
hereafter the full multigrid scheme is employed,
in which the initial solution is obtained with only
the coarsest grid, then the solution is transferred
to the next finer grid and the solution is updated
by the multigrid method using the coarsest grid
and the next finer grid. The procedure is repeated
with adding one level of multigrid at a time until
the finest grid is reached. The cycles for each
stage are 1,000 cycles with the single coarsest
grid, 500 cycles with the double grid (the medium
and the coarsest) and 400 cycles with triple grid
(the finest, the medium and the coarsest grids).
With this scheme, the residual in the final stage
is O(107%).

The effect of numerical damping expressed
by Eq.(36) is verified next. Fig.12 compares two
computed wave configurations. One has the so-
lution domain of —7 < z < 6.25, and the other
has the longer domain of —=7 < z < 8.25. The
number of grid points in the longer domain case
increases in such a way that the grid density is ap-
proximately the same in both cases. Since Froude
number is 0.5672, the length of the damping zore
defined in Eq.(37) is about 2.02. Waves going
through the outflow boundary are damped effec-
tively in the damping zone and the reflection of
waves on the outflow boundary cannot be ob-
served. Also, the comparison of the long-domain
solution and the short-domain one shows that the
artificial damping does not affect the flow field
upstream of the damping zone.

In Fig.13 the computed wave height is
compared with the experimental data by Duncan
[15]. The present result isin good agreement with
the experimental data. Fig.14 and 15 show the
pressure distribution and the velocity vectors in
the vicinity of the hydrofoil, respectively. Fig.16
shows the computed Cp distribution on the body.

Fig.17 is the result with s = 0.951. Again,
the computed wave profile shows good agreement
with experimental data [15]. When the submer-
gence of the hydrofoil decreases, the wave am-
plitude becomes larger and wave length becomes
shorter than the deep submergence case. These
nonlinear features of wave formations in the ex-
periment are clearly captured by the present
method. Note that in the experiment with s =
0.951, two types of wave profiles, one is break-
ing and the other is non-breaking, are obtained
depending on the experimental condition. How-
ever, the present computation predicts only the
non-breaking waves.

When the submergence decreases further



to s = 0.911, only the breaking waves exist in the
experiment. However, the present method pre-
dicts the very steep but non-breaking wave as
shown in Fig.18. In the implementation of the
kinematic free surface condition, the wave height
is assumed to be expressed by the single-valued
function of #. Thus, breaking waves or overturn-
ing waves cannot be simulated by the present
scheme. However, more flexible treatment of the
free surface movement such as the Lagrangian
method can be adopted without difficulties. The
nature of unstructured grid methods enables the
spatial discretization in such a highly deformed
region. This improvement together with develop-
ment of the time-accurate scheme makes it possi-
ble to simulate transient breaking or overturning
waves in the near future.

CONCLUSIONS

In the present study, a finite-volume method with
an unstructured grid method which has been
originally developed for transonic flow compu-
tations is successfully applied to incompressible
flows with a free surface. The computed results
for a submerged hydrofoil show good agreement
with the experimental data.

Further extensions of this method are
the inclusion of viscous effects, transient flow
computation using time-accurate scheme, break-
ing or overturning waves simulation and so
on. Also, the three-dimensional version of the
present method, already exists for transonic flow
computations[16], must be a useful tool for ship
hydrodynamics or marine engineering.
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Figure 8: Sequence of multigrids around NACA0012.
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Figure 9: Magnified view of the finest grid around NACA0012.

Figure 10: Computed pressure distribution with the multigrid case.




Figure 11: Computed pressure distribution with the single grid case.
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Figure 12: Comparison of wave profiles with the long and the short domains.
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Figure 13: Comparison of wave profiles at s = 1.034

Figure 14: Computed pressure distribution.
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Figure 15: Computed velocity vectors.
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Figure 16: Computed Cp distribution.
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Figure 18: Computed wave profile and velocity distributions at s = 0.911





