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Abstract

This paper examines the use of computational fluid dynamics as a tool for aircraft design. It addresses the requirements
for effective industrial use, and trade-offs between modeling accuracy and computational costs. Essential elements of
algorithm design are discussed in detail, together with a unified approach to the design of shock capturing schemes.
Finally, the paper discusses the use of techniques drawn from control theory to determine optimal aerodynamic shapes.
In the future multidisciplinary analysis and optimization should be combined to take account of the trade-offs in the
overall performance of the complete system. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Computational methods first began to have a signifi-
cant impact on aerodynamics analysis and design in the
period of 1965-75. This decade saw the introduction of
panel methods which could solve the linear flow models
for arbitrarily complex geometry in both subsonic and
supersonic flow [1-3]. It also saw the appearance of the
first satisfactory methods for treating the nonlinear equa-
tions of transonic flow [4-9], and the development of the
hodograph method for the design of shock free super-
critical airfoils [10].

Algorithms have been the subject of intensive develop-
ment for the past two decades. The principles underlying
the design and implementation of robust schemes which
can accurately resolve shock waves and contact discon-
tinuities in compressible flows are now quite well estab-
lished. It is also quite well understood how to design
high order schemes for viscous flow, including compact
schemes and spectral methods. Adaptive refinement of
the mesh interval (k) and the order of approximations (p)
has been successfully exploited both separately and in
combination in the h-p method [11]. A continuing ob-
stacle to the treatment of configurations with complex
geometry has been the problem of mesh generation. Sev-
eral general techniques have been developed, including
algebraic transformations and methods based on the
solution of elliptic and hyperbolic equations. In the last
few years methods using unstructured meshes have also
begun to gain more general acceptance. The Dassault-
INRIA group led the way in developing a finite element
method for transonic potential flow. They obtained
a solution for a complete Falcon 50 as early as 1982 [12].
Euler methods for unstructured meshes have been the
subject of intensive development by several groups
since 1985 [13-17], and Navier-Stokes methods on
unstructured meshes have also been demonstrated
[18-201.

Computational fluid dynamics (CFD) is now widely
accepted as a key tool for aerodynamic design. Its effec-
tiveness is still hampered, however, by the long set-up
and high costs, both human and computational of com-
plex flow simulations. The essential requirements for

industrial use are:

1. assured accuracy,
2. acceptable computational and human costs,
3. fast turn around.

Improvements are still needed in all three areas. In par-
ticular, the fidelity of modeling of high Reynolds number
viscous flows continues to be limited by computational
costs. Consequently, accurate and cost effective simula-
tion of viscous flow at Reynolds numbers associated with
full scale flight, such as the prediction of high lift devices,
remains a challenge. Several routes are available toward
the reduction of computational costs, including the
reduction of mesh requirements by the use of higher
order schemes, improved convergence to a steady state
by sophisticated acceleration methods, fast inversion
methods for implicit schemes, and the exploitation of
massively parallel computers.

Another factor limiting the effective use of CFD is the
lack of good interfaces to computer aided design (CAD)
systems. The geometry models provided by existing CAD
systems often fail to meet the requirements of continuity
and smoothness needed for flow simulation, with the
consequence that they must be modified before they can
be used to provide the input for mesh generation. This
bottleneck, which impedes the automation of the mesh
generation process, needs to be eliminated, and the CFD
software should be fully integrated in a numerical design
environment. In addition to more accurate and cost-
effective flow prediction methods, better optimizations
methods are also needed, so that not only can designs be
rapidly evaluated, but directions of improvement can be
identified. Possession of techniques which result in a fas-
ter design cycle gives a crucial advantage in a competitive
environment.

A critical issue, examined in the next section, is the
choice of mathematical models. What level of complexity
is needed to provide sufficient accuracy for acrodynamic
design, and what is the impact on cost and turn-around
time? Section 3 addresses the design of numerical algo-
rithms for flow simulation. Section 4 presents the results
of some numerical calculations which require moderate
computer resources and could be completed with the fast
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turn-around required by industrial users. Section 5 dis-
cusses automatic design procedures which can be used
to produce optimum aerodynamic designs. Finally,
Section 6 offers an outlook for the future.

2. The complexity of fluid flow and mathematical
modeling

2.1. The hierarchy of mathematical models

Many critical phenomena of fluid flow, such as shock
waves and turbulence, are essentially nounlinear. They
also exhibit extreme disparities of scales. While the actual
thickness of a shock wave is of the order of a mean free
path of the gas particles, on a macroscopic scale its
thickness is essentially zero. In turbulent flow energy is
transferred from large scale motions to progressively
smaller eddies until the scale becomes so small that the
motion is dissipated by viscosity. The ratio of the length
scale of the global flow to that of the smallest persisting
eddies is of the order Re**, where Re is the Reynolds
number, typically in the range of 30 million for an air-
craft. In order to resolve such scales in all three space
directions a computational grid with the order of Re®/*
cells would be required. This is beyond the range of any
current or foreseeable computer. Consequently, math-
ematical models with varying degrees of simplification
have to be introduced in order to make computational
simulation of flow feasible and produce viable and cost-
effective methods.

Fig. | (supplied by Pradeep Raj) indicates a hierarchy
of models at different levels of simplification which have
proved useful in practice. Efficient flight is generally
achieved by the use of smooth and streamlined shapes
which avoid flow separation and minimize viscous
effects, with the consequence that useful predictions can
be made using inviscid models. Inviscid calculations with
boundary layer corrections can provide quite accurate
predictions of lift and drag when the flow remains at-
tached, but iteration between the inviscid outer solution
and the inner boundary layer solution becomes increas-
ingly difficult with the onset of separation. Procedures for
solving the full viscous equations are likely to be needed
for the simulation of arbitrary complex separated flows,
which may occur at high angles of attack or with bluff
bodies. In order to treat flows at high Reynolds numbers,
one is generally forced to estimate turbulent effects by
Reynolds averaging of the fluctuating components. This
requires the introduction of a turbulence model. As the
available computing power increases one may also aspire
to large eddy simulation (LES) in which the larger scale
eddies are directly calculated, while the influence of tur-
bulence at scales smaller than the mesh interval is repre-
sented by a subgrid scale model.
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Fig. 1. Hierarchy of fluid flow models.

2.2. Computational costs

Computational costs vary drastically with the choice
of mathematical model. Panel methods can be effectively
used to solve the linear potential flow equation with
higher-end personal computers (with an Intel Pentium
microprocessor, for example). Studies of the dependency
of the result on mesh refinement, performed by this
author and others, have demonstrated that inviscid
transonic potential flow or Euler solutions for an airfoil
can be accurately calculated on a mesh with 160 cells
around the section, and 32 cells normal to the section.
Using multigrid techniques 10-25 cycles are enough to
obtain a converged result. Consequently, airfoil calcu-
lations can be performed in seconds on a Cray YMP, and
can also be performed on Pentium-class personal com-
puters. Correspondingly, accurate three-dimensional in-
viscid calculations can be performed for a wing on
a mesh, say with 192 x 32 x 48 = 294,912 cells, in about
5min on a single processor Cray YMP, or less than
a minute with eight processors, ot in less than an hour on
a workstation such as a Silicon Graphics Indigo 2.

Viscous simulations at high Reynolds numbers require
vastly greater resources. Careful two-dimensional studies
of mesh requirements have been carried out at Princeton
by Martinelli [21]. He found that on the order of 32 mesh
intervals were needed to resolve a turbulent boundary
layer, in addition to 32 intervals between the boundary
layer and the far field, leading to a total of 64 intervals. In
order to prevent degradations in accuracy and conver-
gence due to excessively large aspect ratios (in excess of
1000) in the surface mesh cells, the chordwise resolution
must also be increased to 512 intervals. Reasonably,
accurate solutions can be obtained in a 512 x 64 mesh in
100 multigrid cycles. Translated to three dimensions, this
would imply the need for meshes with 5-10 million cells
(for example, 512 x 64 x 256 = 8,388,608 cells as shown
in Fig. 2). When simulations are performed on less fine
meshes with, say, 500,000 to 1 million cells, it is very hard
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Fig. 2. Mesh requirements for a viscous simulation.

to avoid mesh dependency in the solutions as well as
sensitivity to the turbulence model.

A typical algorithm requires of the order of 5000 float-
ing point operations per mesh point in one multigrid
iteration. With 10 million mesh points, the operation
count is of the order of 0.5 x 10!! per cycle. Given a com-
puter capable of sustaining 10! operations per second
(100 gigaflops), 200 cycles could then be performed in
100 s. Simulations of unsteady viscous flows (flutter, buf-
fet) would be likely to require 1000-10,000 time steps.
A further progression to large eddy simulation of com-
plex configurations would require even greater resources.
The following estimate is due to Jou [22]. Suppose that
a conservative estimate of the size of eddies in a boundary
layer that ought to be resolved is 1/5 of the boundary
layer thickness. Assuming that 10 points are needed to
resolve a single eddy, the mesh interval should then be
1/50 of the boundary layer thickness. Moreover, since the
eddies are three dimensional, the same mesh interval
should be used in all three directions. Now, if the bound-
ary layer thickness is of the order of 0.01 of the chord
length, 5000 intervals will be needed in the chordwise
direction, and for a wing with an aspect ratio of 10,
50,000 intervals will be needed in the spanwise direction.
Thus, of the order of 50 x 5000 x 50,000 or 12.5 billion
mesh points would be needed in the boundary layer. If
the time dependent behavior of the eddies is to be fully
resolved using time steps on the order of the time for
a wave to pass through a mesh interval, and one allows
for a total time equal to the time required for waves to

travel three times the length of the chord, of the order of
15,000 time steps would be needed. A more refined esti-
mate which allows for the varying thickness of the
boundary layer, recently made by Spalart et al. [23],
suggests an even more severe requirement. Performance
beyond the teraflop (1012 operations per second) will be
needed to attempt calculations of this nature, which also
have an information content far beyond what is needed
for engineering analysis and design. The designer does
not need to know the details of the eddies in the bound-
ary layer. The primary purpose of such calculations is to
improve the calculation of averaged quantities such as
skin friction, and the prediction of global behavior such
as the onset of separation. The main current use of
Navier-Stokes and large eddy simulations is to try to
gain an improved insight into the physics of turbulent
flow, which may in turn lead to the development of more
comprehensive and reliable turbulence models.

2.3. Turbulence modeling

It is doubtful whether a universally valid turbulence
model, capable of describing all complex flows, could be
devised [247. Algebraic models [25,26] have proved fair-
ly satisfactory for the calculation of attached and slightly
separated wing flows. These models rely on the boundary
layer concept, usually incorporating separate formulas
for the inner and outer layers, and they require an esti-
mate of a length scale which depends on the thickness of
the boundary layer. The estimation of this quantity by
a search for a maximum of the vorticity times a distance
to the wall, as in the Baldwin-Lomax model, can lead to
ambiguities in internal flows, and also in complex vor-
tical flows over slender bodies and highly swept or delta
wings [27,28]. The Johnson-King model [29], which
allows for nonequilibrium effects through the introduc-
tion of an ordinary differential equation for the max-
imum shear stress, has improved the prediction of flows
with shock induced separation [30,31].

Closure models depending on the solution of transport
equations are widely accepted for industrial applications.
These models eliminate the need to estimate a length
scale by detecting the edge of the boundary layer. Eddy
viscosity models typically use two equations for the tur-
bulent kinetic energy k and the dissipation rate ¢, or
a pair of equivalent quantities [32-37]. Models of this
type generally tend to present difficulties in the region
very close to the wall. They also tend to be badly condi-
tioned for numerical solution. The k-I model [38] is
designed to alleviate this problem by taking advantage of
the linear behavior of the length scale I near the wall. In
an alternative approach to the design of models which
are more amenable to numerical solution, new models
requiring the solution of one transport equation have
recently been introduced [39,407. The performance of the
algebraic models remains competitive for wing flows, but
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the one- and two-equation models show promise for
broader classes of flows. In order to achieve greater
universality, research is also being pursued on more
complex Reynolds stress transport models, which require
the solution of a larger number of transport equations.

Another direction of research is the attempt to devise
more rational models via renormalization group (RNG)
theory [41,42]. Both algebraic and two-equation k-¢
models devised by this approach have shown promising
results [43].

The selection of sufficiently accurate mathematical
models and a judgment of their cost-effectiveness ulti-
mately rests with industry. Aircraft and spacecraft de-
signs normally pass through the three phases of
conceptual design, preliminary design, and detailed de-
sign. Correspondingly, the appropriate CFD models will
vary in complexity. In the conceptual and preliminary
design phases, the emphasis will be on relatively simple
models which can give results with very rapid turn-
around and low computer costs, in order to evaluate
alternative configurations and perform quick parametric
studies. The detailed design stage requires the most com-
plete simulation that can be achieved with acceptable
cost. In the past, the low level of confidence that could be
placed on numerical predictions has forced the extensive
use of wind tunnel testing at an early stage of the design.
This practice was very expensive. The limited number of
models that could be fabricated also limited the range of
design variations that could be evaluated. It can be
anticipated that in the future, the role of wind tunnel
testing in the design process will be more one of verifica-
tion. Experimental research to improve our understand-
ing of the physics of complex flows will continue,
however, to play a vital role.

3. CFD algorithms
3.1. Difficulties of flow simulation

The computational simulation of fluid flow presents
a number of severe challenges for algorithm design. At
the level of inviscid modeling, the inherent nonlinearity of
the fluid flow equations leads to the formation of singu-
larities such as shock waves and contact discontinuities.
Moreover, the geometric configurations of interest are
extremely complex, and generally contain sharp edges
which lead to the shedding of vortex sheets. Extreme
gradients near stagnation points or wing tips may also
lead to numerical errors that can have global influence.
Numerically generated entropy may be convected from
the leading edge for example, causing the formation of
a numerically induced boundary layer which can lead to
separation. The need to treat exterior domains of infinite
extent is also a source of difficulty. Boundary conditions
imposed at artificial outer boundaries may cause reflec-

ted waves which significantly interfere with the flow.
When viscous effects are also included in the simulation,
the extreme difference of the scales in the viscous bound-
ary layer and the outer flow, which is essentially inviscid,
is another source of difficulty, forcing the use of meshes
with extreme variations in mesh interval. For these rea-
sons CFD, has been a driving force for the development
of numerical algorithms.

3.2. Structured and unstructured meshes

The algorithm designer faces a number of critical deci-
sions. The first choice that must be made is the nature of
the mesh used to divide the flow field into discrete subdo-
mains. The discretization procedure must allow for the
treatment of complex configurations. The principal alter-
natives are Cartesian meshes, body-fitted curvilinear
meshes, and unstructured tetrahedral meshes. Each of
these approaches has advantages which have led to their
use. The Cartesian mesh minimizes the complexity of the
algorithm at interior points and facilitates the use of high
order discretization procedures, at the expense of greater
complexity, and possibly a loss of accuracy, in the treat-
ment of boundary conditions at curved surfaces. This
difficulty may be alleviated by using mesh refinement
procedures near the surface. With their aid, schemes
which use Cartesian meshes have recently been
developed to treat very complex configurations [44-47].

Body-fitted meshes have been widely used and are
particularly well suited to the treatment of viscous flow
because they readily allow the mesh to be compressed
near the body surface. With this approach, the problem
of mesh generation itself has proved to be a major pacing
item. The most commonly used procedures are algebraic
transformations [48-51], methods based on the solution
of elliptic equations, pioneered by Thompson [52-55],
and methods based on the solution of hyperbolic equa-
tions marching out from the body [56]. In order to treat
very complex configurations it generally proves expedi-
ent to use a multiblock [57,58] procedure, with separate-
ly generated meshes in each block, which may then be
patched at block faces, or allowed to overlap, as in the
Chimera scheme [59,607]. While a number of interactive
software systems for grid generation have been de-
veloped, such as EAGLE, GRIDGEN, and ICEM, the
generation of a satisfactory grid for a very complex
configuration may require months of effort.

