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Introduction

HE purpose of this chapter is to survey some of the highlights of

computational fluid dynamics (CFD) schemes for solving the full-
potential, Euler, and Navier-Stokes equations. Prior to the advent of the
computer, there was a rather comprehensive mathematical formulation of
fiuid mechanics already in place. This formulation had been developed by
elegant mathematical analysis, frequently guided by brilliant insights. Well-
known examples include the airfoil theory of Kutta and Joukowski,
Prandtl’s wing and boundary-layer theories, von Karman’s analysis of the
vortex street, and, more recently, Jones’ slender wing theory' and Hayes’
theory of linearized supersonic flow.? These methods require simplifying
assumptions of various kinds and cannot be used to make quantitative
predictions of complex flows dominated by nonlinear effects. The computer
opens up new possibilities for attacking these problems by direct calcula-
tion of solutions to more complete mathematical models.

The main uses of CFD in aeronautical science fall into two broad
categories. First, there is the objective of providing reliable aerodynamic
predictions, which will enable designers to produce better airplanes. Sec-
ond, there is the possibility of using CFD for purely scientific investiga-
tions. It seems possible that numerical simulation of complex flows not
readily accessible to experimental measurements can provide new insights
into the underlying physical processes. In particular, computational meth-
ods offer a new tool for the study of structures in turbulent flow and the
mechanisms of transition from laminar to turbulent flow.

Most of this chapter is devoted to the use of computational methods for
aerodynamic prediction. This is a comparatively recent development. Prior
to 1965 computational methods were hardly used in aerodynamic analysis,
although they were already widely used for structural analysis. The primary
tool for the development of aerodynamic configurations was the wind
tunnel. Experimental aerodynamicists could arrive at efficient shapes
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through testing guided by good physical insight. Notable examples of the
power of this method include Whitcomb’s discovery of the area rule for
transonic flow and his subsequent development of aft-loaded supercritical
airfoils.>® By the 1960s it began to be recognized that computers had
become powerful enough to make it worthwhile to attempt calculations of
aerodynamic properties of at least isolated components of an aircraft. It
was also apparent that, depending on the intended application, useful
simulations might be achieved with a range of mathematical models of
varying complexity. Commercial aircraft fly largely with attached flows, in
which the viscous effects are confined to the boundary layer. Consequently,
they have a relatively small effect on the global flow pattern, other than
their role in establishing circulatory flows through the shedding of start-up
vortices off the trailing edges of lifting surfaces. Inviscid flow predictions
then serve a useful role and can take advantage of irrotationality to
simplify the equations through the introduction of a velocity potential. This
reduction led to the first major advance, the introduction of panel methods
to solve the linearized potential-flow equation. The initial demonstration of
this approach by Hess and Smith® was soon followed by its extension to
lifting flows® and to linearized supersonic flow.”

The 1970s saw widespread efforts to develop methods of predicting
transonic flows with shock waves, which required the use of a nonlinear
mathematical model. The first major breakthrough was the scheme of
Murman and Cole®® for treating the transonic small-disturbance equation.
This was the catalyst for widespread development of methods for calculat-
ing transonic potential flows in two and three dimensions using either the
small-disturbance equation or the full-potential-flow equation.

In parallel, efforts were underway to devise efficient algorithms for
solving the Euler and Navier-Stokes equations. Following the pioneering
efforts of Magnus and Yoshihara,'® MacCormack introduced his famous
explicit difference scheme in 1970.!' Efforts to improve efficiency led to the
implicit scheme of Beam and Warming,'? which was extended to general
curvilinear coordinates by Steger.'> The need to find a better shock-captur-
jrg method was also apparent and stimulated the introduction of flux
splitting.'* By 1979, however, Euler methods remained very expensive and-
had not attajned levels of accuracy that justified their routine use for
engineering design. The GAMM Workshop of 1979 served to highlight the
deficiencies of the methods then available.'* Nevertheless, it was already
evident that advances in the available computing power would soon make
it entirely feasible to solve the three-dimensional Euler equations, and the
1980s have seen widespread efforts to realize this objective. The alternating-
direction method has been systematically developed into an effective tool,
and the current state of the art is represented by ARC2D and ARC3D.'¢
Implicit schemes using LU decomposition'’ and relaxation have also
proved successful. A parallel path of development that has also led to
efficient programs has been the use of multistage explicit time-stepping
schemes.'® The author’s FLO52 and FLOS57 programs using this concept
have been widely used. Stemming from the mathematical theory of shock
waves, procedures have also been developed for the design of effective
shock-capturing schemes. There have been intensive efforts to find more
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rapidly convergent methods to find steady-state solutions. In particular, the
use of multiple grids, first introduced by Fedorenko'® and subsequently
developed by Brandt,?® has been extended to the treatment of hyperbolic
systems®'~%* and has proved to be extremely effective.

We are now at a point where a variety of efficient algorithms for the
solution of the Euler and Navier-Stokes equations have been developed,
and the principles underlying their construction are quite well understood.
Their application to date has largely been limited to relatively simple
configurations because of the difficulty of generating meshes around com-
plex shapes. Viscous effects in attached flows can be fairly well predicted by
making boundary-layer corrections. Military aircraft frequently fly in con-
ditions of separated flow. The appropriate mathematical model is then the
Navier-Stokes equations. At Reynolds numbers typical of full-scale flight,
however, the flow becomes turbulent, and the disparity of scales in a
turbulent flow is so large that direct simulation is probably not feasible
without radical developments in computer technology. Therefore, it be-
comes necessary to resort to Reynolds averaging, and the equations must
be closed by a turbulence model. Progress in simulating separated viscous
flows may now be more dependent on improvement in turbulence modeling
than it is on algorithm development.

Computational aerodynamics has reached a point of maturity where it
may be worthwhile to take stock of the present situation and to consider
which directions of future efforts are likely to be most profitable. In this
chapter some of the algorithmic concepts believed to be a foundation for
future developments will be identified. It seems useful for this purpose first
to consider the objectives of computational aerodynamics. Three levels of
desirable performance can be identified:

1) the capability of predicting the flow past airplanes in different flight
regimes (takeoff, cruise at transonic speed, flutter);

2) the interactive calculations to allow immediate improvement of the
design; and

3) the integration of the predictive capability into an automatic design
method using computer optimization and artificial intelligence.

To date not even the first level has been fully realized for all regimes of
flight. Some methods are fast enough that the second level is already
feasible, say, for airfoil evaluation. Some pioneering attempts have been
made at the third level, and it is clear that advances in computational '
power and algorithmic efficiency will make this feasible for useful applica-
tions within the coming decade.

It is also important to understand what kind of information the designer
may be seeking. For the final design he may need accurate quantitative
predictions of design parameters such as the lift and drag coefficients. In
the early stages he may be more interested in acquiring a qualitative
understanding of the nature of the flowficld and the impact of design
changes on the onset of separation, for example, or the location of the
regions of separated flow.

The requirements to be met by an effective method include the following:

1) the capability of simulating the main features of the flow, such as
shock waves and vortex sheets;
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2) the prediction of viscous effects;

3) the ability to handle geometrically complex configurations; and

4) the efficiency in both compntational and human effort.

In any case it is clear that the value of the information provided must be
measured against the cost of producing it. In the application of computer
simulations to engineering design, we can therefore anticipate that sim-
plified mathematical models will continue to be useful for preliminary
estimations and tradeoff studies for which full details of the flowfield are
not essential. On the other hand, there is a pervasive need to predict flows
over exceedingly complex configurations, and future computational meth-
ods must be designed to address this requirement.

The remaining sections review some of the main algorithmic develop-
ments of the past two decades in this context. The next section reviews the
mathematical models. The section on algorithms for potential flow covers
potential-flow methods and the section on algorithms for Euler equations
and the section on viscous flow calculations cover methods for the full
inviscid and viscous equations. In the conclusion, I try to identify what 1
believe to be the principal remaining problems, including algorithmic issues
such as the construction of schemes with a higher order of accuracy,
convergence acceleration, and shock-capturing or front-tracking schemes,
and also computer science issues such as concurrent calculation on vector,
pipelined, or parallel processors; optimization and design techniques; and
expert systems.