The alternative is to use an unstructured mesh in
which the domain is subdivided into tetrahedra. This in
turn requires the development of solution algorithms
capable of yielding the required accuracy on unstruc-
tured meshes. This approach has been gaining accept-
ance, as it is becoming apparent that it can lead to
a speed-up and reduction in the cost of mesh generation
that more than offsets the increased complexity and cost
of the flow simulations. Two competing procedures for
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generating triangulations which have both proved suc-
cessful are Delaunay triangulation [61,20], based on con-
cepts introduced at the beginning of the century by
Voronoi [62], and the moving front method [63].

3.3. Finite difference, finite volume, and finite element
schemes

Associated with choice of mesh type is the formulation
of the discretization procedure for the equations of fluid
flow, which can be expressed as differential conservation
laws. In the Cartesian tensor notation, let x; be the
coordinates, p, p, T, and E the pressure, density, temper-
ature, and total energy, and u; the velocity components.
Using the convention that summation over j =1,2,3 is
implied by a repeated subscript j, each conservation
equation has the form

ow of, o,
a T o T (1)

J J

where f; are the inviscid (convective) fluxes, and fv; are
the viscous fluxes. For the mass equation

w=p, f;=puj.

For the i momentum equation

w; = puy, fij = pugtl; + péij, o, = G4y

where g;; is the viscous stress tensor. For the energy
equation

w=pE, f;=pHu; fo = Oty — k—,

where k is the coefficient of thermal conductivity. The
pressure is related to the density and energy by the
equation of state

p =0 — Dp(E — Suzu;) @

in which y is the ratio of specific heats and the stagnation
enthalpy is given by

H=E+%
0

while
E=c¢,T + tuu;,

where ¢, is the specific heat at constant volume. In the
Navier-Stokes equations the viscous stresses are as-
sumed to be linearly proportional to the rate of strain, or

aui (%LJ 6uk
L= S —= 3
03 ”<6xj + ax,-> + /15,,<axk > 3

where p and A are the coefficients of viscosity and bulk
viscosity, and usually 4 = —2u/3. The coefficient of

thermal conductivity and temperature are given by the
relations

= et =2
Pr’ Rp’

where ¢, is the specific heat at constant pressure, R is the
gas constant, and Pr is the Prandtl number.

The finite difference method, which requires the use of
a Cartesian or a structured curvilinear mesh, directly
approximates the differential operators appearing in
these equations. In the finite volume method [64], the
discretization is accomplished by dividing the domain of
the flow into a large number of small subdomains, and
applying the conservation laws in the integral form

0
——J‘ WdV+f f-dS =0.
ot)e o0

Here f is the flux appearing in Eq. (1) and dS is the
directed surface element of the boundary 02 of the do-
main Q. The use of the integral form has the advantage
that no assumption of the differentiability of the solu-
tions is implied, with the result that it remains a valid
statement for a subdomain containing a shock wave. In
general, the subdomains could be arbitrary, but it is
convenient to use either hexahedral cells in a body con-
forming curvilinear mesh or tetrahedrons in an unstruc-
tured mesh.

Alternative discretization schemes may be obtained by
storing flow variables at either the cell centers or the
vertices. These variations are illustrated in Fig. 3 for
the two-dimensional case. With a cell-centered scheme
the discrete conservation law takes the form

d
—wV fS=0 4
3" + Y £:S=0, C)]

faces

where V is the cell volume, and f is now a numerical
estimate of the flux vector through each face. f may be
evaluated from values of the flow variables in the cells
separated by each face, using upwind biasing to allow for
the directions of wave propagation. With hexahedral
cells, Eq. (4) is very similar to a finite difference scheme in
curvilinear coordinates. Under a transformation to cur-
vilinear coordinates ¢;, Eq. (1) becomes

0 0 [ 0¢&
at(JW) + B <Jaxjfj> =0, (5)
where J is the Jacobian determinant of the transforma-
tion matrix [0x;/0¢;]. The transformed flux J(8¢,/0x;)f;
corresponds to the dot product of the flux f with a vector
face area J 0&;/0x;, while J represents the transformation
of the cell volume. The finite volume form (4) has the
advantages that it is valid for both structured and un-
structured meshes, and that it assures that a uniform flow
exactly satisfies the equations, because ZfacesS =0 for
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(b)

Fig. 3. Structured and unstructured discretizations. a: Cell-
centered scheme. and b: Vertex Scheme.

a closed control volume. Finite difference schemes do not
necessarily satisfy this constraint because of the discretiz-
ation errors in evaluating 0&;/0x; and the inversion of
the transformation matrix. A cell-vertex finite volume
scheme can be derived by taking the union of the cells
surrounding a given vertex as the control volume for that
vertex [65-67]. In Eq. (4), V is now the sum of the
volumes of the surrounding cells, while the flux balance is
evaluated over the outer faces of the polyhedral control
volume. In the absence of upwind biasing the flux vector
is evaluated by averaging over the corners of each face.
This has the advantage of remaining accurate on an
irregular or unstructured mesh.

An alternative route to the discrete equations is pro-
vided by the finite element method. Whereas the finite
difference and finite volume methods approximate the
differential and integral operators, the finite element
method proceeds by inserting an approximate solution
into the exact equations. On multiplying by a test func-
tion ¢ and integrating by parts over space, one obtains
the weak form

s oo Jova

which is also valid in the presence of discontinuities in the
flow. In the Galerkin method the approximate solution is
expanded in terms of the same family of functions as
those from which the test functions are drawn. By choos-
ing test functions with local support, separate equations
are obtained for each node. For example, if a tetrahedral
mesh is used, and ¢ is piecewise linear, with a nonzero

value only at a single node, the equations at each node
have a stencil which contains only the nearest neighbors.
In this case the finite element approximation corresponds
closely to a finite volume scheme. If a piecewise linear
approximation to the flux f is used in the evaluation of
the integrals on the right hand side of Eq. (6), these
integrals reduce to formulas which are identical to the
flux balance of the finite volume scheme.

Thus, the finite difference and finite volume methods
lead to essentially similar schemes on structured meshes,
while the finite volume method is essentially equivalent
to a finite element method with linear elements when
a tetrahedral mesh is used. Provided that the flow equa-
tions are expressed in the conservation law form (1), all
three methods lead to an exact cancellation of the fluxes
through interior cell boundaries, so that the conservative
property of the equations is preserved. The important
role of this property in ensuring correct shock jump
conditions was pointed out by Lax and Wendroff [68].

3.4. Nonoscillatory shock capturing schemes

3.4.1. Local extremum diminishing (LED) schemes

The discretization procedures which have been de-
scribed in the last section lead to nondissipative approxi-
mations to the Euler equations. Dissipative terms may be
needed for two reasons. The first is the possibility of
undamped oscillatory modes. The second reason is the
need for the clean capture of shock waves and contact
discontinuities without undesirable oscillations. An ex-
treme overshoot could result in a negative value of an
inherently positive quantity such as the pressure or
density. The next sections summarize a unified approach
to the construction of nonoscillatory schemes via the
introduction of controlled diffusive and antidiffusive
terms. This is the line adhered to in the author’s own
work.

The development of nonoscillatory schemes has been
a prime focus of algorithm research for compressible
flow. Consider a general semi-discrete scheme of the form

d

v = chk(vk — ;). (7
k#j

A maximum cannot increase and a minimum cannot

decrease if the coefficients cj are nonnegative, since at

a maximum v, — v; < 0, and at a minimum v, — v; = 0.

Thus the condition

Cjk 20, k#] (8)

is sufficient to ensure stability in the maximum norm.
Moreover, if the scheme has a compact stencil, so that
¢ = 0 when j and k are not nearest neighbors, a local
maximum cannot increase and local minimum cannot
decrease. This local extremum diminishing (LED) prop-
erty prevents the birth and growth of oscillations. The
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one-dimensional conservation law

ou 0

o Toxl =0

provides a useful model for analysis. In this case waves
are propagated with a speed a(u) = Jf/0u, and the solu-
tion is constant along the characteristics dx/dt = a(u).
Thus the LED property is satisfied. In fact, the total
variation

TV(u) = Jw

—

ou

d
axx

of a solution of this equation does not increase, provided
that any discontinuity appearing in the solution satisfies
an entropy condition [69]. Harten proposed that differ-
ence schemes ought to be designed so that the discrete
total variation cannot increase [ 70]. If the end values are
fixed, the total variation can be expressed as

TV(u) = 20>, maxima — Y minima).

Thus a LED scheme is also total variation diminishing
(TVD). The converse is not necessarily true, since it is
possible for adjacent maxima and minima to be shifted
an equal amount, say upwards, so that the total variation
is unchanged, while the local maximum is increased.
Positivity conditions of the type expressed in Egs. (7) and
(8) lead to diagonally dominant schemes, and are the key
to the elimination of improper oscillations. The positivity
conditions may be realized by the introduction of dif-
fusive terms or by the use of upwind biasing in the
discrete scheme. Unfortunately, they may also lead to
severe restrictions on accuracy unless the coefficients
have a complex nonlinear dependence on the solution.

3.4.2. Artificial diffusion and upwinding

Following the pioneering work of Godunov [71],
a variety of dissipative and upwind schemes designed to
have good shock capturing properties have been de-
veloped during the past two decades [ 72-86,20,70]. If the
one-dimensional scalar conservation law

ov 0
7 +8_x (v)=0 ©

is represented by a three point semi-discrete scheme

%
dt

=i yalvier — v) + e 12051 — 05

the scheme is LED if
i1 20, ¢y 20. (10)

A conservative semi-discrete approximation to the one-
dimensional conservation law can be derived by sub-
dividing the line into cells. Then the evolution of the

value v; in the jth cell is given by

Ax%vti + M1z —hjqpp =0, (11)
where h;. 1, 18 an estimate of the flux between cells j and
j+ 1. The simplest estimate is the arithmetic average
(fj+1 -+ f;)/2, but this leads to a scheme that does not
satisfy the positivity conditions. To correct this, one may
add a dissipative term and set

Bivip =301 + 1) — te20501 — 1)) (12)

In order to estimate the required value of the coefficient
%112, let a;4 1> be a numerical estimate of the wave
speed of/ov,

{i—i:—];’j if 0,51 #0;,
Ajr12 = of . (13)
%FW fojeg =v;
Then
hj+1/2 - hj~1/2 = - (ij+1/2 "%aj—u/z)AUjJrl/z
+ (-1 + 3aj-112)A0; -2,
where

Avji 1 = Vje1 — U,

and the LED condition (10) is satisfied if

%y 12 2 3l 1) (14)
If one takes

%12 =2+ 172]

one obtains the first order upwind scheme

f.
hj+1/2 = { ’

f;‘+1 if Aj+1)2 < 0.

if Ajr1/2 > O,

This is the least diffusive first order scheme which satisfies
the LED condition. In this sense upwinding is a natural
approach to the construction of nonoscillatory schemes.
It may be noted that the successful treatment of transonic
potential flow also involved the use of upwind biasing.
This was first introduced by Murman and Cole to treat
the transonic small disturbance equation [4].

Another important requirement of discrete schemes is
that they should exclude nonphysical solutions which do
not satisfy appropriate entropy conditions [87], which
require the convergence of characteristics towards ad-
missible discontinuities. This places more stringent
bounds on the minimum level of numerical viscosity
[88-91]. In the case that the numerical flux function is
strictly convex, Aiso has recently proved [92] that it is
sufficient that

Oi+1/2 > maX{%la,-+ 12|, &8ign(v+ 1 — Uj)}
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for > 0. Thus the numerical viscosity should be
rounded out and not allowed to reach zero at a point
where the wave speed a(u) = 0f/du approaches zero. This
justifies, for example, Harten’s entropy fix [70].

Higher order schemes can be constructed by introduc-
ing higher order diffusive terms. Unfortunately, these
have larger stencils and coefficients of varying sign which
are not compatible with conditions (8) for a LED
scheme, and it is known that schemes which satisfy
these conditions are at best first order accurate in the
neighborhood of an extremum. It proves useful in the
following development to introduce the concept of essen-
tially local extremum diminishing (ELED) schemes.
These are defined to be schemes which satisfy the condi-
tion that in the limit as the mesh width Ax — 0, local
maxima are nonincreasing, and local minima are nondec-
reasing,

3.4.3. High resolution switched schemes:
Jameson—Schmidt~Turkel (JST) scheme

Higher order nonoscillatory schemes can be derived by
introducing anti-diffusive terms in a controlled manner.
An early attempt to produce a high resolution scheme
by this approach is the Jameson-Schmidt-Turkel (JST)
scheme [93]. Suppose that anti-diffusive terms are intro-
duced by subtracting neighboring differences to produce
a third order diffusive flux

dj+1/2 = 0€j+1/2{AUj+1/2 ‘"%(Avj+3/2 + AUj—l/Z)}: (15)

which is an approximation to 2¢Ax*33v/0x>. The positiv-
ity condition (8) is violated by this scheme. It proves that
it generates substantial oscillations in the vicinity of
shock waves, which can be eliminated by switching
locally to the first order scheme. The JST scheme there-
fore introduces blended diffusion of the form

2
dj+1/2 = 8&«21/2A0j+1/2

— &1 2(Avj a2 — 2805012 + ADj—y2). (16)

The idea is to use variable coefficients g§2+)1/2 and

e, which produce a low level of diffusion in
regions where the solution is smooth, but prevent oscilla-
tions near discontinuities. If £%» is constructed so that
it is of order Ax? where the solution is smooth, while
&%)/, is of order unity, both terms in d; 1/, will be of
order Ax>.

The JST scheme has proved very effective in practice in
numerous calculations of complex steady flows, and con-
ditions under which it could be a total variation dimin-
ishing (TVD) scheme have been examined by Swanson
and Turkel [94]. An alternative statement of sufficient
conditions on the coefficients &%y, and &¥,;, for the
JST scheme to be LED is as follows:

Theorem 1 (Positivity of the JST scheme). Suppose that
whenever either vj,1 or v; is an extremum the coefficients

of the JST scheme satisfy

8§2+) 12 = %l“ﬁ 1/2)s 83‘? 12 =0 (17
Then the JST scheme is local exiremum diminishing (LED).
Proof. We need only consider the rate of change of v at

extremal points. Suppose that v; is an extremum. Then

4 4
8§+)1/2 = 5&—) 12 =0

and the semi-discrete scheme (11) reduces to
do;
Axd—tj = (852+) 12— %aﬁ 12)AV; 417

2 1
— (212 + 2a;-112)AV; 112

and each coefficient has the required sign. O

In order to construct £/, and &/ ,,, with the desired
properties define

u—uov |4

— fu#0orv#0,
[u] + [v]

R(u,v) = (18)

0 fu=0v=0,

where ¢ is a positive integer. Then R(u,v) =1 if u and
v have opposite signs. Otherwise R(u,v) < 1. Now set

Qj = R(Avj+1/25Avj~1/2)> Qj+1/2 = maX(Qj: Qj-i—l)
and

33'2+)1/2 = 0+ 1/2Qj+ 1/2»33@1/2 = %Ofﬁ 1/2(1 - Qj+ 1/2)- (19)

3.4.4. Symmetric limited positive (SLIP) scheme

An alternative route to high resolution without oscilla-
tion is to introduce flux limiters to guarantee the satisfac-
tion of the positivity condition (8). The use of limiters
dates back to the work of Boris and Book [73]. A parti-
cularly simple way to introduce limiters, proposed by the
author in 1984 [81], is to use flux limited dissipation. In
this scheme the third order diffusion defined by Eq. (15)is
modified by the insertion of limiters which produce an
equivalent three point scheme with positive coefficients.
The original scheme [81] can be improved in the follow-
ing manner so that less restrictive flux limiters are re-
quired. Let L{u,v) be a limited average of u and v with the
following properties:

(P1) L{u,v) = L{v,u),

(P2) Lo, ow) = oLlu,v),

(P3) L(u,u) =u,

(P4) L{u,v) = 0if u and v have opposite signs: otherwise
L(u,v) has the same sign as u and v.

Properties (P1)-(P3) are natural properties of an aver-
age. Property (P4) is needed for the construction of
a LED or TVD scheme.
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It is convenient to introduce the notation
@) = L(1,7) = L{r,1),

where according to (P4) ¢(r) = 0. It follows from (P2) on
setting o = 1/u or 1/v that

L(u,v) = ¢<§>u = ¢<%>v

Also it follows on setting v = 1 and u = r that

o0 =ra(1 )

Thus, if there exists r <0 for which ¢(r) >0, then
¢(1/r) < 0. The only way to ensure that ¢(r) =0 is to
require ¢(r) = 0 for all r < 0, corresponding to property
(P4).

Now one defines the diffusive flux for a scalar conser-
vation law as

dj+1/2 = 0+ 1/2{Avj+1/2 - L(AUj+3/2>ADj-—1/2)}' (20
Set

o Avj+3/2 - AUj—s/z

= , =
Av_ 1y Avjy 12

and
L(Av; ., 312, A0 1p2) = ¢(7'+)Avj—1/2>
L(Avj—3/23AUj+ 1/2) = ¢(V_)Avj+ 1/2+
Then,
dv; . B
Ax@ ={0jr12 — 212 + o100 )AL 1
—{%m12 + 3051 F a1 h(r T AV 1.
21

Thus the scheme satisfies the LED condition if
i+ 12 22 3laj4 1] for all j, and @) = 0, which is assured
by property (P4) on L. At the same time it follows from
property (P3) that the first order diffusive flux is canceled
when Av is smoothly varying and of constant sign.
Schemes constructed by this formulation will be referred
to as symmetric limited positive (SLIP) schemes. This
result may be summarized as

Theorem 2 (Positivity of the SLIP scheme). Suppose that
the discrete conservation law (11) contains a limited dif-
Susive flux as defined by Eq. (20). Then the positivity condi-
tion (14), together with properties (P1)~(P4) for Ilimited
averages, are sufficient to ensure satisfaction of the LED
principle that a local maximum cannot increase and a local
minimum cannot decrease.

A variety of limiters may be defined which meet the
requirements of properties (P1)-(P4). Define

S(u, v) = ${sign(u) + sign(v)}

which vanishes is 4 and v have opposite signs.

Then two limiters which are appropriate are the fol-
lowing well-known schemes:
1. Minmod:

L(u, v) = S(u, v)min(|ul, |v]).
2. Van Leer:

2fuf]v]
ful + [v]

L(u,v) = S(u, v)

In order to produce a family of limiters which contains
these as special cases it is convenient to set

L(u,v) = 1D(u, v)(u + v),

where D(u, v) is a factor which should deflate the arithme-
tic average, and become zero if u and v have opposite
signs. Take

q

; (22)

u—uv

Dw,v)=1~Ruv)=1—|—
[ul + [0

where R(u, v} is the same function that was introduced in
the JST scheme, and ¢ is a positive integer. Then
D(u,v) = 0 if u and v have opposite signs. Also if g = 1,
L(u,v) reduces to minmod, while if ¢ = 2, L(u, v) is equiva-
lent to Van Leer’s limiter. By increasing ¢ one can gener-
ate a sequence of limited averages which approach a limit
defined by the arithmetic mean truncated to zero when
u and v have opposite signs.

When the terms are regrouped, it can be seen that with
this limiter the SLIP scheme is exactly equivalent to the
JST scheme, with the switch is defined as

Qj+ 12 = R(Avj+3/2:AUj+ 1/2),

2
8§'+)1/2 = U+ 1/2Qj+ 1/2>

35"21/2 = 0+ 1/2(1 — QO+ 1/2)-

This formulation thus unifies the JST and SLIP schemes.
The SLIP construction, however, provides a convenient
framework for the construction of LED schemes on un-
structured meshes [95].

3.4.5. Essentially local extremum diminishing (ELED)
scheme with soft limiter

The limiters defined by formula (22) have the disadvan-
tage that they are active at a smooth extrema, reducing
the local accuracy of the scheme to first order. In order to
prevent this, the SLIP scheme can be relaxed to give an
essentially local extremum diminishing (ELED) scheme
which is second order accurate at smooth extrema by the
introduction of a threshold in the limited average. There-
fore, redefine D(u,v) as

D(u,v) =1 — . ' (23)

max(|u] + |v],eAx)|
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where r = 3, g > 2. This reduces to the previous defini-
tion if Ju) + |u] > eAX".

In any region where the solution is smooth,
Avjya;p — Avjys is of order Ax? In fact if there is
a smooth extremum in the neighborhood of v; or v; 4,
a Taylor series expansion indicates that Av; . 3,, Avji 40
and Av;_y;, are each individually of order Ax?, since
dv/dx = 0 at the extremum. It may be verified that sec-
ond order accuracy is preserved at a smooth extremum if
q = 2. On the other hand the limiter acts in the usual way
if |Av;+ 3p2] O1 |Av;_ 32| > 6AX", and it may also be verified
that in the limit Ax — 0 local maxima are nonincreasing
and local minima are nondecreasing [95]. Thus the
scheme is essentially local extremum diminishing
(ELED).

The effect of the “soft limiter” is not only to improve
the accuracy: the introduction of a threshold below
which extrema of small amplitude are accepted also usu-
ally results in a faster rate of convergence to a steady
state, and decreases the likelyhood of limit cycles in
which the limiter interacts unfavorably with the correc-
tions produced by the updating scheme. In a scheme
recently proposed by Venkatakrishnan a threshold is
introduced precisely for this purpose [96].

3.4.6. Upstream limited positive (USLIP) schemes

By adding the anti-diffusive correction purely from the
upstream side one may derive a family of upstream lim-
ited positive (USLIP) schemes. Corresponding to the
original SLIP scheme defined by Eq. (20), a USLIP
scheme is obtained by setting

div12 = %r12{A0j5 12 — LAV 4 12, Avj—12)}
if Ajt 12 > 0, or
dj+ 172 = %+ I/Z{Avj+1/2 - L(Avj+ 1/27Al7j+3/2)}

if @412 <O I @145 = 3laj+ 12| one recovers a stan-
dard high resolution upwind scheme in semi-discrete
form. Consider the case that ajs 4, > 0and a; 1, > 0.1f
one sets

Pt — AU]’+1/2 - AUj—3/2

- > - 3
AUj—x/z Av;_1p,

the scheme reduces to

de

A
dr

1
= - 5{¢(7+)aj+ 12 + Q2 — ¢ Naj- 12 }AV;- 12
To assure the correct sign to satisfy the LED criterion the
flux limiter must now satisfy the additional constraint
that ¢(r) < 2.

The USLIP formulation is essentially equivalent to
standard upwind schemes [77,79]. Both the SLIP and
USLIP constructions can be implemented on unstruc-
tured meshes [97,95]. The anti-diffusive terms are then
calculated by taking the scalar product of the vectors

defining an edge with the gradient in the adjacent up-
stream and downstream cells.

3.4.7. Systems of conservation laws: flux splitting and
fux-difference splitting

Steger and Warming [72] first showed how to general-
ize the concept of upwinding to the system of conserva-
tion laws

ow 0
o + af(w) =0 (24)
by the concept of flux splitting. Suppose that the flux is
split as f=f" +f~ where of "/ow and Jf " /ow have
positive and negative eigenvalues. Then the first order
upwind scheme is produced by taking the numerical flux
to be

hj+1/2 :ff +.ff+1-
This can be expressed in viscosity form as
hivie =300 + /1) =3 = 11)
+ 3, )3 = 1)
=3(fje1 +f) = djrip2,
where the diffusive flux is
divig =307 = )i 12 (25)

Roe derived the alternative formulation of flux difference
splitting [76] by distributing the corrections due to the
flux difference in each interval upwind and downwind to
obtain

dw.
Ax% +Sier =)+ —fim0) =0,

where now the flux difference f;  — f; is split. The corre-
sponding diffusive flux is

dj+ 1/2 :%(Af;‘:l/z - Af;'_+1/2)‘

Following Roe’s derivation, let 4;,(,, be a mean value
Jacobian matrix exactly satisfying the condition

fj+1 -fj =Aj+ 1/2(Wj+1 - Wj)- (26)

Aj11/, may be calculated by substituting the weighted
averages

it +~/pity
Voies +/0i

_ NPl 4ol

N Pi+1 +\/_P:

@7

u=

into the standard formulas for the Jacobian matrix
A = of/ow. A splitting according to characteristic fields is
now obtained by decomposing A;, 1, as

Aj+1/2 = TAT_I, (28)
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where the columns of T are the eigenvectors of A4 1,2,
and A is a diagonal matrix of the eigenvalues. Now the
corresponding diffusive flux is

%lAj+ 1/2|(Wj+1 —w;),
where
[Aj+1p2] = TIAT™}

and |A] is the diagonal matrix containing the absolute
values of the eigenvalues.

3.4.8. Alternative splittings

Characteristic splitting has the advantages that it in-
troduces the minimum amount of diffusion to exclude the
growth of local extrema of the characteristic variables,
and that with the Roe linearization it allows a discrete
shock structure with a single interior point. To reduce the
computational complexity one may replace |A| by of
where if o is at least equal to the spectral radius
max |A(4)], then the positivity conditions will still be
satisfied. Then the first order scheme simply has the
scalar diffusive flux

1
dj+1/2 =70‘j+1/2AWj+1/2~ (29)

The JST scheme with scalar diffusive flux captures shock
waves with about 3 interior points, and it has been widely
used for transonic flow calculations because it is both
robust and computationally inexpensive.

An intermediate class of schemes can be formulated by
defining the first order diffusive flux as a combination of
differences of the state and flux vectors

—w) + 3B 12(fi+1 — i) (30)

where the factor c¢ is included in the first term to make
of1/2 and f; 1, dimensionless. Schemes of this class are
fully upwind in supersonic flow if one takes o}y ,,, =0
and f;: ), =sign(M) when the absolute value of the
Mach number M exceeds 1. The flux vector f can be
decomposed as

1.4
i 12 = 308 1 2¢(Wiq

f=uw+ 1, (31)
where
0
Lr=|pr} (32)
up
Then

Sivr =f5 = Wwjer —wy) + Wy s —u) + o — S
(33)
where # and W are the arithmetic averages

T=%u;1 +u), w=%Hwir +w)

Thus these schemes are closely related to schemes which
introduce separate splittings of the convective and pres-
sure terms, such as the wave-particle scheme [98,99], the
advection upwind splitting method (AUSM) [100,1017],
and the convective upwind and split pressure (CUSP)
schemes [97].

In order to examine the shock capturing properties of
these various schemes, consider the general case of a first
order diffusive flux of the form

dj+ 1/2 = %Ochr 1/sz+ 1/2(Wj+1 e Wj)> (34)

where the matrix B, ,,, determines the properties of the
scheme and the scaling factor «;,,, is included for
convenience. All the previous schemes can be obtained
by representing B;.q,» as a polynomial in the matrix
Aj11), defined by Eq. (26). Schemes of this class were
considered by Van Leer [74]. According to the Cayley-
Hamilton theorem, a matrix satisfies its own character-
istic equation. Therefore, the third and higher powers of
A can be eliminated, and there is no loss of generality in
limiting B;+1/2 to a polynomial of degree 2,

Bivip =0l +oAjeqpn + aZAjg+1/2' (35)

The characteristic upwind scheme for which B; ,,, =
[A4;11/2] is obtained by substituting A;4 4/, = TAT ™1,
A}y = TA*T™1. Then ay, o5, and o, are determined
from the three equations

o +061},k +0(2j.]%:]ik|, k:1,2,3.

The same representation remains valid for three dimen-
sional flow because A4;, 1/, still has only three distinct
eigenvalues u, u + ¢, u — .

3.4.9. Analysis of stationary discrete shocks

The ideal model of a discrete shock is illustrated in
Fig. 4. Suppose that wy and wy are left and right states
which satisfy the jump conditions for a stationary shock,
and that the corresponding fluxes are f; =f(wy) and
Jfr = f(wg). Since the shock is stationary f;, = fz. The ideal
discrete shock has constant states wy, to the left and wy to
the right, and a single point with an intermediate value
w,. The intermediate value is needed to allow the discrete
solution to correspond to a true solution in which the
shock wave does not coincide with an interface between
two mesh cells.

Schemes corresponding to one, two or three terms in
Eq. (35) are examined in [102]. The analysis of these
three cases shows that a discrete shock structure with
a single interior point is supported by artificial diffusion
that satisfies the two conditions that

1. it produces an upwind flux if the flow is determined to
be supersonic through the interface,

2. it satisfies a generalized eigenvalue problem for the
exit from the shock of the form

(Aur — aqrBap)(wr —wy) =0, (36)
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Fig. 4. Shock structure for single interior point.

where A 45 is the linearized Jacobian matrix and B,y is
the matrix defining the diffusion for the interface AR.
This follows from the equilibrium condition hg, = hgx
for the cell j + 1 in Fig. 4. These two conditions are
satisfied by both the characteristic scheme and also the
CUSP scheme, provided that the coeflicients of convec-
tive diffusion and pressure differences are correctly bal-
anced. Scalar diffusion does not satisfy the first condition.
In the case of the CUSP scheme (30) Eq. (36) reduces to

o¥c
(ARA + ‘—>(WR — WA) = 0.

Thus wg — w, is an eigenvector of the Roe matrix Ag4,
and — o*¢/(1 + B)is the corresponding eigenvalue. Since
the eigenvalues are u, u + ¢, and u — ¢, the only choice
which leads to positive diffusion when u >0 is u —c,
yielding the relationship

a*c=(14+plc—u), O<u<ec

This leads to a one parameter family of schemes which
support the ideal shock structure. The term f(fx — f4)
contributes to the diffusion of the convective terms.
Allowing for split (31), the total effective coefficient of
convective diffusion is ac = a*c + pit. A CUSP scheme
with low numerical diffusion is then obtained by taking
a = |M|, leading to the coefficients illustrated in Fig. 5.

3.4.10. CUSP and characteristic schemes admitting
constant total enthalpy in steady flow

In steady flow the stagnation enthalpy H is constant,
corresponding to the fact that the energy and mass con-
servation equations are consistent when the constant
factor H is removed from the energy equation. Discrete
and semi-discrete schemes do not necessarily satisfy this
property. In the case of a semi-discrete scheme expressed
in viscosity form, Egs. (11) and (12), a solution with
constant H is admitted if the viscosity for the energy
equation reduces to the viscosity for the continuity equa-
tion with p replaced by pH. When the standard charac-
teristic decomposition (28) is used, the viscous fluxes for

Fig. 5. Diffusion coefficients.

p and pH which result from composition of the fluxes for
the characteristic variables do not have this property,
and H is not constant in the discrete solution. In practice,
there is an excursion of H in the discrete shock structure
which represents a local heat source. In very high speed
flows the corresponding error in the temperature may
lead to a wrong prediction of associated effects such as
chemical reactions.

The source of the error in the stagnation enthalpy is
the discrepancy between the convective terms

in the flux vector, which contain pH, and the state vector
which contains pE. This may be remedied by introducing
a modified state vector

P
wy, =| pu |
pH

Then one introduces the linearization
Sk —fo = AsWhe — Wi, ).