Mathematical Models of Fluid Flow
The equations for flow of a gas in thermodynamic equilibrium are the
Navier-Stokes equations. Let p, u, v, E, and p be the density, Cartesian
velocity components, total energy, and pressure, respectively, and let x and
y be Cartesian coordinates. Then, for a two-dimensional flow these equa-
tions can be written as
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where w is the vector of dependent variables, and fand g are the convective
flux vectors: ‘
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Here H is the enthalpy,
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and the pressure is obtained from the equation of state

p =0 — DplE — 3(u* + v?)] (3
The flux vectors for the viscous terms are
0 0
R=| ™ | s=| ™ 4
txy Tyy
ut,, +ut,, ut,, +ot,,

where the viscous stresses are

2
Tex = 2#“)‘ - ?ﬂ (ux + vy)

2
T, =2uv, — 3 W, +v,)

Txy = #(uy + vx)

and u is the coefficient of viscosity. The computational requirements for the
simulation of turbulent flow have been estimated by Chapman.?* They are
clearly beyond the reach of current computers.

The first level of approximation is to resort to time averaging of rapidly
fluctuating components. This yields the Reynolds equations, which require
a turbulence model for closure. Since a universally satisfactory turbulence
model has yet to be found, current turbulence models have to be tailored
to the particular flow. The Reynolds equations can be solved with comput-
ers of the class of the Cray 1 or Cyber 205, at least for two-dimensional
flows, such as flows over airfoils.

The next level of approximation is to eliminate viscosity. Equation (1)
then reduces to the Euler equation

ow of dg
at +6x+6y_0
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It is quite feasible to solve complex three-dimensional flows with this
model, as will be discussed.

If we assume the flow to be irrotational, we can introduce a velocity
potential ¢ and set

u=¢,, v=¢,

The Euler equation [Eq. (5)] now reduces to the potential-flow equation

i, 0
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or, in quasilinear form,
(Cz - u2)¢xx - 2uv¢xy + ((32 - l72)¢,yy =0 (7)
where ¢ is the speed of sound. This is given by

2P
p

c

where y is the ratio of specific heats. According to Crocco’s theorem,
vorticity in a steady flow is associated with entropy production through the
relation

gx{+T-VS=0

where ¢ and { are the velocity and vorticity vectors, respectively, T is the
temperature, and S is the entropy. Thus, the introduction of a potential is
consistent with the assumption of isentropic flow. Then, if M, is the
freestream Mach number, the units may be normalized so that

p?

=opm P=MET ()

p

while the local speed of sound can be determined from the energy equation,
written as
I 1 1

P R g )Y VR ©)

Because shock waves generate entropy, they cannot be exactly modeled
by the potential-flow equation. However, weak solutions admitting isen-
tropic jumps that conserve mass but not momentum are a good approxima-
tion to shock waves, as long as the shock waves are quite weak (with a
Mach number <1.3 for the normal velocity component upstream of the
shockwave). Stronger shock waves tend to separate the flow, with the result
that the inviscid approximation is no longer adequate. Thus, this model is
well balanced and has proved extremely useful for estimating the cruising
performance of transport aircraft. )

If one assumes small disturbances and a Mach number close to unity, the
potential equation can be reduced to the transonic small-disturbance
equation. A typical form is

Finally, if the freestream Mach number is not close to unity, the potential-
flow equation can be linearized as

(l—ng))¢xx+¢yy=0 (11)
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Algorithms for Potential Flow

Overview

Although the Euler- and Reynolds-averaged Navier-Stokes equations
can now be solved with quite moderate computational costs, algorithms for
potential flow remain useful because they can provide extremely inexpen-
sive quick estimates. Also, certain ideas for shock-capturing and conver-
gence acceleration that were first developed for potential-flow calculations
have proved transferable to more complex models such as the Euler
equations.

Upwind Differencing

When the potential-flow equation [Eq. (6)] is used to predict transonic
flows, the difficulty arises that the solution is invariant under a reversal of
the velocity vector (u = —¢,, v = —@,). Consider a transonic flow past an
ellipse with a compression shock wave. Then there is a corresponding
solution with an expansion shock wave (see Figs. 1a and 1b). In fact, a
central-difference scheme would preserve fore-and-aft symmetry, leading to
a solution of the type illustrated in Fig. Ic. In 1970 the landmark paper of
Murman and Cole® appeared. This demonstrated a simple way to obtain
physically relevant solutions of the transonic small-disturbance equation
[Eq. (10)]. Writing this equation as

Ado + ¢, =0 (12)

where A is the nonlinear coefficient in Eq. (10), they proposed the use of
central differencing if 4 > 0 (subsonic flow), but upwind differencing for
¢.. if A <0 (supersonic flow), as illustrated in Fig. 2. The equations were
then solved by a line-relaxation scheme, in which the unknowns were
determined simultaneously on each successive vertical line, marching in the
streamwise direction. The scheme amounted to a combination of a relax-
ation method for the subsonic zone, in which the equation is elliptic, with
an implicit scheme for the wave equation in the supersonic zone.

This work was extremely important both because it pointed the way to
reasonably inexpensive simulations of transonic flows and also because
it demonstrated for the first time the possibility of an effective shock-
capturing scheme with a sharp, nonoscillatory discrete shock structure.
Within the next few years the concept of Murman and Cole was general-
ized to the full transonic potential-flow equation and applied to a wide
variety of flow simulations.

In order to treat the full quasilinear potential-flow equation [Eq. (7)),
one may rewrite it in a coordinate system locally aligned with the flow.
Equation (7) then becomes

(CZ - qz)d’s.\‘ + c2¢nn =0
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where
u? 2uv v?
sx=~¢xx+—“_¢x +‘_¢
d) qZ q2 34 q2 Yy
and
2 2uv u?
d’nn =?¢x1 _?¢xy+zl'§¢yy

Upwind differencing is now used for all second derivatives contributing
to ¢,, whenever g > c. This leads to Jameson’s rotated difference scheme?®
(see also Albone*). A convergent iterative scheme can be derived by
regarding the iterations as time steps in an artificial time coordinate. The
principal part of the equivalent time-dependent equation has the form

(Mz - l)d’m - ¢nn + 2a¢sl + 2B¢nl =0
Introducing a new time coordinate

os
T=t=3pqth

this becomes

a2

(M2~1)¢ss_¢nn—<M2_l_ﬂ2>¢7‘7’=0

If the flow is locally supersonic, T is spacelike and either s or # is timelike.
Since s is the timelike direction in the steady-state problem, and the
time-dependent problem is compatible with the steady-state problem only if

a?>pAM?-1)

This generally requires the explicit addition of a term in ¢,,.

In his paper of 1973, Murman recognized that the switch in the differ-
ence scheme could violate the conservative form of the equations, leading
to shock jumps that violated the conservation of mass.’ This difficulty can
be corrected by reformulating the switch to upwind differencing by the
introduction of artificial viscosity. The dominant discretization error in the
upwind difference formula for ¢, is —Ax¢,,,, and terms of this nature
can be added explicity in conservation form, leading to special transition
operators across the sonic line. An appropriate form of artificial viscosity
for the potential flow equation [Eq. (6)] is a difference approximation to

] ]
Axé;ululpx +Ayaulvlpy



FULL-POTENTIAL, EULER, AND NAVIER-STOKES SCHEMES 47

where Ax and Ay are the mesh widths, and g is a switch function

1
u= max{O, 1— Iﬁ}

which cuts off the viscosity in the subsonic zone.”” It was realized by several
authors that a term of this kind can be added simply by biasing the density
in an upwind direction.?®* This has facilitated the development of dis-
cretizations on arbitrary subdivisions of the domain into hexahedrons or
tetrahedrons.

Convergence Acceleration

Transonic flow calculations by relaxation methods generally require a
very large number of iterations to converge (on the order of 500-2000).
This inhibited the more widespread use of these methods, particularly for
three-dimensional calculations, and stimulated numerous efforts to find
more rapidly convergent methods. The two most effective approaches have
been approximate factorization of the difference operator and acceleration
by the use of mutltiple grids.