Here A, may be calculated in the same way as the
standard Roe linearization. Introduce the weighted aver-
ages defined by Eq. (27). Then

0 1 0

142 1 -1

PR LR bt W Al
y 2 Y y

—uH H u

The eigenvalues of A, are u, A* and A~ where

li=y+1u+\/<y+lu>2+c2—u2
y 2y Y (37)

Now both CUSP and characteristic schemes which pre-
serve constant stagnation enthalpy in steady flow can be
constructed from the modified Jacobian matrix 4, [102].
These schemes also produce a discrete shock structure
with one interior point in steady flow. Then one arrives at
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four variations with this property, which can conve-
niently be distinguished as the E- and H-CUSP schemes,
and the E- and H-characteristic schemes.

3.4.11. High order Godunov schemes, and kinetic flux
splitting

Some of the most impressive simulations of time de-
pendent flows with strong shock waves have been
achieved with higher order Godunov schemes [84]. In
these schemes the average value in each cell is updated by
applying the integral conservation law using interface
fluxes predicted from the exact or approximate solution
of a Riemann problem between adjacent cells. A higher
order estimate of the solution is then reconstructed from
the cell averages, and slope limiters are applied to the
reconstruction. An example is the class of essentially
nonoscillatory (ENO) schemes, which can attain a very
high order of accuracy at the cost of a substantial in-
crease in computational complexity [103-106]. Methods
based on reconstruction can also be implemented on
unstructured meshes [85,86]. Recently, there has been an
increasing interest in kinetic flux splitting schemes, which
use solutions of the Boltzmann equation or the BGK
equation to predict the interface fluxes [107-111].

3.5. Mulridimensional schemes

The simplest approach to the treatment of multidimen-
sional problems on structured meshes is to apply the
one-dimensional construction separately in each mesh
direction. On triangulated meshes in two or three dimen-
sions the SLIP and USLIP constructions may also be
implemented along the mesh edges [95]. A substantial
body of current research is directed toward the imple-
mentation of truly multidimensional upwind schemes in
which the upwind biasing is determined by properties of
the flow rather than the mesh [112-116]. A thorough
review is given by Pailliere and DeConinck [117].

Residual distribution schemes are an attractive ap-
proach for triangulated meshes. In these the residual
defined by the space derivatives is evaluated for each cell,
and then distributed to the vertices with weights which
depend on the direction of convection. For a scalar
conservation law the weights can be chosen to maintain
positivity with minimum cross diffusion in the direction
normal to the flow. For the Euler equations the residual
can be linearized by assuming that the parameter vector

with components f R \/;ui, and \//_)H varies linearly
over the cell. Then

of; 0

hw) _, ow

=A;—,
0xj axj

where the Jacobian matrices A; = df;/0w are evaluated
with Roe averaging of the values of w at the vertices.
Waves in the direction n can then be expressed in terms of

the eigenvectors of n;A;, and a positive distribution
scheme is used for waves in preferred directions. The best
choice of these directions is the subject of ongoing re-
search, but preliminary results indicate the possibility of
achieving high resolution of shocks and contact discon-
tinuities which are not aligned with mesh lines [117].

Hirsch and Van Ransbeeck adopt an alternative
approach in which they directly construct directional
diffusive terms on structured meshes, with anti-diffusion
controlled by limiters based on comparisons of slopes in
different directions [118]. They also show promising
results in calculations of nozzles with multiply reflected
oblique shocks.

3.6. Discretization of the viscous terms

The discretization of the viscous terms of the
Navier-Stokes equations requires an approximation to
the velocity derivatives du;/0x; in order to calculate the
tensor o;;, Eq. (3). Then the viscous terms may be in-
cluded in the flux balance (4). In order to evaluate the
derivatives one may apply the Gauss formula to a control
volume ¥V with the boundary S,

ou.
Yoy = u;n; ds,
V(?xj S

where n; is the outward normal. For a tetrahedral or
hexahedral cell this gives

6uiﬁ 1

dx; vol

> mns, (38)
faces

where i; is an estimate of the average of u; over the face.
If u varies linearly over a tetrahedral cell this is
exact. Alternatively, assuming a local transformation to
computational coordinates £;, one may apply the chain
rule

du [ou| ol _ oufox -t
a—[a—:}[ﬂ‘é@[as} | 9

Here the transformation derivatives 0x;/0&; can be evalu-
ated by the same finite difference formulas as the velocity
derivatives du;/0¢;. In this case Ou/0¢ is exact if u is
a linearly varying function.

For a cell-centered discretization (Fig. 6a) du/0¢ is
needed at each face. The simplest procedure is to evaluate
Ou/o& in each cell, and to average 0u/0 between the two
cells on either side of a face [119]. The resulting discretiz-
ation does not have a compact stencil, and supports
undamped oscillatory modes. In a one-dimensional cal-
culation, for example, 8%u/dx? would be discretized as
(45 — 2u; + u;—,)/4Ax* In order to produce a compact
stencil du/dx may be estimated from a control volume
centered on each face, using formulas (38) or (39) [120].
This is computationally expensive because the number
of faces is much larger than the number of cells. In a
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dual call

(@) (b)

Fig. 6. Viscous discretizations for cell-centered and cell-vertex
algorithms. a: Cell-centered scheme. o;; evaluated at vertices of
the primary mesh and b: Cell-vertex scheme. 6;; evaluated at cell
centers of the primary mesh.

hexahedral mesh with a large number of vertices the
number of faces approaches three times the number of
cells.

This motivates the introduction of dual meshes for the
evaluation of the velocity derivatives and the flux balance
as sketched in Fig. 6. The figure shows both cell-centered
and cell-vertex schemes. The dual mesh connects cell
centers of the primary mesh. If there is a kink in the
primary mesh, the dual cells should be formed by as-
sembling contiguous fractions of the neighboring pri-
mary cells. On smooth meshes comparable results are
obtained by either of these formulations [21,28,121]. If
the mesh has a kink the cell-vertex scheme has the ad-
vantage that the derivatives du; /0x; are calculated in the
interior of a regular cell, with no loss of accuracy.

A desirable property is that a linearly varying velocity
distribution, as in a Couette flow, should produce a
constant stress and hence an exact stress balance. This
property is not necessarily satisfied in general by finite
difference or finite volume schemes on curvilinear
meshes. The characterization k-exact has been proposed
for schemes that are exact for polynomials of degree k.
The cell-vertex finite volume scheme is linearly exact if
the derivatives are evaluated by Eq. (39), since then
du;/0x; is exactly evaluated as a constant, leading to
constant viscous stresses o;;, and an exact viscous stress
balance. This remains true when there is a kink in the
mesh, because the summation of constant stresses over
the faces of the kinked control volume sketched in Fig.
6 still yields a perfect balance. The use of Eq. (39) to
evaluate du;/0x;, however, requires the additional calcu-
lation or storage of the nine metric quantities du;/0x; in
each cell, whereas Eq. (38) can be evaluated from the
same face areas that are used for the flux balance.

In the case of an unstructured mesh, the weak form (6)
leads to a natural discretization with linear elements, in
which the piecewise linear approximation yields a con-
stant stress in each cell. This method yields a representa-
tion which is globally correct when averaged over the
cells, as is proved by energy estimates for elliptic prob-
lems [10]. It should be noted, however, that it yields

d
3
h
Coefficients
-6 ¢ resulting from
linear elements
h
12 1b 1¢
h h

Fig. 7. Example of discretization u,, + u,, on a triangular
mesh. The discretization is locally equivalent to the approxima-
tion e, = (u, — 2up + u)/h% 3u,, = (3uy — 6u, + 3u,)/h%

formulas that are not necessarily locally consistent with
the differential equations, if Taylor series expansions are
substituted for the solution at the vertices appearing in
the local stencil. Fig. 7 illustrates the discretization of the
Laplacian u,, + u,, which is obtained with linear ele-
ments. It shows a particular triangulation such that the
approximation is locally consistent with u,, + 3u,,. Thus
the use of an irregular triangulation in the boundary
layer may significantly degrade the accuracy.

Anisotropic grids are needed in order to resolve the
thin boundary layers which appear in viscous flows at
high Reynolds numbers. Otherwise an excessively large
number of grid cells may be required. The use of flat
tetrahedra can have an adverse effect on both the accu-
racy of the solution and the rate of convergence to
a steady state. This has motivated the use of hybrid
prismatic-tetrahedral grids in which prismatic cells are
used in the wall regions [122]. A review of many of the
key issues in the design of flow solvers for unstructured
meshes is given by Venkatakrishnan [123].

3.7. Time-stepping schemes

If the space discretization procedure is implemented
separately, it leads to a set of coupled ordinary differen-
tial equations, which can be written in the form

dw

& + R(w) =0, 40)

where w is the vector of the flow variables at the mesh
points, and R(w) is the vector of the residuals, consisting
of the flux balances defined by the space discretization
scheme, together with the added dissipative terms. If the
objective is simply to reach the steady state and details of
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the transient solution are immaterial, the time-stepping
scheme may be designed solely to maximize the rate of
convergence. The first decision that must be made is
whether to use an explicit scheme, in which the space
derivatives are calculated from known values of the flow
variables at the beginning of the time step, or an implicit
scheme, in which the formulas for the space derivatives
include as yet unknown values of the flow variables at the
end of the time step, leading to the need to solve coupled
equations for the new values. The permissible time step
for an explicit scheme is limited by the Courant-Fried-
richs-Lewy (CFL) condition, which states that a differ-
ence scheme cannot be a convergent and stable
approximation unless its domain of dependence contains
the domain of dependence of the corresponding differen-
tial equation. One can anticipate that implicit schemes
will yield convergence in a smaller number of time steps,
because the time step is no longer constrained by the
CFL condition. Implicit schemes will be efficient, how-
ever, only if the decrease in the number of time
steps outweighs the increase in the computational
effort per time step consequent upon the need to solve
coupled equations. The prototype implicit scheme can be
formulated by estimating ow/dt at ¢+ uAt as a
linear combination of R(w") and R(w"*?). The resulting
equation

Wil =w' — Ar{(1 — WRMW") + uRwW"" 1)}

can be linearized as
JR

<I + ,uAt~>5w + AtR(w") = 0.
ow

If one sets u =1 and lets Ar — oo this reduces to the
Newton iteration, which has been successfully used in
two-dimensional calculations [124,125]. In the three-
dimensional case with, say, an N x N x N mesh, the
bandwidth of the matrix that must be inverted is of order
N?. Direct inversion requires a number of operations
proportional to the number of unknowns multiplied by
the square of the bandwidth, and hence of the order of
N7. This is prohibitive, and forces recourse to either an
approximate factorization method or an iterative solu-
tion method.

Alternating direction methods, which introduce fac-
tors corresponding to each coordinate, are widely used
for structured meshes [126,127]. They cannot be imple-
mented on unstructured tetrahedral meshes that do not
contain identifiable mesh directions, although other de-
compositions are possible [128,129]. If one chooses to
adopt the iterative solution technique, the principal alter-
natives are variants of the Gauss—Seidel and Jacobi
methods. A symmetric Gauss-Seidel method with one
iteration per time step is essentially equivalent to an
approximate lower-upper (LU) factorization of the im-
plicit scheme [130-133]. On the other hand, the Jacobi

method with a fixed number of iterations per time step
reduces to a multistage explicit scheme, belonging to the
general class of Runge-Kutta schemes [134]. Schemes of
this type have proved very effective for wide variety of
problems, and they have the advantage that they can be
applied equally easily on both structured and unstruc-
tured meshes [93,135-137].

If one reduces the linear model problem corresponding
to (40) to an ordinary differential equation by substitu-
ting a Fourier mode W = ¢'P¥, the resulting Fourier sym-
bol has an imaginary part proportional to the wave
speed, and a negative real part proportional to the diffu-
sion. Thus, the time stepping scheme should have a stab-
ility region which contains a substantial interval of the
negative real axis, as well as an interval along the imagi-
nary axis. To achieve this it pays to treat the convective
and dissipative terms in a distinct fashion. Thus the
residual is split as

R(w) = Q(w) + D(w),

where Q(w) is the convective part and D(w) the dissipative
part. Denote the time level nAt by a superscript n. Then
the multistage time stepping scheme is formulated as

W(n+ 1.0) — Wn’
W(n+1,k) — Wn _ O(kAt(Q(kfl) + D(k_l)),

n+1 __ .. (n+1,m)
w =W 5

where the superscript k denotes the k-th stage, o, =1,
and

00 = Qw), D =D(w),

0% = Qi 1),
DW= B+ 1D(W(n+1’k)) +(1 - ﬁk+1)D(k_1)~

The coefficients o, are chosen to maximize the stability
interval along the imaginary axis, and the coefficients
By are chosen to increase the stability interval along the
negative real axis.

These schemes do not fall within the standard frame-
work of Runge-Kutta schemes, and they have much
larger stability regions [136]. Two schemes which have
been found to be particularly effective are tabulated
below. The first is a four-stage scheme with two evalu-
ations of dissipation. Its coefficients are

a =% pi=1
w=1 f=3
s =3, f3=0,
g =1, B4=0 (41)
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The second is a five-stage scheme with three evaluations
of dissipation. Its coefficients are

=% p=1,

=4 f=0,

o3 =32, fs =0.56,

Oy = %, s =0,

aus =1, fs =044 (42)

3.8. Multigrid methods

3.8.1. Acceleration of steady flow calculations

Radical improvements in the rate of convergence to
a steady state can be realized by the multigrid time-
stepping technique. The concept of acceleration by the
introduction of multiple grids was first proposed by
Fedorenko [138]. There is by now a fairly well-developed
theory of multigrid methods for elliptic equations based
on the concept that the updating scheme acts as
a smoothing operator on each grid [139,140]. This the-
ory does not hold for hyperbolic systems. Nevertheless, it
seems that it ought to be possible to accelerate the
evolution of a hyperbolic system to a steady state by
using large time steps on coarse grids so that distur-
bances will be more rapidly expelled through the outer
boundary. Various multigrid time-stepping schemes
designed to take advantage of this effect have been
proposed [65,66,141-145].

One can devise a multigrid scheme using a sequence of
independently generated coarser meshes by eliminating
alternate points in each coordinate direction. In order to
give a precise description of the multigrid scheme, sub-
scripts may be used to indicate the grid. Several transfer
operations need to be defined. First the solution vector
on grid k must be initialized as

0
Wg{ ) = Tik-1We-1,

where wj -, is the current value on grid k — 1, and
Trr—1 is a transfer operator. Next, it is necessary to
transfer a residual forcing function such that the solution
grid k is driven by the residuals calculated on grid k — 1.
This can be accomplished by setting

Py = Qux- 1R 1(wyp-1) — Rk[wl(cO)]:

where O, ,—, is another transfer operator. Then Ry (wy) is
replaced by Ri(w;) + P in the time-stepping scheme.
Thus, the multistage scheme is reformulated as

Wgcu = W}(O) — 0y Atk[R;co) + Pk],

1 0
WD = wi® — q, AL [RP + P,

The result w{™ then provides the initial data for grid
k + 1. Finally, the accumulated correction on grid k has
to be transferred back to grid k — 1 with the aid of an
interpolation operator I;_;,. With properly optimized
coeflicients multistage time-stepping schemes can be very
efficient drivers of the multigrid process. A W-cycle of
the type illustrated in Fig. 8 proves to be a particularly
effective strategy for managing the work split between the
meshes. In a three-dimensional case the number of cells is
reduced by a factor of eight on each coarser grid. On
examination of the figure, it can therefore be seen that the
work measured in units corresponding to a step on the
fine grid is of the order of

1+2/8+4/64 + - <4/3

and consequently the very large effective time step of the
complete cycle costs only slightly more than a single time
step in the fine grid.

This procedure has proved extremely successful for
the solution of the inviscid Euler equations, but less
effective in calculations of turbulent viscous flows at
high Reynolds numbers using the Reynolds averaged

® ®)
OBNONNG

()

(b)

4 Level Cycle 4 Level Cycle

©

Fig. 8. Multigrid W-cycle for managing the grid calculation. E,
evaluate the change in the flow for one step; T, transfer the data
without updating the solution. a: 3 Levels. b: 4 Levels. ¢
S Levels.
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Navier-Stokes equations. These require highly anisot-
ropic grids with very fine mesh intervals normal to the
wall to resolve the boundary layers. While simple multi-
grid methods still yield fast initial convergence, they tend
to slow down as the calculation proceeds to a low asymp-
totic rate. This has motivated the introduction of
semi-coarsening and directional coarsening methods
[146-152].

The multigrid method can be applied on unstructured
meshes by interpolating between a sequence of separately
generated meshes with progressively increasing cell sizes
[18,19,153,154]. It is not easy to generate very coarse
meshes for complex configurations. An alternative ap-
proach, which removes this difficulty, is to automatically
generate successively coarser meshes by agglomerating
control volumes or by collapsing edges. This approach
yields comparable rates of convergence and has proved
to be quite robust [155-158].

3.8.2. Multigrid implicit schemes for unsteady flow

Time dependent calculations are needed for a number
of important applications, such as flutter analysis, or the
analysis of the flow past a helicopter rotor, in which the
stability limit of an explicit scheme forces the use of much
smaller time steps than would be needed for an accurate
simulation. In this situation a multigrid explicit scheme
can be used in an inner iteration to solve the equations of
a fully implicit time stepping scheme [159].

Suppose that (40) is approximated as

D"t 4+ Rw" !y = 0.

Here D, is a kth order accurate backward difference
operator of the form

where
A—Wn+1 — Wn+1 —wh
Applied to the linear differential equation

dw
— =W
dt
the schemes with k = 1,2 are stable for all «¢At in the
left half-plane (A-stable). Dahlquist has shown that A-
stable linear multi-step schemes are at best second order
accurate [160]. Gear however, has shown that the
schemes with k < 6 are stiffly stable [161], and one of the
higher order schemes may offer a better compromise
between accuracy and stability, depending on the ap-
plication.

Eq. (40) is now treated as a modified steady state
problem to be solved by a multigrid scheme using vari-

able local time steps in a fictitious time t*. For example,
in the case k = 2 one solves

ow
e R* —
R =0,

where

R*(w) = iw + R(w) — EW" + iw"‘1
2At At 2At

and the last two terms are treated as fixed source terms.
The first term shifts the Fourier symbol of the equivalent
model problem to the left in the complex plane. While
this promotes stability, it may also require a limit to be
imposed on the magnitude of the local time step Ar*
relative to that of the implicit time step At. This may be
relieved by a point-implicit modification of the multi-
stage scheme [162]. In the case of problems with moving
boundaries the equations must be modified to allow for
movement and deformation of the mesh.

This method has proved effective for the calculation of
unsteady flows that might be associated with wing flutter
[163,164] and also in the calculation of unsteady incom-
pressible flows [165]. Tt has the advantage that it can be
added as an option to a computer program which uses an
explicit multigrid scheme, allowing it to be used for the
efficient calculation of both steady and unsteady flows.
A similar approach has been successfully adopted for
unsteady flow simulations on unstructured grids by
Venkatakrishnan and Mavriplis [166].

3.9. Preconditioning

Another way to improve the rate of convergence to
a steady state is to multiply the space derivatives in
Eq. (1) by a preconditioning matrix P which is designed
to equalize the eigenvalues, so that all the waves can be
advanced with optimal time steps. A symmetric precon-
ditioner which equalizes the eigenvalues has been pro-
posed by Van Leer [167]. When the equations are
written in stream-aligned coordinates this has the form

BTEMZ—%MOOO
T T
“Im 4100 0
g B

P=| O 0 T 0 0}
0 0 0 1 0
0 0 0 0 1
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Turkel has proposed an asymmetric preconditioner
which has also proved effective, particularly for flow at
low Mach numbers [168]. The use of these precondi-
tioners can lead to instability at stagnation points where
there is a zero eigenvalue which cannot be equalized with
the eigenvalues + c.

The preconditioners of Van Leer and Turkel do not
take account of the effect of differences in the mesh
intervals in the different coordinate directions. The need
to resolve the boundary layer generally compels the in-
troduction of mesh cells with very high aspect ratios near
the boundary, and these can lead to a severe reduction in
the rate of convergence to a steady state. Allmaras has
analyzed explicit and implicit Jacobi-based precondi-
tioners which include the influence of the mesh intervals
[148-150]. Using a block-Jacobi preconditioner with
coarsening only in the direction normal to the wall,
Pierce has recently obtained impressive results on vis-
cous flows with high aspect ratio grids [151,152].
Mavriplis has successfully combined block precondi-
tioners with line solvers to accelerate the convergence of
viscous flow solutions on highly stretched unstructured
grids [1697.

An alternative approach has recently been proposed
by Ta’asan [170], in which the equations are written in
a canonical form which separates the equations describ-
ing acoustic waves from those describing convection. In
terms of the velocity components u, v and the vorticity v,
temperature T, entropy s and total enthalpy H, the
equations describing steady two-dimensional flow can be
written as

b, D, O 0 0 |r -
o 9 1 0 0 !
dy Ox o2 4
0 0 —-q - Ds; -Djllw|=0,
-0 ¢’
0 0 0 TpQ 0o ||%
H
L 0 0 0 0 pQ |- -
where
p a
Dl = ;2-<(C2 — Mz)é— - UUE>,
p 0 0
D, —C—Z((c2 —u ):3_ — uv&}
0 0
Da =0— — y—
3TV May’
0
Q—— 45)—6 + Ua‘y'
and

Here the first three equations describe an elliptic system if
the flow is subsonic, while the remaining equations are
convective. Now separately optimized multigrid proced-
ures are used to solve the two sets of equations, which are
essentially decoupled. An alternative approach to the
optimal splitting of the flow equations into convective
and acoustic parts has been developed by Sidilkover
[171,172].

3.10. High order schemes and mesh refinement

The need both to improve the accuracy of computa-
tional simulations, and to assure known levels of accu-
racy is the focus of ongoing research. The main routes to
improving the accuracy are to increase the order of the
discrete scheme, and reduce the mesh interval. High
order difference methods are most easily implemented on
Cartesian, or at least extremely smooth grids. The expan-
sion of the stencil as the order is increased leads to the
need for complex boundary conditions. Compact
schemes keep the stencil as small as possible [173-175].
On simple domains, spectral methods are particularly
effective, especially in the case of periodic boundary con-
ditions, and can be used to produce exponentially fast
convergence of the error as the mesh interval is decreased
[176,177]. A compromise is to divide the field into sub-
domains and introduce high order elements. This ap-
proach is used in the spectral element method [178].

High order difference schemes and spectral methods
have proven particularly useful in direct Navier-Stokes
simulations of transient and turbulent flows. High order
methods are also beneficial in computational aero-acous-
tics, where it is desired to track waves over long distances
with minimum error. If the flow contains shock waves or
contact discontinuities, the ENO method may be used to
construct high order nonoscillatory schemes.

In multidimensional flow simulations, global reduc-
tion of the mesh interval can be prohibitively expensive,
motivating the use of adaptive mesh refinement proced-
ures which reduce the local mesh width 7 if there is an
indication that the error is too large [179-185]. In such
h-refinement methods, simple error indicators such as
local solution gradients may be used. Alternatively, the
discretization error may be estimated by comparing
quantities calculated with two mesh widths, say on the
current mesh and a coarser mesh with double the mesh
interval. Procedures of this kind may also be used to
provide a posteriori estimates of the error once the calcu-
lation is completed.

This kind of local adaptive control can also be applied
to the local order of a finite element method to produce
a p-refinement method, where p represents the order of
the polynomial basis functions. Finally, both k- and p-
refinement can be combined to produce an h-p method
in which & and p are locally optimized to yield a solution
with minimum error [11]. Such methods can achieve



216 A. Jameson | Progress in Aerospace Sciences 37 (2001) 197-243

exponentially fast convergence, and are well established
in computational solid mechanics.

4. Current status of numerical simulation

This section presents some representative numerical
results which confirm the properties of the algorithms
which have been reviewed in the last section. These have
been drawn from the work of the author and his associ-
ates. They also illustrate the kind of calculation which
can be performed in an industrial environment, where
rapid turn around is important to allow the quick assess-
ment of design changes, and computational costs must be
limited.

4.1. One-dimensional shock

In order to verify the discrete structure of stationary
shocks, calculations were performed for a one-dimen-
sional problem with initial data containing left and right
states compatible with the Rankine Hugoniot conditions.
An intermediate state consisting of the arithmetic aver-
age of the left and right states was introduced at a single
cell in the center of the domain. With this intermediate
state the system is not in equilibrium, and the time
dependent equations were solved to find an equilibrium
solution with a stationary shock wave separating the left
and right states. Table 1 shows the result for a shock
wave at Mach 20. This calculation used the H-CUSP
scheme, which allows a solution with constant stagnation
enthalpy. The SLIP-JST construction was used with
the limiter defined by Eq. (23), and g = 3. The table
shows the values of p, u, H, p, M and the entropy
S =logp/py —log(pL/pt). A perfect one point shock
structure is displayed. The entropy is zero to 4 decimal
places upstream of the shock, exhibits a slight excursion
at the interior point, and is constant to 4 decimal places
downstream of the shock. It may be noted that the mass,
momentum and energy of the initial data are not compat-
ible with the final equilibrium state. According to conser-
vation arguments the total mass, momentum and energy

Table 1
Shock wave at Mach 20

1 p H p M

19 1.0000 283.5000 1.0000 20.0000
20 1.0000 283.5000 1.0000 20.0000
21 1.0000 283.5000 1.0000 20.0000
22 4.1924 283.4960 307.4467 0.7229
23 5.9259 283.4960 466.4889 0.3804
24 5.9259 283.4960 466.4389 0.3804
25 5.9259 283.4960 466.4889 0.3804

must remain constant if the outflow flux f; remains equal
to the inflow flux f; . Therefore f must be allowed to vary
according to an appropriate outflow boundary condition
to allow the total mass, momentum and energy to be
adjusted to values compatible with equilibrium.

4.2. Euler calculations for airfoils and wings

The results of transonic flow calculations for two well-
known airfoils, the RAE 2822 and the NACA 0012, are
presented in Figs. 21-23. The H-CUSP scheme was again
used with the SLIP-JST construction. The limiter defined
by Eq. (23) was used with g = 3. The 5 stage time-
stepping scheme (42) was augmented by the multigrid
scheme described in Section 4.2 to accelerate conver-
gence to a steady state. The equations were discretized on
meshes with O-topology extending out to a radius of
about 100 chords. In each case the calculations were
performed on a sequence of successively finer meshes
from 40 x 8 to 320 x 64 cells, while the multigrid cycles on
each of these meshes descended to a coarsest mesh of
10 x 2 cells. Figs. 21-23 show the final results on 320 x 64
meshes for the RAE 2822 airfoil at Mach 0.75 and 3°
angle of attack, and for the NACA 0012 airfoil at Mach
0.8 and 1.25° angle of attack, and also at Mach 0.85 and
1° angle of attack. In the pressure distributions the pres-
sure coefficient C, = (p — Pw )/2P» 4% is plotted with the
negative (suction) pressures upward, so that the upper
curve represents the flow over the upper side of a lifting
airfoil. The convergence histories show the mean rate of
change of the density, and also the total number of
supersonic points in the flow field, which provides a use-
ful measure of the global convergence of transonic flow
calculations such as these. In each case the convergence
history is shown for 100 cycles, while the pressure distri-
bution is displayed after a sufficient number of cycles for
its convergence. The pressure distribution of the RAE
2822 airfoil converged in only 25 cycles. Convergence
was slower for the NACA 0012 airfoil. In the case of flow
at Mach 0.8 and 1.25° angle of attack, additional cycles
were needed to damp out a wave downstream of the
weak shock wave on the lower surface.

As a further check on accuracy the drag coefficient
should be zero in subsonic flow, or in shock free trans-
onic flow. Table 2 shows the computed drag coefficient
on a sequence of three meshes for three examples. The
first two are subsonic flows over the RAE 2822 and
NACA 0012 airfoils at Mach 0.5 and 3° angle of attack.
The third is the flow over the shock free Korn airfoil at its
design point of Mach 0.75 and 0° angle of attack. In all
three cases the drag coefficient is calculated to be zero to
four digits on a 160 x 32 mesh.

As a further test of the performance of the H-CUSP
scheme, the flow past the ONERA M6 wing was
calculated on a mesh with C-H topology and
192 x 32 x 48 = 294,912 cells. Fig. 24 shows the result at
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Table 2
Drag coefficient on a sequence of meshes

Mesh RAE 2822 NACA 0012 Korn Airfoil
Mach 0.50 Mach 0.50 Mach 0.75
o 3° o 3° o 0°
40x 8 0.0062 0.0047 0.0098
80x 16 0.0013 0.0008 0.0017
160 % 32 0.0000 0.0000 0.0000

Mach 0.84 and 3.06° angle of attack. This again verifies
the nonoscillatory character of the solution, and the
sharp resolution of shock waves. In this case 50 cycles
were sufficient for convergence of the pressure dis-
tributions.

Fig. 9 shows a calculation of the Northrop YF23 by
R.J. Busch Jr., who used the author’s FLOS57 code to
solve the Fuler equations [186]. Although an inviscid
model of the flow was used, it can be seen that the
simulations are in good agreement with wind tunnel
measurements both at Mach 0.90, with angles of attack of
0°,8° and 16°, and at Mach 1.5 with angles of attack of 0°,
4° and 8°. At a high angle of attack the flow separates
from the leading edge, and this example shows that in
situations where the point of separation is fixed, an
inviscid model may still produce a useful prediction.
Thus valuable information for the aerodynamic design
could be obtained with a relatively inexpensive computa-
tional model.

The next figures show the results of calculations using
the AIRPLANE code developed by T.J. Baker and the
author, to solve the Euler equations on an unstructured
mesh. This provides the flexibility to treat arbitrarily
complex configurations without the need to spend
months developing an acceptable mesh. Figs. 10 and 11
show calculations for supersonic transport configura-
tions which were performed by Susan Cliff. The agree-
ment with experimental data is quite good, and it has
also been possible to predict the sonic boom signature
[187]. Fig. 12 shows an Euler calculation for the McDon-
nell Douglas MDI11 with flow through the engine
nacelles, using 348,407 mesh points of 2,100,466 tet-
rahedra. This calculation takes 4 h on an IBM 590 work-
station. A parallel version of the code has been developed
in collaboration with W.S. Chen, and the same calcu-
lation can be performed in 16 min using 16 processors of
an IBM SP2. The parallel speed-up for the MDI11 is
shown in Table 3.

4.3. Viscous flow calculations

The next figures show viscous simulations based on the
solution of the Reynolds averaged Navier-Stokes equa-
tions with turbulence models. Fig. 13 shows a two-
dimensional calculation for the RAE 2822 airfoil by

MMMUM DRAG
EULER CODE PREDICTION VS WIND TUNNEL TEST

—

MACII NUMBER

Fig. 9. Comparison of experimental and computed drag rise
curve for the YF-23 (Supplied by R.J. Bush Jr.).

Martinelli. The vertical axis represents the negative pres-
sure coefficient, and there is a shock wave half way along
the upper surface. This example confirms that in the
absence of significant shock induced separation, simula-
tions performed on a sufficiently fine mesh (512 x 64) can
produce excellent agreement with experimental data.
Fig. 20 shows a simulation of the McDonnell-Douglas
F18 performed by R.M. Cummings, Y.M. Rizk, L.B.
Schiff and N.M. Chaderjian at NASA Ames [188]. They
used a multiblock mesh with about 900,000 mesh points.
While this is probably not enough for an accurate quant-
itative prediction, the agreement with both the experi-
mental data and the visualization are quite good.

Fig. 14 shows an unsteady flow calculation for a pitch-
ing airfoil performed by J.J. Alonso using the code
UFLO82, which he jointly developed with L. Martinefli
and the author [164]. This uses the multigrid implicit
scheme described in Section 3.7.2 which allows the num-
ber of time steps to be reduced from several thousand to
36 per pitching cycle. The agreement with experimental
data is quite good.