Let the difference equations be written as

L =0 (13)

where L is a nonlinear difference operator, and ¢ is the solution vector.
Then a typical iterative scheme can be written as

No¢p + Lo™"=0 (14)
where ¢ is the correction, and N is a linear operator that can be inverted
relatively cheaply and should approximate L (in the linear case the error is

reduced at each cycle by I — N~'L). In an approximate factorization
method, N is formed as a product

N=N/N,...N,

of easily invertible operators. Ballhaus et al.*' found that a good choice for
the small-disturbance equation [Eq. (12)] is

(@ —ADZYaD7 —D})op +ald~
where D} and D} are forward- and backward-difference operators, and
D~ = D} if A>0
* by if A<0

Very efficient schemes of this type have been developed for the transonic
potential-flow equation by Holst.”
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The multigrid method was first proposed by Fedorenko,'” and some
promising results for the small-disturbance equation were obtained by
Brandt and South.?? The idea is to use corrections calculated on a sequence
of successively coarser grids to improve the solution on a fine grid.
Consider a linear problem and let

L,¢,=0 (15)

be the discrete equations for a mesh with a spacing proportional to h. Let
u, be an estimate of ¢, and let v, be a correction that should reduce
L,(u, +v,) to zero. Then, instead, one can write an equation for v on a
mesh with twice as large a spacing:

Loy, + Q5 Lyuy, =0 (16)

where Q,, is a collection operator that forms a weighted average of the
residuals on the fine grid in the neighborhood of each mesh point of the
coarse grid. The correction is finally interpolated back to the fine grid:

uy™ =, + Pi'vy, {7

where P2" is an interpolation operator. Corrections to the solution of Eq.
(16) can in turn be calculated on a still coarser grid, and so on. The same
basic iterative scheme can be used on all of the grids in the sequence. It has
been proved that solutions to elliptic problems with N unknowns can be
obtained in O(N) operations by the use of multiple grids.>* A condition for
the successful use of multiple grids is that, before passing to a coarser grid,
the high-frequency error modes should be reduced to the point that the
remaining error can be properly resolved on the coarser grid.

The method can be reformulated for a nonlinear problem by explicitly
introducing the solution vector u,, on the coarse grid. An updated solution
vector i, is then calculated from the equation

Loty + Q% Lytty — Loyt =0

where the difference between the collected residuals from neighboring
points on the fine grid and the residual calculated on the coarse grid
appears as a forcing function. The correction &, — u, is then interpolated
back to the fine grid. , '
Figure 3 shows the result of a calculation in which a generalized
alternating-direction (ADI) method was used to drive the multigrid itera-
tion.>s The ADI scheme differs from the standard ADI scheme in replacing
the scalar parameter by a difference operator (which also operates on the
residuals). The purpose of this is to retain a well-posed problem in the
supersonic zone. An efficient strategy is to use a simple V cycle in which
one ADI iteration is performed on each grid until the coarsest grid is
reached, and then one ADI iteration on each grid on the way back up to
the fine grid. A solution on a 192 x 32 grid accurate to four figures was
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obtained by 3V cycles on a 48 x 8 grid, followed by three V cycles on a
96 x 16 grid, and 3 V cycles on the 192 x 32 grid. The total calculation is
equivalent to 4 V cycles on the 192 x 32 grid. It seems likely that this must
be close to the lower bound for the number of operations required to solve
6144 simultaneous nonlinear equations.

Treatment of Complex Geometry

An effective approach to the treatment of two-dimensional flows over
complex profiles is to map the exterior domain conformally onto the unit
disk.?> Equation (6) is then written in polar coordinates as

o(p 0
%<; ¢9) +=(rp$) =0

where the modulus 4 of the mapping function enters only in the calculation
of the density from the velocity

_Ve
7=

This procedure is very accurate.

Applications to complex three-dimensional configurations require a
more flexible method of discretization, such as that provided by the
finite-clement method. Jameson and Caughey® proposed a scheme using
isoparametric bilinear or trilinear elements. The discrete equations can
most conveniently be derived from the Bateman variational principle. This

states that the integral
1= j j pdxdy

is stationary in two-dimensional potential flow. It follows from Egs. (8)
and (9) that

?g=—pu -—e=-—pu
ou ’ dv

whence, in potential flow,
ol = — jj(pu&d}x + pvég,) dx dy

and Eq. (6) is recovered on integrating by parts and allowing arbitrary
variation d¢. In the scheme of Jameson and Caughey I is approximated as

I=X PV,
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where p, is the pressure at the center of the kth cell, and ¥V, is its area (or
volume), and the discrete equations are obtained by setting the derivative
of I with respect to the nodal values of potential to zero. Artificial viscosity
is added to give an upwind bias in the supersonic zone, and an iterative
scheme is derived by embedding the steady-state equation in an artificial,
time-dependent equation. Several widely used codes (FLO27, FLO28,
FLO30) have been developed using this scheme.

An alternative approach to the treatment of complex configurations has
been developed by Bristeau et al.’” Their method uses a least-squares
formulation of the problem, together with an iterative scheme derived with
the aid of optimal control theory. The method could be used in conjunction
with a subdivision into either quadrilaterals or triangles, but in practice
triangulations have been used. The least-squares method in its basic form
allows expansion shocks. In early formulations these were eliminated by
penalty functions. It was subsequently found to be best to use upwind
biasing of the density. The method has been extended at Avions Marcel
Dassault to the treatment of extremely complex three-dimensional configu-
rations, using a subdivision of the domain into tetrahedrons. A striking
success was achieved in 1982 with the first simulation of transonic low past
a complete aircraft by solution of the full quasilinear potential-flow equa-
tion, as illustrated in Fig. 4.

Algorithms for the Euler Equations

Overview: Time-Dependent Formulation

In paraliel with the development of effective algorithms for potential
flow, there were ongoing efforts to derive fast, accurate, and reliable
methods for solving the Euler equations. Steady-state solutions are typi-
cally needed for design applications. The introduction of a space discretiza-
tion procedure then reduces the problem to the solution of a large number
of coupled nonlinear equations. These equations might be solved by a
variety of iterative methods. Two possibilities in particular are the least-
squares method®’ and the Newton iteration.’® However, it has generally
been found expedient to use the time-dependent equations as a vehicle for
reaching the steady state. Some advantages of this strategy include the
following:

1) The strategy is simple.

2) It is possible to use the same computer program to calculate steady
and unsteady flows.

3) The time-dependent problem provides a natural framework for the
design of nonoscillatory shock-capturing schemes that reflect the physws of
wave propagation.

4) Algorithms can be devised for concurrent computation on vector,
pipelined, or parallel processors either through the use of an explicit
time-stepping scheme or through the use of an iterative procedure at each
time step of an implicit scheme.
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It has also been found that satisfactory schemes should be designed to
conform to some general guidelines. Some of these include the following:

1) The conservation laws of gasdynamics should be satisfied in discrete
form by the numerical approximation.

2) Shock waves and contact discontinuities should be automatically
captured by the difference scheme.

3) In steady flow calculations the final steady state should be indepen-
dent of the time-stepping scheme.

4) Invariant quantities in the flowfield, such as entropy upstream of a
shock wave or total enthalpy in a steady flow, should also be invariant in
the numerical solution.

5) Uniform flow should be an exact solution of the difference equations
on an arbitrary mesh.

An alternative to guideline 2 is automatic detection of shock waves in
conjunction with front tracking. In this case guideline 1, which is needed to
ensure the satisfaction of correct jump conditions by a shock-capturing
scheme,” is no longer strictly necesssary, but it remains desirable since it
ensures global conservation of mass, momentum, and energy.

The early standard for time-stepping methods was set by the two-stage
scheme of MacCormack,'! which has been very widely used. To solve the
one-dimensional system

6w
af

the scheme advances from time level n to time level n + 1 by setting

f( )=0 (18)

w=w"—AtD} f(w")
and

A
W = w = ELD W) + D7 f(9) (19

where the superscripts denote the time level, and D} and D are forward-
and backward-difference operators approximating 9/0x:

fi—fioa

poptim=h
D;f =" D=5

Ax x

The value at the end of the time step is first predicted using forward
differences, and then the predicted value is used in the calculation of the
final corrected value w"*+! by a formula that is centered about the middle
of the time step.