4.4. Ship wave resistance calculations

Figs. 15-17 show the results of an application of
the same multigrid finite volume techniques to the
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Fig. 10. Comparison of experimental and calculated results for
a HSCT configuration.

Fig. [1. Pressure contours and sonic boom on a representative
HSCT configuration.

calculation of the flow past a naval frigate, using a code
which was developed by Farmer, Martinelli and the
author [189]. The mesh was adjusted during the course
of the calculation to conform to the free surface in order
to satisfy the exact nonlinear boundary condition, while
artificial compressibility was used to treat the incom-
pressible flow equations.

ATRPLANE MD1T Caloulation
Maeh 0.888

Fig. 12. Computed pressure field for a McDonnell Douglas
MD11.

Table 3
AIRPLANE parallel performance on the SP2, MD-11 model
No. of nodes Seconds/cycle Speed up
1 36.03 1.00
2 18.11 1.99
4 9.11 3.96
8 4.66 7.73
16 2.39 15.08

5. Aerodynamic shape optimization
5.1. Optimization and design

Traditionally, the process of selecting design variations
has been carried out by trial and error, relying on the
intuition and experience of the designer. With currently
available equipment the turn around for numerical simu-
lations is becoming so rapid that it is feasible to examine
an extremely large number of variations. It is not at all
likely that repeated trials in an interactive design and
analysis procedure can lead to a truly optimum design. In
order to take full advantage of the possibility of examin-
ing a large design space the numerical simulations need
to be combined with automatic search and optimization
procedures. This can lead to automatic design methods
which will fully realize the potential improvements in
aerodynamic efficiency.

The simplest approach to optimization is to define the
geometry through a set of design parameters, which may,
for example, be the weights o; applied to a set of shape
functions b;(x) so that the shape is represented as

J(x) = Yaubi(x).
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Fig. 13. Two-dimensional turbulent viscous calculation (by

Luigi Martinelli).

Fig. 14. Mach number contours. Pitching airfoil
Re = 1.0x 10%, M, =0.796, K, = 0.202.
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N
o

Fig. 15. Contours of surface wave elevation for a combatant
ship.

Fig. 16. Contours of surface wave elevation near the transom
stern.

Then a cost function I is selected which might, for
example, be the drag coefficient at a final lift coefficient,
and [ is regarded as a function of the parameters «;. The
sensitivities 0I/0o; may now be estimated by making
a small variation d¢; in each design parameter in turn
and recalculating the flow to obtain the change in I. Then

oI N Ho; + O0y) — I(ot;)
Qo So;

The gradient vector 01/0x may now be used to determine

a direction of improvement. The simplest procedure is to

make a step in the negative gradient direction by setting
oI

+1 n
o =" — A~
do’
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Fig. 17. Pressure contours in the bow region.

so that to first order

More sophisticated search procedures may be used such
as quasi-Newton methods, which attempt to estimate the
second derivative 8°I/d0;0a; of the cost function from
changes in the gradient 61/0« in successive optimization
steps. These methods also generally introduce line
searches to find the minimum in the search direction
which is defined at each step. The main disadvantage of
this approach is the need for a number of flow calcu-
lations proportional to the number of design variables to
estimate the gradient. The computational costs can thus
become prohibitive as the number of design variables is
increased.

An alternative approach is to cast the design problem
as a search for the shape that will generate the desired
pressure distribution. This approach recognizes that the
designer usually has an idea of the kind of pressure
distribution that will lead to the desired performance.
Thus, it is useful to consider the inverse problem of
calculating the shape that will lead to a given pressure
distribution. The method has the advantage that only
one flow solution is required to obtain the desired design.
Unfortunately, a physically realizable shape may not
necessarily exist, unless the pressure distribution satisfies
certain constraints. Thus the problem must be very care-
fully formulated; otherwise it may be ill posed.

The difficulty that the target pressure may be unattain-
able may be circumvented by treating the inverse prob-
lem as a special case of the optimization problem, with
a cost function which measures the error in the solution
of the inverse problem. For example, if p, is the desired
surface pressure, one may take the cost function to be an

integral over the body surface of the square of the pres-
sure error,

1
I=§f (p — pa)* d%
2

or possibly a more general Sobolev norm of the pressure
error. This has the advantage of converting a possibly ill
posed problem into a well posed one. It has the disadvan-
tage that it incurs the computational costs associated
with optimization procedures.

5.2. Application of control theory

In order to reduce the computational costs, it turns out
that there are advantages in formulating both the inverse
problem and more general aerodynamic problems within
the framework of the mathematical theory for the control
of systems governed by partial differential equations
[190]. A wing, for example, is a device to produce lift by
controlling the flow, and its design can be regarded as
a problem in the optimal control of the flow equations by
variation of the shape of the boundary. If the boundary
shape is regarded as arbitrary within some requirements
of smoothness, then the full generality of shapes cannot
be defined with a finite number of parameters, and one
must use the concept of the Frechet derivative of the cost
with respect to a function. Clearly, such a derivative
cannot be determined directly by finite differences of the
design parameters because there are now an infinite num-
ber of these. Using techniques of control theory, however,
the gradient can be determined indirectly by solving an
adjoint equation which has coefficients defined by the
solution of the flow equations. The cost of solving the
adjoint equation is comparable to that of solving the flow
equations. Thus, the gradient can be determined with
roughly the computational costs of two flow solutions,
independently of the number of design variables, which
may be infinite if the boundary is regarded as a free
surface. The underlying concepts are clarified by the
following abstract description of the adjoint method. For
flow about an airfoil or wing (see Figs. 18 and 19), the
aerodynamic properties which define the cost function
are functions of the flow-field variables (w) and the phys-
ical location of the boundary, which may be represented
by the function &, say. Then

I =Iw,7)
and a change in # results in a change

oIt arr
ol =2 ow+| 2 | 57 43
|:6wl W’L[ag«*l! (“43)

in the cost function. Here, subscripts I and II are used to
distinguish the contributions due to the variation éw in
the flow solution from the change associated directly
with the modification & in the shape. This notation
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Fig. 19. Advanced numerical wind tunnel.

assists in grouping the numerous terms that arise during
the derivation of the full Navier-Stokes adjoint operator,
outlined in the next section, so that the basic structure of
the approach as it is sketched in the present section can
easily be recognized (Fig. 20).

Suppose that the governing equation R which ex-
presses the dependence of w and % within the flowfield
domain D can be written as

R(w,F) = 0. (@4)

Then éw is determined from the equation

8R OR
= | — —_— g =
SR [ - léw + [ agf‘lf‘/ 0. (45)

Since the variation SR is zero, it can be multiplied by
a Lagrange multiplier i and subtracted from the vari-
ation 81 without changing the result. Thus Eq. (43) can be

replaced by

oIr arr oR oR
=— —O0F — Y| — |0 — [0F
ol 8w5W+ ag;b,/ v ([GW}OWJF[@ﬁ] )

(46)
Choosing ¥ to satisfy the adjoint equation
oR\" oI
s = 47
[&\J 4 ow’ “7)
the first term is eliminated, and we find that
0l = 90F, (48)
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where

o [oR
Y= V= [ay}

The advantage is that (48) is independent of éw, with the
result that the gradient of I with respect to an arbitrary
number of design variables can be determined without;
the need for additional flow-field evaluations. In the case
that (44) is a partial differential equation, the adjoint
equation (47) is also a partial differential equation and
determination of the appropriate boundary conditions
requires careful mathematical treatment.

In Ref. [191] the author derived the adjoint equations
for transonic flows modeled by both the potential flow
equation and the Euler equations. The theory was de-
veloped in terms of partial differential equations, leading
to an adjoint partial differential equation. In order to
obtain numerical solutions both the flow and the adjoint
equations must be discretized. The control theory might

be applied directly to the discrete flow equations which
result from the numerical approximation of the flow
equations by finite element, finite volume or finite differ-
ence procedures. This leads directly to a set of discrete
adjoint equations with a matrix which is the transpose of
the Jacobian matrix of the full set of discrete nonlinear
flow equations. On a three-dimensional mesh with indi-
ces i, /, k the individual adjoint equations may be derived
by collecting together all the terms multiplied by the
variation dw ;. of the discrete flow variable w;;,. The
resulting discrete adjoint equations represent a possible
discretization of the adjoint partial differential equation.
If these equations are solved exactly they can provide an
exact gradient of the inexact cost function which results
from the discretization of the flow equations. The discrete
adjoint equations derived directly from the discrete flow
equations become very complicated when the flow equa-
tions are discretized with higher order upwind biased
schemes using flux limiters. On the other hand any
consistent discretization of the adjoint partial differential
equation will yield the exact gradient in the limit as the
mesh is refined. The trade-off between the complexity of
the adjoint discretization, the accuracy of the resulting
estimate of the gradient, and its impact on the computa-
tional cost to approach an optimum solution is a subject
of ongoing research.

The true optimum shape belongs to an infinitely di-
mensional space of design parameters. One motivation
for developing the theory for the partial differential equa-
tions of the flow is to provide an indication in principle of
how such a solution could be approached if sufficient
computational resources were available. Another mo-
tivation is that it highlights the possibility of generating
ill posed formulations of the problem. For example, if one
attempts to calculate the sensitivity of the pressure at
a particular location to changes in the boundary shape,
there is the possibility that a shape modification could
cause a shock wave to pass over that location. Then the
sensitivity could become unbounded. The movement of
the shock, however, is continuous as the shape changes.
Therefore a quantity such as the drag coefficient, which is
determined by integrating the pressure over the surface,
also depends continuously on the shape. The adjoint
equation allows the sensitivity of the drag coefficient to
be determined without the explicit evaluation of pressure
sensitivities which would be ill posed.

The discrete adjoint equations, whether they are de-
rived directly or by discretization of the adjoint partial
differential equation, are linear. Therefore they could be
solved by direct numerical inversion. In three-dimen-
sional problems on a mesh with, say, n intervals in each
coordinate direction, the number of unknowns is propor-
tional to n* and the bandwidth to n2. The complexity of
direct inversion is proportional to the number of un-
knowns multiplied by the square of the bandwidth, re-
sulting in a complexity proportional to n’. The cost of
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direct inversion can thus become prohibitive as the mesh
is refined, and it becomes more efficient to use iterative
solution methods. Moreover, because of the similarity of
the adjoint equations to the flow equations, the same
iterative methods which have been proved to be efficient
for the solution of the flow equations are efficient for the
solution of the adjoint equations.

The control theory formulation for optimal aerody-
namic design has proved effective in a variety of applica-
tions [137,192,193]. Pironneau has studied the use of
contro] theory for optimal shape design of systems gov-
erned by elliptic equations [194], and more recently the
Navier-Stokes equations, and also wave reflection prob-
lems [195]. The adjoint equations have also been used by
Baysal and Eleshaky [196], and by Ta’asan, Kuruvila
and Salas [197], who have implemented a one shot
approach in which the constraint represented by the flow
equations is only required to be satisfied by the final
converged solution. In their work, computational costs
are also reduced by applying multigrid techniques to the
geometry modifications as well as the solution of the flow
and adjoint equations. Adjoint methods have been ap-
plied to incompressible viscous flow problems by Cabuk
and Modi [198,199] and by Desai and Ito [200]. Recent
applications of adjoint methods on unstructured meshes
include the work of Anderson and Venkatakrishnan
[201], and Elliot and Peraire [202].

5.3. Three-dimensional design using the compressible
Euler and Navier-Stokes equations

In order to illustrate the application of control theory
to aerodynamic design problems, this section treats
three-dimensional wing design using the compressible
Euler and Navier-Stokes equations to model the flow. In
comparison with incompressible viscous flow, the adjoint
equations contain numerous extra terms which arise
from the variation of the energy equation. In order to
simplify the calculation of the effect of shape changes it is
convenient to introduce a body-fitted coordinate system,
so that the flow and adjoint equations are solved in
a fixed computational domain. Suppose that the trans-
formation to computational coordinates (£, ¢&,,E5) is
defined by the metrics

msmmeFﬂ.
an

The Navier—Stokes equations (1-3) can then be written in
the computational domain as

M + Rw)=0 in 2, 49)
ot

where

Row) =2 (F, — F.), (50)

&

where the inviscid and viscous flux contributions are now
defined with respect to the computational cell faces by
F; = 8,f; and F,; = Sj;f,;, and the quantity S;; = JK;;*
is used to represent the projection of the &; cell face along
the x;-axis. For convenience, the coordinates &; describ-
ing the fixed computational domain are chosen so that
each boundary conforms to a constant value of one of
these coordinates. Variations in the shape then result in
corresponding variations in the mapping derivatives de-
fined by Kj;.

Suppose that the performance is measured by a cost
function

I =J M(w,SydB. +J P(w,S)dD;,
B 2

containing both boundary and field contributions where
dB; and dD, are the surface and volume elements in the
computational domain. In general, .# and Z will depend
on both the flow variables w and the metrics S defining
the computational space. The design problem is now
treated as a control problem where the boundary shape
represents the control function, which is chosen to min-
imize 1 subject to the constraints defined by the flow
equations (49). A shape change produces a variation in
the flow solution dw and the metrics 4§ which in turn
produce a variation in the cost function

51 = La,ﬂ(w, S)dB; + L 37 (w,S)dDy. 6D
This can be split as

81 = 81y + oIy (52)
with

OM = [ M ]i0W + S My,

0P = [P, 11dw + 02y, (53)

where we continue to use subscripts T and II to distin-
guish between the contributions associated with the vari-
ation of the flow solution éw and those associated with
the metric variations 4S. Thus [.#,, ]y and [2,,]; repres-
ent 0.4 /0w and 09/dw with the metrics fixed, while 6.4/
and 8%y represent the contribution of the metric vari-
ations S to 0.4 and J%.

In the steady state, the constraint equation (53) speci-
fies the variation of the state vector éw by

0
O0R = 8—5:5(Fi - F,)=0. (54)

Here, also, SR, 0F; and §F,; can be split into contribu-
tions associated with dw and 4§ using the notation

5R = 5R1 + 5Rn,
OF; = [Fiyliow + 0Fy,
0Fy; = [FyiwJ10W + 0F 1. (55)



224 A. Jameson [ Progress in Aerospace Sciences 37 (2001) 197-243

The inviscid contributions are easily evaluated as

i
[Fiw]l = Sij EJ%’ 5Fom = 5Sijfj-
The details of the viscous contributions are complicated
by the additional level of derivatives in the stress and
heat flux terms.
Multiplying by a costate vector i, which will play an
analogous role to the Lagrange multiplier introduced in

Eq. (46), and integrating over the domain produces
0
Y'—0o(F; — F,;)dZ: = 0. (56)
o 0%

Assuming that i is differentiable the terms with subscript
I may be integrated by parts to give

J niWTé(Fi - Fvi)l d«@E
2

2 0&;

This equation results directly from taking the variation of
the weak form of the flow equations, where ¥ is taken to
be an arbitrary differentiable test function. Since the left
hand expression equals zero, it may be subtracted from
the variation in the cost function (51) to give

oyt .
- S(F; — Fu) d2; + | Y"6R;dZ; =0. (57)
@

5[ = 51[] - J‘ l//TERH d@g
2
- J [8.4ly — nay"O(F; — Fy:)h]1d2A,
B

+ f [597, + g“gam - Fvi)l:|d95. (58)

Now, since i is an arbitrary differentiable function, it
may be chosen in such a way that I no longer depends
explicitly on the variation of the state vector éw. The
gradient of the cost function can then be evaluated dir-
ectly from the metric variations without having to recom-
pute the variation éw resulting from the perturbation of
each design variable.

Comparing Egs. (53) and (55), the variation 0w may be
eliminated from (58) by equating all field terms with
subscript “I” to produce a differential adjoint system
governing

ot
9&;

The corresponding adjoint boundary condition is pro-
duced by equating the subscript “I” boundary terms in
Eq. (58) to produce

nin[Fiw

[Fiw — Forli + [#w]i =0 in 2. (59)

- Fuiw]l = ['ﬂw]l on #. (60)

The remaining terms from Eq. (58) then yield a simplified
expression for the variation of the cost function which
defines the gradient

51 = 511[ -+ f WTéRH d@;, (61)
@

which consists purely of the terms containing variations
in the metrics with the flow solution fixed. Hence, an
explicit formula for the gradient can be derived once the
relationship between mesh perturbations and shape vari-
ations is defined.

The details of the derivation of the adjoint equation
are quite complicated, and have been presented in
[191,203,204]. Taking the transpose of Eq. (59), the invis-
cid adjoint equation may be written as

oy
0&;

where the inviscid Jacobian matrices in the transformed
space are given by

%

Yow

CT=2 =0 in 9, (62)

Ci=S

The derivation of the viscous adjoint terms is simplified
by transforming to the primitive variables

WT = (Pa”l,”bu%p)T,

because the viscous stresses depend on the velocity deriv-
atives du;/0x;, while the heat fluxes can be expressed as

o (p
K@x,-p'

Here
ok _ v on
R 9y—1Pr

where k is the conductivity, R is the gas constant, and Pr
is the Prandtl number. The relationship between the
conservative and primitive variations are defined by the
expressions

Sw = Méw, Sw =M ‘5w,

which make use of the transformation matrices
M = ow/ow and M ! = 0w/ow. The conservative and
primitive adjoint operators L and I corresponding to the
variations dw and 0w are then related by

J WLy d9, = J WLy 4D,
2 2

with

FE=M"L,
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where
u;u;
Fl Uy Uy Uj -2*-
0 p 0 0 pu
M'=!0 0 p 0 pu
0 0 0 p pus
1
0 0 -
y— 1]

The derlvatlon of the viscous adjoint operator is pro-
vided in [2047] with the simplification that variations in
the transport coefficients are ignored. It is convenient to
introduce the notation

lpi-l—l:(z)i: i:172=35 ‘1/5:9

in order to allow the use of the summation convention for
repeated indices over the range 1-3. Then, collecting
together the contributions from the momentum and
energy equations, the viscous adjoint operator in primi-
tive variables can finally be expressed as

o T SN

(Ly), = o= Dp? 3 (S”kaxj >

-~ _a J¢; ¢; a_qS,i

L)+ 1 (’)é{ |:( +@x,> ’15"6 :|}
] 00 06 00
RATEREINEY

0o
—_ O"ijSljax‘l fori= 1,2,3,

~p 0 Eﬁ
(L) = - 1)6_5,<S”kaxj>'

The conservative viscous adjoint operator may then be
obtained by the transformation

L= M 1T~

The final formula for the gradient depends on the way
in which the boundary shape is parameterized as a func-
tion of the design variables, and the way in which the
mesh is deformed as the boundary is modified. Using the
relationship between the mesh deformation and the sur-
face modification, the field integral is reduced to a surface
integral by integrating along the coordinate lines
emanating from the surface. Thus, expression (26) for 61
is finally reduced to the form of Eq. (48)

sz G 5F B,
23

where F represents the design variables, and ¢ is the
gradient, which is a function defined over the boundary
surface.

The boundary conditions satisfied by the flow equa-
tions restrict the form of the left hand side of the adjoint

boundary condition (60). Consequently, the boundary
contribution to the cost function .# cannot be specified
arbitrarily. Instead, it must be chosen from the class of
functions which allow cancellation of all terms contain-
ing ow in the boundary integral of Eq. (58). On the other
hand, there is no such restriction on the specification of
the field contribution to the cost function £, since these
terms may always be absorbed into the adjoint field
Eq. (59) as source terms.

The costate solution ¢ is a legitimate test function for
the weak form of the flow equations only if it is differenti-
able. In order to avoid discontinuities in the adjoint
boundary condition which would be caused by the
appearance of shock waves, the cost function for the
target pressure py may be modified to the form

1 dZ\?

0. 0F
/113”—6—5/12*6€=P—Pd-
Then

0% 0

51=Jf<ﬂu1£féff+/12 PR 6_55°Z>dédn

Z(A d 0F dEd

1 af 85 q
=jf5pdédn

and the smooth quantity Z replaces p — pq in the adjoint
boundary condition. Smoothness should also be preser-
ved in the redesigned shape. It is therefore crucially
important to limit the shape modifications to smooth
changes either by restricting the shape changes to combi-
nations of smooth functions or by directly smoothing the
changes.

3.4. Optimization procedures

Two main search procedures have been used in our
applications to date. The first is a simple descent method
in which small steps are taken in the negative gradient
direction. Let & represent the design variable, and ¢ the
gradient. Then the iteration

OF = — A9
can be regarded as simulating the time dependent process
&

de ’

where A is the time step At. Let 4 be the Hessian matrix
with elements

0%, oI
A=t =

ij
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Suppose that a locally minimum value of the cost func-
tion I* = [(#*) is attained when % = Z* Then the
gradient * = %(F*) must be zero, while the Hessian
matrix A* = A(Z*) must be positive definite. Since ¥* is
zero, the cost function can be expanded as a Taylor series
in the neighborhood of #* with the form

I(F)=I* + HF — FNAF —F* + - .
Correspondingly,
GF)= AF —F*+ - .

As # approaches #*, the leading terms become domi-
nant. Then, setting & = (¥ — F*), the search process

approximates
dF R
— = — A*F.
dr

Also, since A* is positive definite it can be expanded as
A* = RMR",

where M is a diagonal matrix containing the eigenvalues
of A*, and

RRT=R™R=1

Setting

v=R"%,

the search process can be represented as

do M

— = — Mv.

dr

The stability region for the simple forward Euler stepping
scheme is a unit circle centered at — 1 on the negative
real axis. Thus for stability we must choose

HmBX At = :umax j’ < 27

while the asymptotic decay rate, given by the smallest
eigenvalue, is proportional to

e “min’.

In order to make sure that each new shape in the
optimization sequence remains smooth, it proves essen-
tial to smooth the gradient and to replace ¢ by its
smoothed value & in the descent process. This also acts
as a preconditioner which allows the use of much larger
steps. To apply smoothing in the £, direction, for
example, the smoothed gradient 4 may be calculated
from a discrete approximation to

_ 0 0
G ——e—F=9,
98 04,
where ¢ is the smoothing parameter. If one sets
3F = — A%, then, assuming the modification is applied

on the surface &, = constant, the first order change in the
cost function is

- Jj@é% dé; d&;
_ 09 \?
By

<0,

assuring an improvement if 1 is sufficiently small and
positive, unless the process has already reached a station-
ary point at which % = 0.

It turns out that this approach is tolerant to the use of
approximate values of the gradient, so that neither the
flow solution nor the adjoint solution need be fully con-
verged before making a shape change. This results in very
large savings in the computational cost. For inviscid
optimization it is necessary to use only 15 multigrid
cycles for the flow solution and the adjoint solution in
each design iteration. For viscous optimization, about
100 multigrid cycles are needed. This is partly because
convergence of the lift coefficient is much slower, so
about 20 iterations must be made before each adjustment
of the angle of attack to force the target lift coefficient.

Our second main search procedure incorporates
a quasi-Newton method for general constrained optim-
ization. In this class of methods the step is defined as

0F = — \PY,

here P is a preconditioner for the search. An ideal choice
is P = A* 1, so that the corresponding time dependent
process reduces to
dF .

P

dt

’

for which all the eigenvalues are equal to unity, and F is
reduced to zero in one time step by the choice At = 1 if
the Hessian, A4, is constant. The full Newton method
takes P = A~ !, requiring the evaluation of the Hessian
matrix, A, at each step. It corresponds to the use of the
Newton-Raphson method to solve the non-linear equa-
tion % = 0. Quasi-Newton methods estimate 4* from the
change in the gradient during the search process. This
requires accurate estimates of the gradient at each time
step. In order to obtain these, both the flow solution and
the adjoint equation must be fully converged. Most
quasi-Newton methods also require a line search in each
search direction, for which the flow equations and cost
function must be accurately evaluated several times.
Since the Hessian can only be completely estimated after
as many steps as there are design variables, it pays to
reduce the number of design variables with this approach
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by representing the geometry as a superposition of ap-
propriately chosen shape functions. The Hicks-Henne
bump functions [205] have proved effective in many
applications. Because those functions are smooth they
also serve the purpose of preserving the smoothness of
the shape modifications, which is essential for any accept-
able design.

In the applications to complex configurations present-
ed below the optimization was carried out using the
existing, well validated software NPSOL. This software,
which implements a quasi-Newton method for optimiza-
tion with both linear and nonlinear constraints, has pro-
ved very reliable but is generally more expensive than the
simple search method with smoothing.

5.5, Industrial experience and results of optimization

The methods described in this paper have been quite
thoroughly tested in industrial applications in which they
were used as a tool for aerodynamic design. They have
proved useful both in inverse mode to find shapes that
would produce desired pressure distributions, and for
direct minimization of the drag. They have been applied
both to well understood configurations that have grad-
ually evolved through incremental improvements guided
by wind tunnel tests and computational simulation, and
to new concepts for which there is a limited knowledge
base. In either case they have enabled engineers to pro-
duce improved designs.

Substantial improvements are usually obtained with
20-200 design cycles, depending on the difficulty of the
case. One concern is the possibility of getting trapped in
a local minimum. In practice, this has not proved to be
a source of difficulty. In inverse mode, it often proves
possible to come very close to realizing the target pres-
sure distribution, thus effectively demonstrating con-
vergence. In drag minimization, the result of the
optimization is usually a shock-free wing. If one con-
siders drag minimization of airfoils in two-dimensional
inviscid transonic flow, it can be seen that every shock-
free airfoil produces zero drag, and thus optimization
based solely on drag has a highly nonunique solution.
Different shock-free airfoils can be obtained by starting
from different initial profiles. One may also influence the
character of the final design by blending a target pressure
distribution with the drag in the definition of the cost
function.

Similar considerations apply to three-dimensional
wing design in viscous transonic flow. Since the vortex
drag can be reduced simply by reducing the lift, the lift
coefficient must be fixed for a meaningful drag minimiz-
ation. A typical wing of a transport aircraft is designed
for a lift coefficient in the range of 0.4 to 0.6. The total
wing drag may be broken down into vortex drag, drag
due to viscous effects, and shock drag. The vortex drag
coefficient is typically in the range of 0.0100 (100 counts),

while the friction drag coefficient is in the range of 45
counts, and the shock drag at a Mach number just before
the onset of severe drag rise is of the order of 15 counts.
With a fixed span, typically dictated by structural limits
or a constraint imposed by airport gates, the vortex drag
is entirely a function of span loading, and is minimized by
an elliptic loading unless winglets are added. Transport
aircraft usually have highly tapered wings with very large
root chords to accommodate retraction of the undercar-
riage. An elliptic loading may lead to excessively large
section lift coefficients on the outboard wing, leading to
premature shock stall or buffet when the load is in-
creased. The structure weight is also reduced by a more
inboard loading which reduces the root bending mo-
ment. Thus the choice of span loading is influenced by
other considerations. The skin friction of transport air-
craft is typically very close to flat plate skin friction in
turbulent flow, and is very insensitive to section vari-
ations. An exception to this is the case of smaller execu-
tive jet aircraft, for which the Reynolds number may be
small enough to allow a significant run of laminar flow if
the suction peak of the pressure distribution is moved
back on the section. This leaves the shock drag as the
primary target for wing section optimization. This is
reduced to zero if the wing is shock-free, leaving no room
for further improvement. Thus the attainment of
a shock-free flow is a demonstration of a successful drag
minimization. In practice range is maximized by maxi-
mizing M L/D, and this is likely to be increased by
increasing the lift coefficient to the point where a weak
shock appears. One may also use optimization to find the
maximum Mach number at which the shock drag can be
eliminated or significantly reduced for a wing with
a given sweepback angle and thickness. Alternatively,
one may try to find the largest wing thickness or the
minimum sweepback angle for which the shock drag can
be eliminated at a given Mach number. This can yield
both savings in structure weight and increased fuel vol-
ume . If there is no fixed limit for the wing span, such as
a gate constraint, increased thickness can be used to
allow an increase in aspect ratio for a wing of equal
weight, in turn leading to a reduction in vortex drag.
Since the vortex drag is usually the largest component of
the total wing drag, this is probably the most effective
design strategy, and it may pay to increase the wing
thickness to the point where the optimized section
produces a weak shock wave rather than a shock-free
flow [206].

The first major industrial application of an adjoint
based aerodynamic optimization method was the wing
design of the Beech Premier [207] in 1995. The method
was successfully used in inverse mode as a tool to obtain
pressure distributions favorable to the maintenance of
natural laminar flow over a range of cruise Mach num-
bers. Wing contours were obtained which yielded the
desired pressure distribution in the presence of closely
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coupled engine nacelles on the fuselage above the wing
trailing edge.

During 1996 some preliminary studies indicated that
the wings of both the McDonnell Douglas MD-11 and
the Boeing 747-200 could be made shock-free in a repre-
sentative cruise condition by using very small shape
modifications, with consequent drag savings which could
amount to several percent of the total drag. This led to
a decision to evaluate adjoint-based design methods in
the design of the McDonnell Douglas MDXX during the
summer and fall of 1996. In initial studies wing redesigns
were carried out for inviscid transonic flow modeled by
the Euler equations. A redesign to minimize the drag at
a specified lift and Mach number required about 40
design cycles, which could be completed overnight on
a workstation.

Three main lessons were drawn from these initial
studies: (i) the fuselage effect is too large to be ignored
and must be included in the optimization, (ii) single-point
designs could be too sensitive to small variations in the
flight condition, typically producing a shock-free flow at
the design point with a tendency to break up into a severe
double shock pattern below the design point, and (iii) the
shape changes necessary to optimize a wing in transonic
flow are smaller than the boundary layer displacement
thickness, with the consequence that viscous effects must
be inctuded in the final design.

200

(@)

030 120 160

Cp
040 000 040
+ + + + o+ + + + o+ o+ A
Log(Error)

080

120

S

RAE 2822

MACH 0750 ALPHA 3.000

CL L1312 CD 00469 CM -0.1968
GRID 321X65 NCYC 25 RES0.186E-03

-10.00 800 400 -4.00 200 000 200

-12.00

A. Jameson | Progress in Aerospace Sciences 37 (2001) 197-243

In order to meet the first two of these considerations,
the second phase of the study was concentrated on the
optimization of wing-body combinations with multiple
design points. These were still performed with inviscid
flow to reduce computational cost and allow for fast
turnaround. It was found that comparatively insensitive
designs could be obtained by minimizing the drag at
a fixed Mach number for three fairly closely spaced lift
coefficients such as 0.5, 0.525, and 0.55, or alternatively
three nearby Mach numbers with a fixed lift coefficient
(see Figs. 21-24).

The third phase of the project was focused on the
design with viscous effects using as a starting point wings
which resulted from multipoint inviscid optimization.
While the full viscous adjoint method was still under
development, it was found that useful improvements
could be realized, particularly in inverse mode, using the
inviscid result to provide the target pressure, by coupling
an inviscid adjoint solver to a viscous flow solver. Com-
puter costs are many times larger, both because finer
meshes are needed to resolve the boundary layer, and
because more iterations are needed in the flow and ad-
joint solutions. In order to force the specified lift coeffic-
ient the number of iterations in each flow solution had to
be increased from 15 to 100. To achieve overnight tur-
naround a fully parallel implementation of the software
had to be developed. Finally, it was found that in order to
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produce sufficiently accurate results, the number of mesh
points had to be increased to about 1.8 million. In the
final phase of this project it was planned to carry out
a propulsion integration study using the multiblock
versions of the software. This study was not completed
due to the cancellation of the entire MDXX project.