This is the simplest known two-level scheme that is both stable and
second-order-accurate. Additional dissipative terms have to be introduced
to eliminate oscillations in the vicinity of shock waves. The scheme also
does not satisfy principle 3, since it yields a steady state that depends on the
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time step Ar. Nor is the enthalpy constant in discrete steady solutions.
However, the algorithm performs well in the absence of discontinuities in
the flow.

A convenient way to meet requirement 3 is to separate the space-march-
ing procedure entirely from the time-marching procedure by applying first
a semidiscretization. This has the advantage of allowing the problems of
spatial discretization error, artificial dissipation, and shock modeling to be
studied independently of the problems of time-marching stability and
convergence acceleration.

Space Discretization of the Euler Equations

Following the lead of MacCormack and Paullay,* the space discretiza-
tion of the Euler equation {Eq. (5)] can be derived in a very natural way
from the integral form

ijwdS-kf LAw) dy — g(w) dx] =0 (20)
ot s 28

for a domain § with boundary 4S§.

If we divide the domain into a large number of small subdomains, we
can use Eq. (20) to estimate the average rate of change of w in each
subdomain. This is an effective method to obtain discrete approximations
to Eq. (5), which preserve its conservation form. In general, the subdo-
mains could be arbitrary, but it is convenient to use either quadrilateral or
triangular cells. Correspondingly, it is convenient to use either distorted
cubic or tetrahedral cells in three-dimensional calculations. Alternative
discretizations may be obtained by storing sample values of the flow
variables at either the cell centers or the cell corners. These variations are
illustrated in Fig. 5 for a two-dimensional case.

Figures 5a and 5b show cell-centered schemes on rectilinear and triangu-
lar meshes.'®*! In either case Eq. (20) is written for the cell labeled 0 as

d
W +0=0 21

where S is the cell area, and Q is the net flux out of the cell. This can be
approximated as

0= ; (j(.)k Ayor — Box Axoy) (22)

where the sum is over the edges of cell 0, Axy, and Ay, are measured along
the edge separating cell 0 from cell k, and the flux vectors £, and g,, are
evaluated by taking the average of their values in cell 0 and cell k:

Jox = o + 1) Eox =28+ &) (23)



FULL-POTENTIAL, EULER, AND NAVIER-STOKES SCHEMES 53

An alternative averaging procedure is to multiply the average value of
the convected quantity, po, in the case of the continuity equation, for
example, by the rate of transport

on = %(uo + uk) Ay()k ot %(vo + Uk) Aka (24)

obtained by taking the inner product of the mean of the velocity vector ¢
with the unit normal multiplied by the edge length.

Figures Sc and 5d show corresponding schemes on rectilinear and
triangular meshes in which the flow variables are stored at the vertices.*
We can now form a control volume for each vertex by taking the union of
the cells meeting at that vertex. Equation (21) then takes the form

di<zvk>w+zgk=o (29)
I\% k

where ¥V, and Q, are the area and flux balance, respectively, for the kth cell
in the control volume. The flux balance for a given cell is now approxi-
mated as

0 =);(i; Ay, —; Ax) (26)

where Ax, and Ay, are measured along the /th edge, and f, and g, are
estimates of the mean flux vectors across that edge. Fluxes across internal
edges cancel when the sum Z, Q, is taken in Eq. (25), so that only the
external edges of the control volume contribute to its flux balance. The
mean flux vector across an edge can be conveniently approximated as the
average of the values at its two endpoints,

fa=3h+15) £i2=3g +8)

in Fig. 5c or 5d, for example. The sum X Q, in Eq. (25), which then
amounts to a trapezoidal integration rule around the boundary of the
control area, should remain fairly accurate even when the mesh is irregular.

Dissipation, Upwinding, and Total Variation Diminishing Schemes

Equations (21) and (22) represent nondissipative approximations to the
Euler equations. Dissipative terms may be needed for two reasons. First,
there is the possibility of undamped oscillatory modes. For example, when
either a cell-centered or a vertex formulation is used to represent a
conservation law on a rectilinear mesh, a mode with values +1 alternately
at odd and even points leads to a numerically evaluated flux balance of
zero in every interior control volume. Although the boundary conditions
may suppress such a mode in the steady-state solution, the absence of
damping at interior points may have an adverse effect on the rate of
convergence to the steady state.
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The second reason for introducing dissipative terms is to allow the clean
capture of shock waves and contact discontinuities without undesirable
oscillations. Foliowing the pioneering work of Godunov,* a variety of
dissipative and upwind schemes designed to have good shock-capturing
properties have been developed during the past decade.**->* The one-
dimensional scalar conservation law

ou 0
42 = 27
Tt e/ =0 (27)
provides a useful model for the analysis of these schemes. The total
variation
< |0u
TV—J'_OO al dx

of a solution of Eq. (27) does not increase, provided that any discontinuity
appearing in the solution satisfies an entropy condition.>® The concept of
total variation diminishing (TVD) difference schemes, introduced by
Harten,* provides a unifying framework for the study of shock-capturing
methods. These are schemes with the property that the total variation of
the discrete solution

TV= Y

—ao

Uj _Uj,l

cannot increase. The general conditions for a multipoint one-dimensional
scheme to be TVD have been stated and proved by Jameson and Lax.

TVD schemes preserve the monotonicity of an initially monotone profile,
because the total variation would increase if the profile ceased to be
monotone. Consequently, they prevent the formation of spurious oscilla-
tions. In this simple form, however, they are at best first-order-accurate.
Harten devised a second-order-accurate TVD scheme by introducing anti-
diffusive terms, and flux limiters to improve shock resolution can be traced
to the work of Boris and Book.* The concept of the flux limiting was
independently advanced by Van Leer.* A particularly simple way to
introduce a second-order-accurate TVD scheme is to introduce flux limiters
directly into a higher-order dissipative term.>

There are difficulties in extending these ideas to systems of equations and
also to equations in more than one space dimension. First, the total
variation of the solution of a system of hyperbolic equations may increase.
Second, it has been shown by Goodman and Leveque that a TVD scheme
in two space dimensions is no better than first-order-accurate.”’

If one wishes to use one-sided differencing, one must allow for the fact
that the general one-dimensional system defined by Eq. (18) produces
signals traveling in both directions. One way of generalizing one-sided
differencing to a system of equations is the flux-vector-splitting method
proposed by Steger and Warming."*
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Another approach to the discretization of hyperbolic systems was origi-
nally proposed by Godunov.*’ Suppose that Eq. (18) is approximated by

At
witl = w A (Fivrp—Ficip) (28)

where the numerical flux function F, ,, = F(w;, w;,,) is an approximation
to the flux across the cell boundary x;,,,,. This function must satisfy the
consistency condition F(w,w) = F(w). In the Godunov scheme F,} is
taken to be the flux value arising at X, ,, in the exact solution of the initial
value problem defined by piecewise constant data between each cell
boundary. This simulates the motion of both shocks and expansion fans,
but it is expensive.

Various simpler schemes designed to distinguish between the influence of
forward- and backward-moving waves have recently been developed, based
on the concept of flux difference splitting introduced by Roe.¥

The use of flux splitting allows precise matching of the dissipative terms
to introduce the minimum amount of dissipation needed to prevent oscilla-
tions. This in turn reduces the thickness of the numerical shock layer to the
minimum attainable, one or two cells for a normal shock. In practice,
however, it turns out that shock waves can be quite cleanly captured
without flux splitting by using adaptive coefficients. The dissipation then
has a low background level that is increased in the neighborhood of shock
waves to a peak value proportional to the maximum local wave speed. The
second difference of the pressure has been found to be an effective measure
for this purpose. The dissipative terms are constructed in a similar manner
for each dependent variable by introducing dissipative fluxes that preserve
the conservation form.