During the summer of 1997, adjoint methods were
again used to assist the McDonnell Douglas Blended
Wing-Body project. By this time the viscous adjoint
method was well developed, and it was found that it was
needed to achieve truly smooth shock-free solutions.
With an inviscid adjoint solver coupled to a viscous flow
solver some improvements could be made, but the shocks
could not be entirely eliminated.

The next subsection shows a wing design using the full
viscous adjoint method in its current form, implemented in
the computer program SYN107. The remaining subsec-
tions present results of optimizations for complete config-
urations in inviscid transonic and supersonic flow using
the multiblock parallel design program, SYN107-MB.

5.5.1. Transonic viscous wing-body design

A typical result of drag minimization in transonic
viscous flow is presented below. This calculation is a re-
design of a wing using the viscous adjoint optimization
method with a Baldwin-Lomax turbulence model. The
initial wing is similar to one produced during the MDXX
design studies. Figs. 25-27 show the result of the wing-
body redesign on a C-H mesh with 288 x 96 x 64 cells.
The wing has sweep back of about 38° at the 1/4 chord.

A total of 44 iterations of the viscous optimization pro-
cedure resulted in a shock-free wing at a cruise design
point of Mach 0.86, with a lift coefficient of 0.61 for the
wing-body combination at a Reynolds number of 101
million based on the root chord. Using 48 processors of
an SGI Origin2000 parallel computer, each design iter-
ation takes about 22 min so that overnight turnaround
for such a calculation is possible. Fig. 25 compares the
pressure distribution of the final design with that of the
initial wing. The final wing is quite thick, with a thickness
to chord ratio of about 14% at the root and 9% at the
tip. The optimization was performed with a constraint
that the section modifications were not allowed to de-
crease the thickness anywhere. The design offers excellent
performance at the nominal cruise point. A drag reduc-
tion of 2.2 counts was achieved from the initial wing
which had itself been derived by inviscid optimization.
Figs. 26 and 27 show the results of a Mach number sweep
to determine the drag rise. The drag coefficients shown in
the figures represent the total wing drag including shock,
vortex, and skin friction contributions. It can be seen that
a double shock pattern forms below the design point,
while there is actually a slight increase in the drag coeffic-
ient at Mach 0.85. The tendency to produce double
shocks below the design point is typical of supercritical
wings. This wing has a low drag coefficient, however,
over a wide range of conditions. Above the design point
a single shock forms and strengthens as the Mach
number increases, a behavior typical in transonic flow
(see Fig. 28).
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5.5.2. Transonic multipoint constrained aircraft design
As a first example of the automatic design capability
for complex configurations, a typical business jet config-
uration is chosen for a multipoint drag minimization run.
The objective of the design is to alter the geometry of the

wing in order to minimize the configuration inviscid drag
at three different flight conditions simultaneously. Realis-
tic geometric spar thickness constraints are enforced. The
geometry chosen for this analysis is a full configuration
business jet composed of wing, fuselage, pylon, nacelle,
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and empennage. The inviscid multiblock mesh around
this configuration follows a general C-O topology with
special blocking to capture the geometric details of the
nacelles, pylons and empennage. A total of 240 point-to-
point matched blocks with 4,157,440 cells (including
halos) are used to grid the complete configuration. This
mesh allows the use of 4 multigrid levels obtained
through recursive coarsening of the initial fine mesh. The
upstream, downstream, upper and lower far field bound-
aries are located at an approximate distance of 15 wing
semispans, while the far field boundary beyond the wing
tip is located at a distance approximately equal to
5 semi-spans. An engineering-accuracy solution (with figuration.
a decrease of 4 orders of magnitude in the average density
residual) can be obtained in 100 multigrid cycles. This
kind of solution can be routinely accomplished in nnder
20 min of wall clock time using 32 processors of an SGI
Origin2000 computer.

The initial configuration was designed for Mach = 0.8
and Cy, = 0.3. The three operating points chosen for this
design are Mach = 0.81 with C, =0.35, Mach = 0.82
with Cp = 0.30, and Mach = 0.83 with Cy = 0.25. For
each of the design points, both Mach number and lft
coefficient are held fixed. In order to demonstrate the
advantage of a multipoint design approach, the final
solution at the middle design point will be compared with
a single-point design at the same conditions. As the
geometry of the wing is modified, the design algorithm
computes new wing-fuselage intersections. The wing
component is made up of six airfoil defining sections.
Eighteen Hicks-Henne design variables are applied to
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five of these sections for a total of 90 design variables. The
sixth section at the symmetry plane is not modified. Spar
thickness constraints were also enforced on each defining
station at the x/ec = 0.2 and 0.8 locations. Maximum
thickness was forced to be preserved at x/c = 0.4 for all
six defining sections. To ensure an adequate included
angle at the trailing edge, each section was also con-
strained to preserve thickness at x/c = 0.95. Finally, to
preserve leading edge bluntness, the upper surface of
each section was forced to maintain its height above the
camber line at x/c =0.02. Combined, a total of 30
linear geometric constraints were imposed on the con-

Significant improvements were obtained with 5 design
iterations using NPSOL. Table 4 summarizes the drag
reductions that were obtained with a single-point design
optimized at Mach 0.82, and a three-point design simul-

taneously optimized at Mach 0.81, Mach 0.82, and Mach

0.83. The Cp, values have been normalized by the drag of
the original configuration at Mach 0.82. Interestingly, the
upper surface shapes for both final designs are very
similar. However, in the case of the single-point design,
a strong lower surface shock appears at the Mach = 0.83,
Cy. = 0.25 design point. The three-point design is able to
suppress the formation of this lower surface shock and
achieves a 9 count drag benefit over the single-point
design at this condition. However, it has a 1 count pen-
alty at the single-point design condition. The three-point
design features a weak single shock for one of the three
design points and a very weak double shock at
another design point. Fig. 29 shows the surface of the
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Table 4
Drag reduction for single and multipoint designs

Three-point design
relative Cp

Single-point design
relative Cp

Design Conditions Initial
Mach Cy relative Cp
0.81 0.35 1.00257
0.82 0.30 1.00000
0.83 0.25 1.08731

0.85003 0.85413
0.77350 0.77915
0.81407 0.76836

Baseline Design

Optimized Design

Fig. 29. Geometry surface colored by local C, before and after
redesign.

configuration colored by the local coefficient of pressure,
C,, before and after redesign for the middle design point.
One can clearly observe that the strength of the shock
wave on the upper surface of the configuration has been
considerably reduced.

5.5.3. Supersonic constrained aircraft design

For supersonic design, provided that turbulent flow is
assumed over the entire configuration, the inviscid Euler
equations suffice for aerodynamic design since the pres-
sure drag is not greatly affected by the inclusion of
viscous effects. Moreover, flat plate skin friction esti-
mates of viscous drag are often very good approxima-
tions. In this study, the generic supersonic transport
configuration used in reference [208] is revisited.

The baseline supersonic transport configuration was
sized to accommodate 300 passengers with a gross take-
off weight of 750,000 Ibs. The supersonic cruise point
is Mach 2.2 with a Cp of 0.105. Fig. 30 shows that the
planform is a cranked-delta configuration with a break in
the leading edge sweep. The inboard leading edge sweep
is 68.5° while the outboard is 49.5°. Since the Mach angle
at M =22 is 63° it is clear that some leading edge
bluntness may be used inboard without a significant
wave drag penalty. Blunt leading edge airfoils were cre-
ated with thickness ranging from 4% at the root to 2.5%
at the leading edge break point. These symmetric airfoils
were chosen to accommodate thick spars at roughly the
5% and 80% chord locations over the span up to the
leading edge break. Outboard of the leading edge break
where the wing sweep is ahead of the Mach cone, a sharp
leading edge was used to avoid unnecessary wave drag.
The airfoils were chosen to be symmetric, biconvex
shapes modified to have a region of constant thickness
over the mid-chord. The four-engine configuration fea-
tures axisymmetric nacelles tucked close to the wing
lower surface. This layout favors reduced wave drag by
minimizing the exposed boundary layer diverter area.
However, in practice, it may be problematic because of
the channel flows occurring in the juncture region of the
diverter, wing, and nacelle at the wing trailing edge.

The computational mesh on which the design is run
has 180 blocks and 1,500,000 mesh cells (including halos),
while the underlying geometry entities define the wing
with 16 sectional cuts and the body with 200 sectional
cuts. In this case, where we hope to optimize the shape of
the wing, care must be taken to ensure that the nacelles
remain properly attached with diverter heights being
maintained.

The objective of the design is to reduce the total drag of
the configuration at a single design point (Mach = 2.2,
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Cp = 0.105) by modifying the wing shape. Just as in the
transonic case, 18 design variables of the Hicks—-Henne
type are chosen for each wing defining section. Similarly,
instead of applying them to all 16 sections, they are
applied to 8 of the sections and then lofted linearly to the
neighboring sections. Spar thickness constraints are im-
posed for all wing defining sections at x/c = 0.05 and 0.8.
An additional maximum thickness constraint is specified
along the span at x/c = 0.5. A final thickness constraint is
enforced at x/c =0.95 to ensure a reasonable trailing
edge included angle. An iso-C, representation of the
initial and final designs is depicted in Fig. 30 for both the
upper and lower surfaces.

It is noted that the strong oblique shock evident near
the leading edge of the upper surface on the initial config-
uration is largely eliminated in the final design after
5 NPSOL design iterations. Also, it is seen that the upper

Baseline

Optimized

Upper Surface

surface pressure distribution in the vicinity of the nacelles
has formed an unexpected pattern. However, recalling
that thickness constraints abound in this design, these
upper surface pressure patterns are assumed to be the
result of sculpting of the lower surface near the nacelles
which affects the upper surface shape via the thickness
constraints. For the lower surface, the leading edge has
devetoped a suction region while the shocks and expan-
sions around the nacelles have been somewhat reduced.
Fig. 31 shows the pressure coefficients and (scaled) airfoil
sections for four sectional cuts along the wing. These cuts
further demonstrate the removal of the oblique shock on
the npper surface and the addition of a suction region on
the leading edge of the lower surface. The airfoil sections
have been scaled by a factor of 2 so that shape changes
may be seen more easily. Most notably, the section at
387% span has had the lower surface drastically

Baseline

Optimized

Lower Surface

Fig. 30. Supersonic transport configuration. Iso-C, contours on upper and lower surfaces. Baseline and optimized designs.

M =22, C. =0.105.



236 A. Jameson | Progress in Aerospace Sciences 37 (2001) 197-243

EE

] @

016

-3
g
s 84
o - .
24 — - Original Configuration
— Y stretch factor: 2,0
5

032
L

r T T T T T T T T T )
000 010 020 03 040 050 06 070 0B 0% 100
xic
Generic HSCT C (SYN87-MB Euler Calculation)
Mah Alpha Re o o 7 G Lo

2200 2941 900FAN0 008508 00008 150000 0236 LGN -0.03975 006285
2200 3118 9.00L+00 -0.08755 000515 150000 007926 0.00650 -0.03084 006D

1@

02

016

g |
g
& &4
g |
N _ - Original Configuration
~—— Y stretch factor: 2.0
3
3

032

T T T T T T 3 T T T 1
000 010 020 03 040 05O 060 00 030 090 100

xc
Generic HSCT Configuration (SYN87-MB Euler Calculation)
Mach Alpha  Re a 7 © € COm Lost

2200 2544 900B+00 -0.08S98 000494 450000 015374 0.00699 -0.06683 004450
2200 3118 900B+00 -0.06755 D.00S1S 450000 O0.16358 0.01001 -0.06406 0.04736

032
)
~
=2
=

024
L

008

& §
g |
2 _ _ Origioal Configuration
—  Ystretch factor: 2.0
5
5

S s s S S S E E—

000 010 020 030 040 050 06 070 080 080 100
xc

Generic HSCT Configuration (SYN87-MB Euler Caleulation)

A Re o z a o Cm ot

2944 D00E+00 -0.08598 00044 300000 Q11567 000707 -0.0565% 0.06088
3LI8 D00FH0 -0.08755 000515 200000 0.11389 000729 004653 005995

g

3 4

2

s -

g 4

& & 4

-

2z | /S _ - Original Configuration
/ — ¥ strotch factor: 2.0
i

3

3

]
ER I =i

r T T T T T T T T T 1
600 010 020 030 040 050 080 070 080 080 100
X
Generic HSCT Configuration (SYN87-MB Euler Calculation)
Mach Algm  Re [ ) z a G Cm

2200 2944 9.00E:00 -0.08598 00X94 600000 018931 001220 -0.09634 0.03090
2200 3118 900E+00 008755 000515 600000 0.19463 D.OI78 -0.09419 0.03177

Fig. 31. Supersonic transport configuration. Drag minimization at fixed lift. M = 2.20, Cy, = 0.105 144 Hicks-Henne variables. Spar
contsraints active, (- --) initial pressures, (—) pressures after 5 design cycles. a: span station z = 0.194 b: span station z = 0.387 c: span

station z = 0.581 d: span station z = 0.775.

modified such that a large region of the aft airfoil has a
forward-facing portion near where the pressure spike
from the nacelle shock impinges on the surface. The
final overall pressure drag was reduced by 8%, from
Cp = 0.0088 to 0.0081.

6. Outlook and conclusions

Better algorithms and better computer hardware have
contributed about equally to the progress of computa-

tional science in the last two decades. In 1970 the Control
Data 6600 represented the state of the art in computer
hardware with a speed of about 105 operations per sec-
ond (one megaflop), while in 1990 the & processor Cray
YMP offered a performance of about 10° operations per
second (one gigaflop). Correspondingly, steady-state
Euler calculations which required 5000-10,000 steps
prior to 1980 could be performed in 10-50 steps in 1990
using multigrid acceleration. With the advent of massive-
ly parallel computers it appears that the progress of
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computer hardware may even accelerate. Teraflop ma-
chines offering further improvement by a factor of 1000
are likely to be available within a few years. Paraliel
architectures will force a reappraisal of existing algo-
rithms, and their effective utilization will require the
extensive development of new parallel software.

In parallel with the transition to more sophisticated
algorithms, the present challenge is to extend the effective
use of CFD to more complex applications. A key prob-
lem is the treatment of multiple space and time scales.
These arise not only in turbulent flows, but also in many
other situations such as chemically reacting flows, com-
bustion, flame fronts and plasma dynamics. Another
challenge is presented by problems with moving bound-
aries. Examples include helicopter rotors, and rotor-
stator interaction in turbomachinery. It can be
anticipated that interdisciplinary applications in which
CFD is coupled with the computational analysis of other
properties of the design will play an increasingly impor-
tant role. These applications may include structural,
thermal and electromagnetic analysis. Aeroelastic
problems and integrated control sysiem and aero-
dynamic design are likely target areas. The development
of improved algorithms continues to be important in
providing the basic building blocks for numerical simula-
tion. In particular, better error estimation procedures
must be developed and incorporated in the simulation
software to provide error control. The basic simulation
software is only one of the needed ingredients, however.
The flow solver must be embedded in a user-friendly
system for geometry modeling, output analysis, and data
management that will provide a complete numerical de-
sign environment. These are the ingredients which are
needed for the full realization of the concept of a numer-
ical wind tunnel. Figs. 18 and 19 illustrate the way in
which a numerical wind tunnel might evolve from cur-
rent techniques, which involve massive data handling
tasks, to a fully integrated design environment.

As more powerful computational resources become
available, computational simulation is in the process
of becoming the principal tool of the aerodynamic
design process because of the flexibility it provides for
the rapid and comparatively inexpensive evaluation of
alternative designs, and because it can be integrated in
a numerical design environment providing for both
multi-disciplinary analysis and multi-disciplinary optim-
ization.
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