For a two-dimensional rectilinear mesh the added terms have the form

diy;—dioy,;+ dijey— dij-y (29)

These fluxes are constructed by blending first and third differences of the
dependent variables. For example, the dissipative flux in the i direction for
the mass equation is

diyy, = RE® = €982 (pisr— piy) - (30)

where 62 is the second difference operator, ¢ and ¢® are the adaptive
coefficients, and R is a scaling factor proportional to an estimate of the
maximum local wave speed normal to the cell boundary. The coefficient ¢
provides the background dissipation in smooth parts of the flow and can be
used to improve the capability of the scheme to damp high-frequency
modes. Shock capturing is controlied by the coefficient ¢, which is made
proportional to the normalized second difference of the pressure

‘pH—l,j —2p i+ Py,
lpi+l,j+2pi.j +Piy;

v, =

in the adjacent cells.
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Schemes constructed along these lines combine the advantages of sim-
plicity and economy of computation, at the expense of an increase in
thickness of the numerical shock layer to three or four cells. They have also
proved robust in calculations over a wide range of Mach numbers (extend-
ing up to 20 in recent studies®®). They can also be quite easily modified for
calculations on triangular or tetrahedral meshes.*?

Time-Stepping Schemes

The discretization procedures of the section on mathematical models of
fluid flow lead to a set of coupled ordinary differential equations, which can
be written in the form

dw
@ + R(w) =0 31
where w is the vector of the flow variables at the mesh points, and R(w) is
the vector of the residuals, consisting of the flux balances defined by Egs.
(21) or (25), together with the added dissipative terms. These are to be
integrated to a steady state. Since the objective is simply to reach the steady
state, and details of the transient solution are immaterial, the time-stepping
scheme may be designed solely to maximize the rate of convergence without
having to meet any constraints imposed by the need to achieve a specified
level of accuracy, provided that it does not interfere with the definition of
the residual R(w). Figure 6 indicates some of the principal time-stepping
schemes that might be considered. The first major choice is whether to use
an explicit or an implicit scheme.

Explicit schemes that might be considered include linear multistep meth-
ods such as the leap frog and Adams-Bashforth schemes and one step
multistage methods such as the classical Runge-Kutta schemes. The one-
step multistage schemes have the advantages that they require no special
start-up procedure, and they can readily be tailored to give a desired
stability region. They have proved extremely effective in practice as a
method of solving the Euler equations.

Let w” be the result after n steps. The general form of an m-stage scheme
1s

w® = w”

wh = w® o, AIR®

W=D = @ 5 AR
W = W@ _ AR -D

wtt 1. w(m) (32)
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The residual in the (g + 1)th stage is evaluated as

q
R@ =Y B,.R(w®") (33)
r=0
where
q
S =1

r=0

In the simplest case,
RW = R(w“”)

It is then known how to choose the coefficients a, to maximize the stability
interval along the imaginary axis and consequently the time step.>® Since
only the steady-state solution is needed, it pays to separate the residual
R(w) into its convective and dissipative parts Q(w) and D(w), respectively.
The residual in the (g + 1)th stage is now evaluated as

R@ =3 (B, 005®) ~ 7, D(w®)} (34)

r=0

where
q g ‘
Z ﬁqr=l, Zqu,=l

Blended multistage schemes of this type, which have been analyzed in Ref.
60, can be tailored to give large stability intervals along both the imaginary
and negative real axes.

The properties of multistage schemes can be further enhanced by residual
averaging.® Here the residual at a mesh point is replaced by a weighted
average of neighboring residuals. The average is calcualted implicitly. In a
one-dimensional case R(w) is replaced by R(w), where at the jth mesh
point,

—€R_+(1+20R, — R, = R;

It can easily be shown that the scheme can be stabilized for an arbitrarily
large time step by choosing a sufficiently large value for €. In a nondissipa-
tive one-dimensional case one needs

>1 _A_Lz 1
23|\ ar

where At* is the maximum stable time step of the basic scheme, and At is
the actual time step. The method can be extended to three dimensions by
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using smoothing in product form
(1 —€82)(1 —¢,82)(1 —€,62)R=R (35)

where 82, 82, and &7 are second difference operators in the coordinate
directions, and ¢, ¢,, and ¢, are the corresponding smoothing coefficients.
Residual averaging can also be used on triangular meshes.*’ The implicit
equations are then solved by a Jacobian iteration.

One can anticipate that implicit schemes will yield convergence in a
smaller number of time steps, since the time step is no longer constrained
by a stability limit. However, this will only pay if the decrease in the
number of time steps outweighs the increase in the computational effort per
time step consequent upon the need to solve coupled equations. The
prototype implicit scheme can be formulated by estimating dw/dt at
t + nAt as a linear combination of R(w") and R(w"*'). The resulting
equation

w't = w" — At{(1 — W R(w") — pR(w"* ") (36)
can be linearized as

R

(1 + uAt E

)éw + AtR(w™) =0 (37

Equation (37) reduces to the Newton iteration if one sets u = 1 and lets
Ar — . In a three-dimensional case with an N x N x N mesh, its band-
width is of order N2. Direct inversion requires a number of operations
proportional to the number of unknowns multiplied by the square of the
bandwidth, that is, @(N7). This is prohibitive and forces the recourse to
either an approximate factorization method or an iterative solution
method.

The main possibilities for approximate factorization are the alternating-
direction method and the LU decomposition method. The alternating-
direction method, which may be traced back to the work of Gourlay and
Mitchell,®' was given an elegant formulation for nonlinear problems by
Beam and Warming.'? In a two-dimensional case Eq. (37) is replaced by

(I + uAtD, AT + uAtD, B)ow + AtR(w) =0 (38)

where D, and D, are difference operators approximating d/dx and 0/dy,
and 4 and B are the Jacobian matrices,

o

A=
ow’

B =

TR

This may be solved in two steps.
Step 1:

(I + nAtD A)ow* = — AtR(w)
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Step 2:
(I + pAtD,BYow = ow*

Each step requires block tridiagonal inversions and may be performed in
O(N?) operations on an N x N mesh. The algorithm is amenable to
vectorization by simultaneous solution of the tridiagonal equations along
parallel coordinate lines. The method has been refined to a high level of
efficiency by Pulliam and Steger,’® and Yee has extended it to incorporate
a TVD scheme.®* Its main disadvantage is that its extension to three
dimensions is inherently unstable according a Von Neumann analysis.

The idea of the LU decomposition method'” is to replace the operator in
Eq. (20) by the product of lower and upper block triangular factors L and
Uy

LUSw + AtR(w) =0 (39)

Two factors are used independently of the number of dimensions, and
the inversion of each can be accomplished by inversion of its diagonal
blocks. The method can be conveniently illustrated by considering a one-
dimensional example. Let the Jacobian matrix 4 = df/ow be split as

A=AY+ A~

where the eigenvalues of 4+ and 4~ are positive and negative, respec-
tively. Then we can take )

. L=I+pAtD; A%, UsI+uMtDFA~ (40)

where D} and D denote forward- and backward-difference operators,
respectively, approximating /0x. The reason for splitting A4 is to ensure the
diagonal dominance of L and U independently of Arz. Otherwise, stable
inversion of both factors will only be possible for a limited range of Ar. A
crude choice is

At =X4 +pD)

where p is at least equal to the spectral radius of A. If flux splitting is used
in the calculation of the residual, it is natural to use the corresponding
splitting for L and U. An interesting variation is to combine an alternating-
direction scheme with LU decomposition in the different coordinate direc-
tions. %263

If one chooses to adopt the iterative solution technique, the principal
alternatives are variants of the Gauss-Seidel and Jacobian methods. These
may be applied to either the nonlinear equation [Eq. (36)] or the linearized
equation [Eq. (37)] A Jacobian method of solving Eq. (36) can be
formulated by regarding it as an equation.

w—w+ uAtR(w) + (1 — p) AIRW®) =0
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to be solved for w. Here w® is a fixed value obtained as the result of
the previous time step. Such a procedure is a variant of the multistage
time-stepping scheme described by Eqs. (32) and (33). It has the advantage
of permitting simultaneous or overlapped calculation of the corrections at
every mesh point and is readily amenable to parallel and vector processing.

A symmetric Gauss-Seidel scheme has been successfully employed in
several recent works.®® Consider the case of a flux split scheme in one
dimension, for which

Rw)=DIf~(w)+ D f*(w)

where the flux is split so that the Jacobian matrices

_y i

+ P
A—aw T ow

and A~

have positive and negative eigenvalues, respectively. Now Eq. (37) becomes
{I+puAt(DF A~ +D;A)}ow + AtR(w) =0
At the jth mesh point this is
{I+o(A;" —A;)}ow, +ad;, Dw;,  —ad;" 0w, +AIR; =0

where At
oa=u K.;

Set ow® = 0. A two-sweep-symmetric Gauss-Seidel scheme is then
Sweep 1:

I+ oA;" — A7 )}ow® —adt ow + AR, =0
Sweep 2:
(I+a(d]) — A7 )}owP +ad 0w, —ad;t owD + AR, =0
Subtracting sweep 1 from sweep 2 we find that
T4+a(d) — A7 )}ow? +dd ow® =T +ald) — A7 )}ow"

Define the lower triangular, upper triangular, and. diagonal operators L,
U, and D as :

L=l—ad~ +uAtD;A*
U=I+ad* +pAtD}F A~

D=I+o(d*—A")
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It follows that the scheme can be written as
LD~ 'Udw = — AtR(w)

The iteration is usually terminated after one double sweep. The scheme is
then a variation of an LU implicit scheme.

Some of these interconnections are illustrated in Fig. 6. Schemes in three
main classes appear to be the most appealing:

1) variations of multistage time stepping, including the application of
Jacobian iterative method to the implicit scheme (indicated by a single
asterisk);

2) variations of LU decomposition, including the application of a
Gauss-Seidel iterative method to the implicit scheme (indicated by a double
asterisk); and

3) alternating-direction schemes, including schemes in which an LU
decomposition is separately used in each coordinate direction (indicated by
a triple asterisk).

The optimal choice may finally depend on the computer architecture.
One might anticipate that the Guass-Seidel method of iteration could yield
a faster rate of convergence than a Jacobian method, and it appears to be
a particularly natural choice in conjunction with a flux split scheme that
yields diagonal dominance. However, this class of schemes restricts the use
of vector or parallel processing. Multistage time stepping, or Jacobian
iteration of the implicit scheme allows maximal use of vector or parallel
processing. The alternating-direction formulation removes any restriction
on the time step (at least in the two-dimensional case), while permitting
vectorization along coordinate lines. The ADI-LU scheme is an interesting
comprormise.

Acceleration Methods: Multigrid Technique

Clearly one can anticipate more rapid convergence to a steady state as
the time step is increased. Accordingly, the rate of convergence of an
explicit scheme can generally be substantially improved by using a variable
time step close to the local stability limit throughout the flowfield. Assum-
ing that the mesh cells are clustered near the body and expand as one
moves away from the body, this effectively increases the rate at which
disturbances are propagated through the outer part of the mesh. A similar
strategy also pays with implicit schemes. In this case the terms in At? or Ar®
resulting from factorization become dominant if Ar is too large, and the
optimum rate of convergence is typically realized with a time step corre-
sponding to a Courant number on the order of 10.

Further radical improvements in the convergence rate can be realized by
the multigrid time-stepping technique, which extends the multigrid concept
to the treatment of hyperbolic systems. Whereas relaxation methods for
elliptic equations typically force the solution towards equilibrium by re-
peated smoothing, the transient behavior of hyperbolic systems is generally
dominated by wave propagation. Accordingly, it seems that it should be
possible to accelerate the evolution of the system to a steady state by using
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large time steps on coarse grids, so that disturbances are more rapidly
expelled through the outer boundaries. This is a quite different mechanism
for convergence from smoothing. However, the interpolation of corrections
back to the fine mesh will introduce errors that cannot be rapidly expelled
from the fine mesh and should be locally damped if a fast rate of
convergence is to be attained. Thus, it remains important that the driving
scheme should have the property of rapidly damping out high-frequency
modes. A relatively simple way to analyze the behavior of multigrid
time-stepping schemes is proposed in Ref. 23.

A novel multigrid time-stepping scheme was proposed by Ni?! in 1981.
In his scheme the flow variables are stored at the mesh nodes, and the rates
of change of mass, momentum, and energy in each mesh cell are estimated
from the flux integral appearing in Eq. (20). The corresponding change dw,
associated with the cell is then distributed unequally between the nodes at
its four corners by the rule

Owy = HOwy + Adw,y + Bow,)

where dw, is the correction at a corner, and A and B are the Jacobian
matrices. The signs are varied in such a way that the accumulated correc-
tions at each node correspond to the first two terms of a Taylor series in
time, like a Lax-Wendroff scheme. When several grid levels are used, the
distribution rule is applied once on each level down to the coarsest grid,
and the corrections are then interpolated back to the fine grid. Distributed
correction schemes of this type have been further developed by Hall,*S with
very good results. They have aiso been extended to the Navier-Stokes
equations by Chima and Johnson.®

An alternative formulation of multigrid time-stepping schemes was pro-
posed by the present author.?? This formulation, which can be combined
with a variety of time-stepping schemes, corresponds to the full approxima®
tion scheme of Brandt.”® It is most easily described by using subscripts to
indicate the grid level. Several transfer operations need to be defined. First,
the solution vector on grid k must be initialized as

0) _
wi) = Thp1Wi

where w,_, is the current value on grid k — 1, and 7,_, is a transfer
operator. Next, it is necessary to transfer a residual forcing function such
that the solution on grid k is driven by the residuals calculated on grid
k — 1. This can be accomplished by setting

Py = Qi1 R y(we_y) - R, (w{)

where @, is another transfer operator. Then R (w,) is replaced by
Re(w,) + P¢ in the time-stepping scheme. For example, the multistage
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scheme defined by Eq. (32) is reformulated as

W) = wl® — o, A (R + Py)

WD = wl® — g, A (RIP + Py)

The result w{™ then provides the initial data for grid k£ + 1. Finally, the
accumulated correction on grid & has to be transferred back to grid k — 1.
Let w/} be the final value of w, resulting from both the correction
calculated in the time step on grid k and the correction transferred from
grid £ + 1. Then one sets

wisi=we_ + L (wi —wi?)

where w, _, is the solution on grid k — I after the time step on grid X — 1
and before the transfer to grid k, and I, _, is an interpolation operator. A
W cycle of the type illustrated in Fig. 7 proves to be a particularly effective
strategy for managing the work split between the meshes.

Both cell-centered and vertex-based schemes can be devised along these
lines,”>>%7 and they seem to work about equally well. With properly
optimized coefficients the multistage time-stepping scheme is a very efficient
driver of the multigrid process. Some results are presented in Figs. 8 and 9.
Figure 8 shows a result for the RAE 2822 airfoil computed on an O mesh
with 160 cells around the profile and 32 cells in the normal direction. This
was obtained with a five-stage time-stepping scheme in which the dissipa-
tive terms were evaluated three times in each step. A cell-centered formula-
tion was used for the space discretization, with adaptive dissipation of the
type defined by Eqgs. (29) and (30). The average residual measured by the
rate of change of the density was reduced from 0.124 to 0.219 x 10~'° in
100-W cycles. This corresponds to an average reduction of 0.797 per cycle.
The solution after 10 cycles is also displayed, and it can be seen that the
solution is virtually identical. The lift coefficient is 1.1258 after 10 cycles
and 1.1256 after 100 cycles. Figure 9 shows a three-dimensional calculation
for a swept wing using a vertex scheme on a 192 x 32 x 48 mesh. In this
case the mean convergence rate over 100 cycles is 0.8222, and a fully
converged result is obtained in 25 cycles. Computer times for these calcula-
tions are small enough their use in an that interactive design method could
be contemplated. A two-dimensional calculation with 10 cycles on a
160 x 32 mesh can be performed on a Cray in several seconds. A three-
dimensional calculation with 15 cycles on a 96 x 16 x 16 mesh requires
about 25 s using one processor of a Cray XMP.

Alternating-direction and LU implicit time-stepping schemes, as well as
symmetric relaxation schemes, have been explored as alternatives to the
multistage. time-stepping procedure as a driver of the multigrid scheme.®-"!
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They are also effective. Very good results have been obtained by Anderson
et al..”” who used an ADI scheme with Van Leer flux splitting, and by
Hemker and Spekreijse,” who used relaxation with Osher flux splitting.
Multigrid methods have also been extended to unstructured triangular
meshes.”*7

Grid Generation and Complex Geometry

If computational methods are to be really useful to airplane designers,
they must be able to treat extremely complex configurations, ultimately
extending up to a complete aircraft. A major pacing item in the effort to
attain this goal has been the problem of mesh generation. For simple
wing-body combinations it is possible to generate rectilinear meshes with-
out too much difficulty.”® For more complicated configurations containing,
for example, pylon-mounted engines, it becomes increasingly difficult to
produce a structured mesh that is aligned with the body surface.

A wide variety of grid-generation techniques have been explored by
numerous investigators, Algebraic transformations can be used to generate
grids for quite complex shapes.””’® A popular alternative, pioneered by
Thompson et al.,”” is to generate grid surfaces as solutions of elliptic
equations. Hyperbolic marching methods have also proved successful in
some applications.®

The algebraic and elliptic methods can be extended to treat more
complex configurations by dividing the flowfield into subdomains and
generating the mesh in separate blocks. The mesh blocks may be required
to match at the interfaces,®’ or they may be allowgd to overlap each
other.® A striking example of what can be achieved by these methods is
exhibited in the work of Sawada and Takanashi,*’> who have calculated the
flow over a four-engined short takeoff aircraft with overwing nacelles, using
a flux-difference-split upwind discretization of the Euler equations.

An alternative procedure is to use tetrahedral cells in an unstructured
mesh that can be adapted to conform to the complex surface of an aircraft.
References 84 and 85 present a method based on such an approach.
Separate overlapping meshes are generated around the individual compo-
nents to create a cluster of points surrounding the whole aircraft. The
swarm of mesh points is then connected together to form tetrahedral cells
that provide the basis for a singie finite-element approximation for the
entire domain. This use of triangulation to unify separately generated
meshes bypasses the need to devise interpolation procedures for transfer-
ring information between overlapping meshes. The triangulation of a set of
points is in general nonunique. The method adopted in this work is to
generate the Delaunay triangulation,®® which is dual to the Voronoi
diagram®’ that results from a division of the domain into polyhedral
neighborhoods, each consisting of the subdomain of points ncarer to a
given mesh point than to any other mesh point. The Euler equations are
discretized by establishing conservation of mass, momentum, and energy in
polyhedral control volumes with a three-dimensional generalization of Eq.
(25) and are solved by a multistage time-stepping scheme.
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Figures 10a—10c and Plates 1-3 (see the color section) illustrate a
transonic flow solution about a McDonnell Douglas MD-11 commercial
transport aircraft at cruise conditions. The surface grid and flow solution
are displayed with closeup views that emphasize the details of the engine
regions. In the solution figures, high-pressure regions and low-pressure
areas are shaded black, whereas near-freestream areas are very light. In the
plates blue indicates regions of low velocity, and red indicates regions of
high velocity. Flow is allowed through the nacelles and core-cowls (which
are modeled as open tubes) without specification of mass flux. Discretiza-
tion of the flowfield is accomplished with an unstructured mesh that
contains 334,595 nodes and 1,953,286 packed tetrahedrons. The aircraft’s
surface is described with 34,521 triangles. A solution of this type currently
requires about .4 Cray 2 CPU hours for the grid generation and nearly 4
Cray 2 CPU hours for a 300-iteration flow solution that reduces the
residuals 3.5 orders of magnitude. Both the grid generation and flow
solution use 50 megawords of core for this case.

Viscous Flow Cglculations

Boundary-Layer Corrections

Although it is true that the viscous effects ar. relatively unimportant
outside the boundary layer, the presence of the boundary layer can have a
drastic influence on the pattern of the global flow. This will be the case, for
example, in the event that the flow separates. The boundary layer can also
cause global changes in a lifting flow by changing the circulation. These
effects are particularly pronounced in transonic flows. The presence of a
boundary layer can cause the location of the shock wave on the upper
surface of the wing to shift 20% of the chord.

Although we must generally account for the presence of the boundary
layer, the accuracy attainable in solutions of the Navier-Stokes equations
for complete flowfields is severely limited by the extreme disparity between
the length scales of the viscous effects and those of the gross patterns of the
global flow. This has encouraged the use of methods in which the equations
of viscous flow are solved only in the boundary layer, and the external flow
is treated as inviscid. These zonal methods can give very accurate results in
many cases of practical concern to the aircraft designer. The underlying -
ideas have been comprehensively reviewed in papers by Lock and Firmin,*
Le Balleur,® and Melnik.%°

In the outer region the real viscous flow is approximated by an equiva-
lent inviscid flow, which has to be matched to the inner viscous flow by an
appropriate selection of boundary conditions. In most of the boundary
layer the viscous flow equations may consistently be approximated by the
boundary-layer equations. This is sufficient in regions of weak interaction,
in which the viscous effect on the pressure is small. However, there are
regions of strong interaction in which the classical boundary-layer formula-
tion fails, because of the appearance of strong normal pressure gradients
across the boundary layer. Coupling conditions for the interaction between
the inner viscous flow and the outer inviscid flow can be derived from an
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asymptotic analysis in which the Reynolds number is assumed to become
very large. The coupled viscous and inviscid equations are solved itera-
tively. Semi-inverse methods in which transpiration boundary conditions
are prescribed for both the inviscid flow calculation and the boundary-layer
analysis have allowed these methods to be extended to treat flows with
separated regions.”"?

The method of Bauer et al.”® was the first to incorporate boundary-layer
corrections into the calculation of transonic potential flow. This method
only accounted for displacement effects on the airfoil and modeled the
wake as-a parallel semi-infinite strip. Nevertheless, this simple model
substantially improved the agreement with experimental data. Several more
complete theoretical models, including effects due to the wake thickness
and curvature, have been developed.®*

The simulation of attached flows by zonal methods now rests on a firm
theoretical foundation and has reached a high level of sophistication in
practice. The treatment of three-dimensional flows is presently limited by a
lack of available boundary-layer codes for general configurations. Zonal
methods have the disadvantage that extensions to more general configura-
tions require a separate asymptotic analysis of each component region,
such as the corner between a wing and a nacelle pylon, with the result that
they can become unmanageable as the complexity of the configuration is
increased.

Reynolds-Averaged Navier-Stokes Equations

Advances in algorithms and also in the speed and memory of currently
available computers have brought us to a point where solutions of the
Reynolds-averaged Navier-Stokes equations are entirely feasible for both
two- and three-dimensional flows. The hope is that it will be possible to
develop a fairly universal method that will be able to predict separated
flows where present zonal methods fail. The principal requirements for a
satisfactory solution of the Reynolds-averaged Navier-Stokes equations
include the following:

1) the reductions of the discretization errors to a level such that any
numerically introduced dissipative terms are much smaller than the real
viscous terms; and

2) the closure of the equations by a turbulence model that accurately
represents the turbulent stresses.

The development of the necessary numerical methods is already quite
advanced. The methods described in the previous section can generally be
carried over to the Navier-Stokes equations. The viscous terms can be
discretized by standard techniques for numerical approximation.

The principal difficulty in producing an adequate numerical approxima-
tion is the need to use a mesh with very fine spacing in the direction normal
to the wall to resolve the extreme gradients in the boundary layer. Typically
it has been found that there should be of the order of 32 intervals inside the
boundary layer and another 32 intervals between the boundary layer and
the far field. Meshes of this type generally contain cells with a very high
aspect ratio, on the order of 1000, adjacent to the wall and in the wake
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region. When the aspect ratio of the cells becomes so large, discretization
schemes are prone to suffer both loss of accuracy and attrition of their rate
of convergence to a steady state. These difficulties can be remedied by very
careful control of the numerical dissipation introduced by the discretization
and improvements in the iterative scheme.

The recent Viscous Transonic Airfoil Workshop at the 25th AIAA
Aerospace Sciences Meeting provided an opportunity to assess the current
state of the art. Results were presented for a variety of different numerical
methods and turbulence models. Among the more highly developed meth-
ods were those of Coakley,”” who used an upwind flux-split scheme with a
variety of turbulence models, Rumsey et al.,® who used an upwind scheme
with Van Leer splitting and a Baldwin-Lomax turbulence model, and
Maksymiuk and Pulliam,” who used the ARC2D program with central
differencing and a Baldwin-Lomax turbulence model. All three of these
methods use alternating-direction time-stepping schemes. King showed the
results of substituting alternative turbulence models in ARC2D, including
the recently developed Johnson and King model.'” Results obtained by the
rational Runge-Kutta method with a Baldwin-Lomax turbulence model
were presented by Morinishi and Satofuka.'® A comparison of these
results indicates that simulations using quite different numerical methods
were in excellent agreement with each other as long as they used the same
turbulence model, but that a change in the turbulence model could produce
a drastic change in the solution, particularly in the case of a strong
shock-induced separation. Predictions using the Baldwin-Lomax model
agree quite well with experimental data when the flow is attached or only
slightly separated, but an examination of the velocity profile in the
boundary layer indicates that the model does not correctly represent the
shock-wave—boundary-layer interaction. The two-equation models tested
by Coakley showed no substantial improvement. The new Johnson and
King model produced a better simulation of strongly separated flows, but
seemed to be less accurate in the regions of attached flow.

An extension of the multigrid multistage scheme to treat the Navier-
Stokes equations was presented in Ref. 103. This method is the subject of
ongoing research to improve its accuracy and efficiency,'® and some
recently obtained results are presented in Figs. 11-14. The first two figures
show a verification of the ability of the method to produce accurate Euler
solutions on meshes with very-high-aspect-ratio cells, designed to resolve
the boundary layer in Navier-Stokes calculations. Figure 11 shows a
shock-free Euler solution for the Korn airfoil®® on a 320 x 64 Navier-
Stokes mesh, obtained in 50 multigrid cycles. Figure 12 shows an Euler
solution for the RAE 2822 airfoil on a 512 x 64 Navier-Stokes mesh. This
is case 9 from Ref, 102, and the experimental data are also displayed.
Figure 13 shows the prediction obtained for the same case using the
Baldwin-Lomax turbulence model. This result also agrees well with the
result obtained by Coakley for this case using the Baldwin-Lomax model.
Figure 14 shows the same calculation with the lower-order artificial dissipa-
tion defined by ¢@ in Eq. (38) deleted. It can be seen that essentially the
same result is obtained. Apparently the high-order dissipative terms are
sufficient for numerical stability, and the shock wave is captured without
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oscillations with the aid of the eddy viscosity. These calculations exhibit a
less rapid rate of convergence to a steady state than Euler calculations on
less highly bunched meshes. Nevertheless, 100200 cycles have consistently
proved sufficient for convergence in numerous calculations.

Usefully accurate three-dimensional Navier-Stokes simulations are now
also within the range of existing supercomputers. This has been demon-
strated by the calculations of Shang and Scherr'® and Fujii and
Obayashi.'” Chandler and MacCormack'®’ have recently developed an
effective relaxation method for the Navier-Stokes equations.

Conclusion

Computational aerodynamics has come of age during the last two
decades, and in several of its branches it is now a mature discipline. Some
of the more striking successes, which have been referred to in this necessar-
ily incomplete survey point the way to its future acceptange as a primary
tool for aerodynamic analysis and design. Basic numerical algorithms for
the treatment of viscous and compressible flows with shock waves are now
in hand, and rapidly convergent solution methods are well established. The
concepts of total variation diminishing difference schemes and multigrid
acceleration methods, in particular, provide examples that mathematical
elegance can be just as important in the development of computational
methods as it has been for analytical methods.

Some areas of likely concentration for future research can be identified.
These include the following

1) The quest for numerical approximation schemes with a higher order
of accuracy: The power of the spectral method'*' for numerical approx-
imation of smooth solutions beckons efforts to extend it to treat discontin-
uous solutions. It is already used as an effective tool in simulations of
turbulence.!'® The recently proposed concept of essentially nonoscillatory
(ENO) schemes""! is another interesting direction of research.

2) Front tracking: Ultimately, it should be possible to attain improved
representation of shock waves and contact discontinuities by treating them
as internal boundaries.!'? The use of triangular meshes offers new opportu-
nities to represent more complex features such as triple points.

3) Adaptive mesh redistribution and refinement: It is clear that greatly
improved accuracy can be attained for a given computational cost by
adapting the mesh to the solution as it develops during the calculation.
This can be a key to obtaining adequate resolutions of all the important
features of really complex flows, and it may be an effective alternative to
front tracking for the representation of discontinuities. Widespread re-
search on the realization of adaptive methods is in progress.’*~"!? Re-
peated local subdivision ultimately destroys any coherence of the structure
of the mesh, and unstructured triangular meshes provide a natural basis for
the use of such a procedure.’75116:117

4) Concurrent computation: The best opportunity for further increases
in computing speed lies in the use of concurrent computation, which may
be realized through the introduction of vector, pipelined, and parallel
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arithmetic processors. Algorithms of the future must be designed to take
full advantage of these architectures.

5) Optimization and design: An aerodynamic analysis may warn a
designer that his proposed configuration is unsatisfactory, but it is not very
helpful to him if it provides no indication of how to make an improvement.
Ultimately, computational methods for aerodynamic analysis ought to be
incorporated in automatic design procedures, which will use computer
optimization methods, and perhaps expert systems to refine and improve
the configuration. Some early efforts have already demonstrated the feasi-
bility of automatic design.''®'"’

6) Turbulence modeling: Improved simulations of separated viscous
flows will require advances in turbulence modeling. More complex multi-
equation formulations may be necessary for the realization of more univer-
sally applicable models. Renormalization group theory offers another
avenue towards the construction of a rational turbulence model.'?°

Once these various challenges have been surmounted, the simulation of
both external and internal flows will become a routine practice. Methods of
the future must be capable of treating arbitrary configurations, including
complex aircraft, and flows in complex propulsive systems. Simulations for
hypersonic aircraft will require the inclusion of real gas effects and chemical
reactions at high temperatures. New ideas will surely be brought to bear on
some of these problems.
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Fig. 1 Alternative solutions for an ellipse: a) compression shock; b) expansion shock;
¢) symmetric shock.

A > 0:

Central
Differencing

A < 0:

° Upwind

/ Differencing

I B R O o

q
]
[}
'

Fig. 2 Murman-Cole difference scheme.



FULL-POTENTIAL, EULER, AND NAVIER-STOKES SCHEMES 77

o
o
o
¢
o
©
=
o
o -
. -
71 PSS
'
+
K
+
*
+
[=} o .
© e
3 "
+
<1 e
W
— &
&
R
o & X
S R
N 3
a o K
v
° 3 FREE
4 o 3
3 .,
4 ..
! .
3 . -
. R L LT T ..
ol #asnem -, g
1 + - ..
. “, ..
B -._‘-— 1"'
+ . g
N RIS Y
o \»i
"
3
q * .
° *
L}
+
B
=3
@
: +
o
=
+
x
] :
-J

NACA B4YAY10

MACH 0.720 ALPHA 0.0

CL 0.6640 CcD 0.0031 CM -0.1476
GRID 192x32 NCYC 3 RESO.580D-06

Fig. 3 Transonic potential-flow solution calculated with three multigrid V cycles.



78 A. JAMESON

Fig. b Surface Mach contours for transonic potential flow over a Falcon 50.
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Fig. 5 Alternative discretization schemes: a) cell-centered rectilinear; b) cell-
centered triangular; c) vertex rectilinear; d) vertex triangular.
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Fig. 9a  Euler solution on ONERA M6 wing after 100 cycles.
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Fig. 9b Convergence history for Euler solution on ONERA M6 wing.
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Fig. 9c Euler solution on ONERA M6 wing after 25 cycles.
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Fig. 10a McDonnell Douglas MD-11 transport shaded surfaces.
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Fig. 11a Navier-Stokes mesh for Euler solution on Korn Airfoil.
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Fig. 12a 512 X 64 Navier-Stokes mesh for Euler solution on RAE 2822.
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- Fig. 12b  Euler solution for RAE 2822 on Navier-Stokes mesh.
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Fig. 13 Navier-Stokes solution for RAE 2822-Baldwin-Lomax turbulence model.
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Fig. 14 Navier-Stokes solution for RAE 2822-Baldwin-Lomax turbulence model,
artificial dssipation from fourth difference only.





